[Numpy-discussion] Fortran order in recarray.
Matthew Harrigan
harrigan.matthew at gmail.com
Wed Feb 22 10:38:45 EST 2017
Alex,
Can you please post some code showing exactly what you are trying to do and
any issues you are having, particularly the "irritating problems with its
row indexing and some other problems" you quote above?
On Wed, Feb 22, 2017 at 10:34 AM, Robert McLeod <robbmcleod at gmail.com>
wrote:
> Just as a note, Appveyor supports uploading modules to "public websites":
>
> https://packaging.python.org/appveyor/
>
> The main issue I would see from this, is the PyPi has my password stored
> on my machine in a plain text file. I'm not sure whether there's a way to
> provide Appveyor with a SSH key instead.
>
> On Wed, Feb 22, 2017 at 4:23 PM, Alex Rogozhnikov <
> alex.rogozhnikov at yandex.ru> wrote:
>
>> Hi Francesc,
>> thanks a lot for you reply and for your impressive job on bcolz!
>>
>> Bcolz seems to make stress on compression, which is not of much interest
>> for me, but the *ctable*, and chunked operations look very appropriate
>> to me now. (Of course, I'll need to test it much before I can say this for
>> sure, that's current impression).
>>
>> The strongest concern with bcolz so far is that it seems to be completely
>> non-trivial to install on windows systems, while pip provides binaries for
>> most (or all?) OS for numpy.
>> I didn't build pip binary wheels myself, but is it hard / impossible to
>> cook pip-installabel binaries?
>>
>> You can change shapes of numpy arrays, but that usually involves copies
>> of the whole container.
>>
>> sure, but this is ok for me, as I plan to organize column editing in
>> 'batches', so this should require seldom copying.
>> It would be nice to see an example to understand how deep I need to go
>> inside numpy.
>>
>> Cheers,
>> Alex.
>>
>>
>>
>>
>> 22 февр. 2017 г., в 17:03, Francesc Alted <faltet at gmail.com> написал(а):
>>
>> Hi Alex,
>>
>> 2017-02-22 12:45 GMT+01:00 Alex Rogozhnikov <alex.rogozhnikov at yandex.ru>:
>>
>>> Hi Nathaniel,
>>>
>>>
>>> pandas
>>>
>>>
>>> yup, the idea was to have minimal pandas.DataFrame-like storage (which I
>>> was using for a long time),
>>> but without irritating problems with its row indexing and some other
>>> problems like interaction with matplotlib.
>>>
>>> A dict of arrays?
>>>
>>>
>>> that's what I've started from and implemented, but at some point I
>>> decided that I'm reinventing the wheel and numpy has something already. In
>>> principle, I can ignore this 'column-oriented' storage requirement, but
>>> potentially it may turn out to be quite slow-ish if dtype's size is large.
>>>
>>> Suggestions are welcome.
>>>
>>
>> You may want to try bcolz:
>>
>> https://github.com/Blosc/bcolz
>>
>> bcolz is a columnar storage, basically as you require, but data is
>> compressed by default even when stored in-memory (although you can disable
>> compression if you want to).
>>
>>
>>
>>>
>>> Another strange question:
>>> in general, it is considered that once numpy.array is created, it's
>>> shape not changed.
>>> But if i want to keep the same recarray and change it's dtype and/or
>>> shape, is there a way to do this?
>>>
>>
>> You can change shapes of numpy arrays, but that usually involves copies
>> of the whole container. With bcolz you can change length and add/del
>> columns without copies. If your containers are large, it is better to
>> inform bcolz on its final estimated size. See:
>>
>> http://bcolz.blosc.org/en/latest/opt-tips.html
>>
>> Francesc
>>
>>
>>>
>>> Thanks,
>>> Alex.
>>>
>>>
>>>
>>> 22 февр. 2017 г., в 3:53, Nathaniel Smith <njs at pobox.com> написал(а):
>>>
>>> On Feb 21, 2017 3:24 PM, "Alex Rogozhnikov" <alex.rogozhnikov at yandex.ru>
>>> wrote:
>>>
>>> Ah, got it. Thanks, Chris!
>>> I thought recarray can be only one-dimensional (like tables with named
>>> columns).
>>>
>>> Maybe it's better to ask directly what I was looking for:
>>> something that works like a table with named columns (but no labelling
>>> for rows), and keeps data (of different dtypes) in a column-by-column way
>>> (and this is numpy, not pandas).
>>>
>>> Is there such a magic thing?
>>>
>>>
>>> Well, that's what pandas is for...
>>>
>>> A dict of arrays?
>>>
>>> -n
>>> _______________________________________________
>>> NumPy-Discussion mailing list
>>> NumPy-Discussion at scipy.org
>>> https://mail.scipy.org/mailman/listinfo/numpy-discussion
>>>
>>>
>>>
>>> _______________________________________________
>>> NumPy-Discussion mailing list
>>> NumPy-Discussion at scipy.org
>>> https://mail.scipy.org/mailman/listinfo/numpy-discussion
>>>
>>>
>>
>>
>> --
>> Francesc Alted
>> _______________________________________________
>> NumPy-Discussion mailing list
>> NumPy-Discussion at scipy.org
>> https://mail.scipy.org/mailman/listinfo/numpy-discussion
>>
>>
>>
>> _______________________________________________
>> NumPy-Discussion mailing list
>> NumPy-Discussion at scipy.org
>> https://mail.scipy.org/mailman/listinfo/numpy-discussion
>>
>>
>
>
> --
> Robert McLeod, Ph.D.
> Center for Cellular Imaging and Nano Analytics (C-CINA)
> Biozentrum der Universität Basel
> Mattenstrasse 26, 4058 Basel
> Work: +41.061.387.3225 <+41%2061%20387%2032%2025>
> robert.mcleod at unibas.ch
> robert.mcleod at bsse.ethz.ch <robert.mcleod at ethz.ch>
> robbmcleod at gmail.com
>
> _______________________________________________
> NumPy-Discussion mailing list
> NumPy-Discussion at scipy.org
> https://mail.scipy.org/mailman/listinfo/numpy-discussion
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/numpy-discussion/attachments/20170222/f757413f/attachment.html>
More information about the NumPy-Discussion
mailing list