[Numpy-svn] r4654 - in trunk/numpy: core/tests doc/swig/test f2py fft/tests numarray

numpy-svn at scipy.org numpy-svn at scipy.org
Fri Dec 28 20:32:42 EST 2007


Author: jarrod.millman
Date: 2007-12-28 19:32:27 -0600 (Fri, 28 Dec 2007)
New Revision: 4654

Modified:
   trunk/numpy/core/tests/test_multiarray.py
   trunk/numpy/core/tests/test_regression.py
   trunk/numpy/doc/swig/test/testArray.py
   trunk/numpy/f2py/f90mod_rules.py
   trunk/numpy/fft/tests/test_fftpack.py
   trunk/numpy/numarray/functions.py
Log:
janitorial work


Modified: trunk/numpy/core/tests/test_multiarray.py
===================================================================
--- trunk/numpy/core/tests/test_multiarray.py	2007-12-29 00:30:47 UTC (rev 4653)
+++ trunk/numpy/core/tests/test_multiarray.py	2007-12-29 01:32:27 UTC (rev 4654)
@@ -1,10 +1,9 @@
+import tempfile
+
+import numpy as np
 from numpy.testing import *
 from numpy.core import *
-from numpy import random
-import numpy as N
 
-import tempfile
-
 class TestFlags(NumpyTestCase):
     def setUp(self):
         self.a = arange(10)
@@ -357,7 +356,7 @@
 
 class TestArgmax(NumpyTestCase):
     def check_all(self):
-        a = random.normal(0,1,(4,5,6,7,8))
+        a = np.random.normal(0,1,(4,5,6,7,8))
         for i in xrange(a.ndim):
             amax = a.max(i)
             aargmax = a.argmax(i)
@@ -373,8 +372,8 @@
 
 class TestClip(NumpyTestCase):
     def _check_range(self,x,cmin,cmax):
-        assert N.all(x >= cmin)
-        assert N.all(x <= cmax)
+        assert np.all(x >= cmin)
+        assert np.all(x <= cmax)
 
     def _clip_type(self,type_group,array_max,
                    clip_min,clip_max,inplace=False,
@@ -384,16 +383,16 @@
         if expected_max is None:
             expected_max = clip_max
 
-        for T in N.sctypes[type_group]:
+        for T in np.sctypes[type_group]:
             if sys.byteorder == 'little':
                 byte_orders = ['=','>']
             else:
                 byte_orders = ['<','=']
 
             for byteorder in byte_orders:
-                dtype = N.dtype(T).newbyteorder(byteorder)
+                dtype = np.dtype(T).newbyteorder(byteorder)
 
-                x = (N.random.random(1000) * array_max).astype(dtype)
+                x = (np.random.random(1000) * array_max).astype(dtype)
                 if inplace:
                     x.clip(clip_min,clip_max,x)
                 else:
@@ -417,46 +416,46 @@
             x = self._clip_type('uint',1024,0,0, inplace=inplace)
 
     def check_record_array(self):
-        rec = N.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+        rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
                       dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')])
         y = rec['x'].clip(-0.3,0.5)
         self._check_range(y,-0.3,0.5)
 
     def check_max_or_min(self):
-        val = N.array([0,1,2,3,4,5,6,7])
+        val = np.array([0,1,2,3,4,5,6,7])
         x = val.clip(3)
-        assert N.all(x >= 3)
+        assert np.all(x >= 3)
         x = val.clip(min=3)
-        assert N.all(x >= 3)
+        assert np.all(x >= 3)
         x = val.clip(max=4)
-        assert N.all(x <= 4)
+        assert np.all(x <= 4)
 
 class TestPutmask(ParametricTestCase):
     def tst_basic(self,x,T,mask,val):
-        N.putmask(x,mask,val)
-        assert N.all(x[mask] == T(val))
+        np.putmask(x,mask,val)
+        assert np.all(x[mask] == T(val))
         assert x.dtype == T
 
     def testip_types(self):
-        unchecked_types = [str,unicode,N.void,object]
+        unchecked_types = [str, unicode, np.void, object]
 
