<div dir="ltr"><p dir="ltr">On Tue, Mar 31, 2015, 12:50 AM Klemm, Michael <<a href="mailto:michael.klemm@intel.com" target="_blank">michael.klemm@intel.com</a>> wrote:<br></p><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">Dear all,<br>
<br>
I have found a bug in one of my codes and the way it passes a Numpy matrix to MKL's dgemm routine.  Up to now I was assuming that the matrixes are using C order.  I guess I have to correct this assumption :-).<br>
<br>
I have found that the numpy.linalg.svd algorithm creates the resulting U, sigma, and V matrixes with Fortran storage.  Is there any way to force these kind of algorithms to not change the storage order?  That would make passing the matrixes to the native dgemm operation much easier.<br>
<br>
Cheers,<br>
        -michael<br>
<br>
Dr.-Ing. Michael Klemm<br>
Senior Application Engineer<br>
Software and Services Group<br>
Developer Relations Division<br>
Phone   +49 89 9914 2340<br>
Cell    +49 174 2417583<br>
<br>
<br>
Intel GmbH<br>
Dornacher Strasse 1<br>
85622 Feldkirchen/Muenchen, Deutschland<br>
Sitz der Gesellschaft: Feldkirchen bei Muenchen<br>
Geschaeftsfuehrer: Christian Lamprechter, Hannes Schwaderer, Douglas Lusk<br>
Registergericht: Muenchen HRB 47456<br>
Ust.-IdNr./VAT Registration No.: DE129385895<br>
Citibank Frankfurt a.M. (BLZ 502 109 00) 600119052<br>
<br>
______________________________<u></u><u></u>_________________<br>
NumPy-Discussion mailing list<br>
<a href="mailto:NumPy-Discussion@scipy.org" target="_blank">NumPy-Discussion@scipy.org</a><br>
<a href="http://mail.scipy.org/mailman/listinfo/numpy-discussion" target="_blank">http://mail.scipy.org/mailman/<u></u><u></u>listinfo/numpy-discussion</a></blockquote><div><br></div><p dir="ltr">Why not just call the algorithm on the transpose of the original array? That will transpose and reverse the order of the SVD, but taking the transposes once the algorithm is finished will ensure they are C ordered. You could also use np.ascontiguousarray on the output arrays, though that results in unnecessary copies that change the memory layout.<br>Best of luck!</p><div>-Ian Henriksen </div></div></div>