[Numpy-discussion] Cython-based OpenMP-accelerated quartic polynomial solver

Daπid davidmenhur at gmail.com
Tue Oct 6 04:14:15 EDT 2015

On 30 September 2015 at 18:20, Nathaniel Smith <njs at pobox.com> wrote:

> - parallel code in general is not very composable. If someone is calling a
> numpy operation from one thread, great, transparently using multiple
> threads internally is a win. If they're exploiting some higher-level
> structure in their problem to break it into pieces and process each in
> parallel, and then using numpy on each piece, then numpy spawning threads
> internally will probably destroy performance. And numpy is too low-level to
> know which case it's in. This problem exists to some extent already with
> multi-threaded BLAS, so people use various BLAS-specific knobs to manage it
> in ad hoc ways, but this doesn't scale.
One idea: what about creating a "parallel numpy"? There are a few
algorithms that can benefit from parallelisation. This library would mimic
Numpy's signature, and the user would be responsible for choosing the
single threaded or the parallel one by just changing np.function(x, y) to
pnp.function(x, y)

If that were deemed a good one, what would be the best parallelisation
scheme? OpenMP? Threads?
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/numpy-discussion/attachments/20151006/5102292d/attachment.html>

More information about the NumPy-Discussion mailing list