-        x = N.random.random(1000)*100
+        x = np.random.random(1000)*100
         mask = x < 40
 
         tests = []
         for val in [-100,0,15]:
-            for types in N.sctypes.itervalues():
+            for types in np.sctypes.itervalues():
                 tests.extend([(self.tst_basic,x.copy().astype(T),T,mask,val)
                               for T in types if T not in unchecked_types])
         return tests
 
     def test_mask_size(self):
-        self.failUnlessRaises(ValueError,N.putmask,
-                              N.array([1,2,3]),[True],5)
+        self.failUnlessRaises(ValueError, np.putmask,
+                              np.array([1,2,3]), [True], 5)
 
     def tst_byteorder(self,dtype):
-        x = N.array([1,2,3],dtype)
-        N.putmask(x,[True,False,True],-1)
+        x = np.array([1,2,3],dtype)
+        np.putmask(x,[True,False,True],-1)
         assert_array_equal(x,[-1,2,-1])
 
     def testip_byteorder(self):
@@ -464,46 +463,46 @@
 
     def test_record_array(self):
         # Note mixed byteorder.
-        rec = N.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
+        rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)],
                       dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')])
-        N.putmask(rec['x'],[True,False],10)
+        np.putmask(rec['x'],[True,False],10)
         assert_array_equal(rec['x'],[10,5])
-        N.putmask(rec['y'],[True,False],10)
+        np.putmask(rec['y'],[True,False],10)
         assert_array_equal(rec['y'],[10,4])
 
     def test_masked_array(self):
-        ## x = N.array([1,2,3])
-        ## z = N.ma.array(x,mask=[True,False,False])
-        ## N.putmask(z,[True,True,True],3)
+        ## x = np.array([1,2,3])
+        ## z = np.ma.array(x,mask=[True,False,False])
+        ## np.putmask(z,[True,True,True],3)
         pass
 
 class TestLexsort(NumpyTestCase):
     def test_basic(self):
         a = [1,2,1,3,1,5]
         b = [0,4,5,6,2,3]
-        idx = N.lexsort((b,a))
-        expected_idx = N.array([0,4,2,1,3,5])
+        idx = np.lexsort((b,a))
+        expected_idx = np.array([0,4,2,1,3,5])
         assert_array_equal(idx,expected_idx)
 
-        x = N.vstack((b,a))
-        idx = N.lexsort(x)
+        x = np.vstack((b,a))
+        idx = np.lexsort(x)
         assert_array_equal(idx,expected_idx)
 
-        assert_array_equal(x[1][idx],N.sort(x[1]))
+        assert_array_equal(x[1][idx],np.sort(x[1]))
 
 class TestFromToFile(NumpyTestCase):
     def setUp(self):
         shape = (4,7)
-        rand = N.random.random
+        rand = np.random.random
 
-        self.x = rand(shape) + rand(shape).astype(N.complex)*1j
-        self.dtype = N.complex
+        self.x = rand(shape) + rand(shape).astype(np.complex)*1j
+        self.dtype = np.complex
 
     def test_file(self):
         f = tempfile.TemporaryFile()
         self.x.tofile(f)
         f.seek(0)
-        y = N.fromfile(f,dtype=self.dtype)
+        y = np.fromfile(f,dtype=self.dtype)
         assert_array_equal(y,self.x.flat)
 
     def test_filename(self):
@@ -511,7 +510,7 @@
         f = open(filename,'wb')
         self.x.tofile(f)
         f.close()
-        y = N.fromfile(filename,dtype=self.dtype)
+        y = np.fromfile(filename,dtype=self.dtype)
         assert_array_equal(y,self.x.flat)
 
 class TestFromBuffer(ParametricTestCase):
@@ -522,21 +521,21 @@
         tests = []
         for byteorder in ['<','>']:
             for dtype in [float,int,N.complex]:
-                dt = N.dtype(dtype).newbyteorder(byteorder)
-                x = (N.random.random((4,7))*5).astype(dt)
+                dt = np.dtype(dtype).newbyteorder(byteorder)
+                x = (np.random.random((4,7))*5).astype(dt)
                 buf = x.tostring()
                 tests.append((self.tst_basic,buf,x.flat,{'dtype':dt}))
         return tests
 
 class TestResize(NumpyTestCase):
     def test_basic(self):
-        x = N.eye(3)
+        x = np.eye(3)
         x.resize((5,5))
         assert_array_equal(x.flat[:9],N.eye(3).flat)
         assert_array_equal(x[9:].flat,0)
 
     def test_check_reference(self):
-        x = N.eye(3)
+        x = np.eye(3)
         y = x
         self.failUnlessRaises(ValueError,x.resize,(5,1))
 

