[Numpy-discussion] Adding keyword to asarray and asanyarray.

josef.pktd at gmail.com josef.pktd at gmail.com
Fri Mar 6 00:02:10 EST 2015

On Thu, Mar 5, 2015 at 12:33 PM, Charles R Harris
<charlesr.harris at gmail.com> wrote:
> On Thu, Mar 5, 2015 at 10:04 AM, Chris Barker <chris.barker at noaa.gov> wrote:
>> On Thu, Mar 5, 2015 at 8:42 AM, Benjamin Root <ben.root at ou.edu> wrote:
>>> dare I say... datetime64/timedelta64 support?
>> well, the precision of those is 64 bits, yes? so if you asked for less
>> than that, you'd still get a dt64. If you asked for 64 bits, you'd get it,
>> if you asked for datetime128  -- what would you get???
>> a 128 bit integer? or an Exception, because there is no 128bit datetime
>> dtype.
>> But I think this is the same problem with any dtype -- if you ask for a
>> precision that doesn't exist, you're going to get an error.
>> Is there a more detailed description of the proposed feature anywhere? Do
>> you specify a dtype as a precision? or jsut the precision, and let the dtype
>> figure it out for itself, i.e.:
>> precision=64
>> would give you a float64 if the passed in array was a float type, but a
>> int64 if the passed in array was an int type, or a uint64 if the passed in
>> array was a unsigned int type, etc.....
>> But in the end,  I wonder about the use case. I generaly use asarray one
>> of two ways:
>> Without a dtype -- to simple make sure I've got an ndarray of SOME dtype.
>> or
>> With a dtype - because I really care about the dtype -- usually because I
>> need to pass it on to C code or something.
>> I don't think I'd ever need at least some precision, but not care if I got
>> more than that...
> The main use that I want to cover is that float64 and complex128 have the
> same precision and it would be good if either is acceptable.  Also, one
> might just want either float32 or float64, not just one of the two. Another
> intent is to make the fewest possible copies. The determination of the
> resulting type is made using the result_type function.

How does this work for object arrays, or datetime?

Can I specify at least float32 or float64, and it raises an exception
if it cannot be converted?

The problem we have in statsmodels is that pandas frequently uses
object arrays and it messes up patsy or statsmodels if it's not
explicitly converted.


> Chuck
> _______________________________________________
> NumPy-Discussion mailing list
> NumPy-Discussion at scipy.org
> http://mail.scipy.org/mailman/listinfo/numpy-discussion

More information about the NumPy-Discussion mailing list