Modified: trunk/numpy/core/tests/test_regression.py
===================================================================
--- trunk/numpy/core/tests/test_regression.py	2007-12-29 00:30:47 UTC (rev 4653)
+++ trunk/numpy/core/tests/test_regression.py	2007-12-29 01:32:27 UTC (rev 4654)
@@ -4,7 +4,7 @@
 import sys
 
 set_local_path()
-import numpy as N
+import numpy as np
 restore_path()
 
 rlevel = 1
@@ -30,11 +30,11 @@
 
     def check_mem_empty(self,level=rlevel):
         """Ticket #7"""
-        N.empty((1,),dtype=[('x',N.int64)])
+        np.empty((1,),dtype=[('x',N.int64)])
 
     def check_pickle_transposed(self,level=rlevel):
         """Ticket #16"""
-        a = N.transpose(N.array([[2,9],[7,0],[3,8]]))
+        a = np.transpose(N.array([[2,9],[7,0],[3,8]]))
         f = StringIO()
         pickle.dump(a,f)
         f.seek(0)
@@ -44,45 +44,46 @@
 
     def check_masked_array_create(self,level=rlevel):
         """Ticket #17"""
-        x = N.ma.masked_array([0,1,2,3,0,4,5,6],mask=[0,0,0,1,1,1,0,0])
+        x = np.ma.masked_array([0,1,2,3,0,4,5,6],mask=[0,0,0,1,1,1,0,0])
+from data_store import load, save, create_module, create_shelf
         assert_array_equal(N.ma.nonzero(x),[[1,2,6,7]])
 
     def check_poly1d(self,level=rlevel):
         """Ticket #28"""
-        assert_equal(N.poly1d([1]) - N.poly1d([1,0]),
-                     N.poly1d([-1,1]))
+        assert_equal(np.poly1d([1]) - np.poly1d([1,0]),
+                     np.poly1d([-1,1]))
 
     def check_typeNA(self,level=rlevel):
         """Ticket #31"""
-        assert_equal(N.typeNA[N.int64],'Int64')
-        assert_equal(N.typeNA[N.uint64],'UInt64')
+        assert_equal(np.typeNA[np.int64],'Int64')
+        assert_equal(np.typeNA[np.uint64],'UInt64')
 
     def check_dtype_names(self,level=rlevel):
         """Ticket #35"""
-        dt = N.dtype([(('name','label'),N.int32,3)])
+        dt = np.dtype([(('name','label'),np.int32,3)])
 
     def check_reduce(self,level=rlevel):
         """Ticket #40"""
-        assert_almost_equal(N.add.reduce([1.,.5],dtype=None), 1.5)
+        assert_almost_equal(np.add.reduce([1.,.5],dtype=None), 1.5)
 
     def check_zeros_order(self,level=rlevel):
         """Ticket #43"""
-        N.zeros([3], int, 'C')
-        N.zeros([3], order='C')
-        N.zeros([3], int, order='C')
+        np.zeros([3], int, 'C')
+        np.zeros([3], order='C')
+        np.zeros([3], int, order='C')
 
     def check_sort_bigendian(self,level=rlevel):
         """Ticket #47"""
-        a = N.linspace(0, 10, 11)
+        a = np.linspace(0, 10, 11)
         c = a.astype(N.dtype('<f8'))
         c.sort()
         assert_array_almost_equal(c, a)
 
     def check_negative_nd_indexing(self,level=rlevel):
         """Ticket #49"""
-        c = N.arange(125).reshape((5,5,5))
-        origidx = N.array([-1, 0, 1])
-        idx = N.array(origidx)
+        c = np.arange(125).reshape((5,5,5))
+        origidx = np.array([-1, 0, 1])
+        idx = np.array(origidx)
         c[idx]
         assert_array_equal(idx, origidx)
 
@@ -90,15 +91,15 @@
         """Ticket #50"""
         import tempfile
         f = StringIO()
-        ca = N.char.array(N.arange(1000,1010),itemsize=4)
+        ca = np.char.array(N.arange(1000,1010),itemsize=4)
         ca.dump(f)
         f.seek(0)
-        ca = N.load(f)
+        ca = np.load(f)
         f.close()
 
     def check_noncontiguous_fill(self,level=rlevel):
         """Ticket #58."""
-        a = N.zeros((5,3))
+        a = np.zeros((5,3))
         b = a[:,:2,]
         def rs():
             b.shape = (10,)
@@ -106,17 +107,17 @@
 
     def check_bool(self,level=rlevel):
         """Ticket #60"""
-        x = N.bool_(1)
+        x = np.bool_(1)
 
     def check_masked_array(self,level=rlevel):
         """Ticket #61"""
-        x = N.core.ma.array(1,mask=[1])
+        x = np.core.ma.array(1,mask=[1])
 
     def check_mem_masked_where(self,level=rlevel):
         """Ticket #62"""
         from numpy.core.ma import masked_where, MaskType
-        a = N.zeros((1,1))
-        b = N.zeros(a.shape, MaskType)
+        a = np.zeros((1,1))
+        b = np.zeros(a.shape, MaskType)
         c = masked_where(b,a)
         a-c
 
@@ -124,33 +125,33 @@
         """Ticket #64"""
         descr = [('x', [('y', [('z', 'c16', (2,)),]),]),]
         buffer = ((([6j,4j],),),)
-        h = N.array(buffer, dtype=descr)
+        h = np.array(buffer, dtype=descr)
         h['x']['y']['z']
 
     def check_indexing2(self,level=rlevel):
         """Ticket #65"""
         descr = [('x', 'i4', (2,))]
         buffer = ([3,2],)
-        h = N.array(buffer, dtype=descr)
+        h = np.array(buffer, dtype=descr)
         h['x']
 
     def check_round(self,level=rlevel):
         """Ticket #67"""
-        x = N.array([1+2j])
+        x = np.array([1+2j])
         assert_almost_equal(x**(-1), [1/(1+2j)])
 
     def check_kron_matrix(self,level=rlevel):
         """Ticket #71"""
-        x = N.matrix('[1 0; 1 0]')
+        x = np.matrix('[1 0; 1 0]')
         assert_equal(type(N.kron(x,x)),type(x))
 
     def check_scalar_compare(self,level=rlevel):
         """Ticket #72"""
-        a = N.array(['test', 'auto'])
-        assert_array_equal(a == 'auto', N.array([False,True]))
+        a = np.array(['test', 'auto'])
+        assert_array_equal(a == 'auto', np.array([False,True]))
         self.assert_(a[1] == 'auto')
         self.assert_(a[0] != 'auto')
-        b = N.linspace(0, 10, 11)
+        b = np.linspace(0, 10, 11)
         self.assert_(b != 'auto')
         self.assert_(b[0] != 'auto')
 
@@ -158,26 +159,26 @@
         """Ticket #79"""
         ulen = 1
         ucs_value = u'\U0010FFFF'
-        ua = N.array([[[ucs_value*ulen]*2]*3]*4, dtype='U%s' % ulen)
+        ua = np.array([[[ucs_value*ulen]*2]*3]*4, dtype='U%s' % ulen)
         ua2 = ua.newbyteorder()
 
     def check_matrix_std_argmax(self,level=rlevel):
         """Ticket #83"""
-        x = N.asmatrix(N.random.uniform(0,1,(3,3)))
+        x = np.asmatrix(N.random.uniform(0,1,(3,3)))
         self.assertEqual(x.std().shape, ())
         self.assertEqual(x.argmax().shape, ())
 
     def check_object_array_fill(self,level=rlevel):
         """Ticket #86"""
-        x = N.zeros(1, 'O')
+        x = np.zeros(1, 'O')
         x.fill([])
 
     def check_cov_parameters(self,level=rlevel):
         """Ticket #91"""
-        x = N.random.random((3,3))
+        x = np.random.random((3,3))
         y = x.copy()
-        N.cov(x,rowvar=1)
-        N.cov(y,rowvar=0)
+        np.cov(x,rowvar=1)
+        np.cov(y,rowvar=0)
         assert_array_equal(x,y)
 
     def check_mem_dtype_align(self,level=rlevel):
@@ -188,13 +189,13 @@
     def check_mem_digitize(self,level=rlevel):
         """Ticket #95"""
         for i in range(100):
-            N.digitize([1,2,3,4],[1,3])
-            N.digitize([0,1,2,3,4],[1,3])
+            np.digitize([1,2,3,4],[1,3])
+            np.digitize([0,1,2,3,4],[1,3])
 
     def check_intp(self,level=rlevel):
         """Ticket #99"""
-        i_width = N.int_(0).nbytes*2 - 1
-        N.intp('0x' + 'f'*i_width,16)
+        i_width = np.int_(0).nbytes*2 - 1
+        np.intp('0x' + 'f'*i_width,16)
         self.failUnlessRaises(OverflowError,N.intp,'0x' + 'f'*(i_width+1),16)
         self.failUnlessRaises(ValueError,N.intp,'0x1',32)
         assert_equal(255,N.intp('0xFF',16))
@@ -202,10 +203,10 @@
 
     def check_endian_bool_indexing(self,level=rlevel):
         """Ticket #105"""
-        a = N.arange(10.,dtype='>f8')
-        b = N.arange(10.,dtype='<f8')
-        xa = N.where((a>2) & (a<6))
-        xb = N.where((b>2) & (b<6))
+        a = np.arange(10.,dtype='>f8')
+        b = np.arange(10.,dtype='<f8')
+        xa = np.where((a>2) & (a<6))
+        xb = np.where((b>2) & (b<6))
         ya = ((a>2) & (a<6))
         yb = ((b>2) & (b<6))
         assert_array_almost_equal(xa,ya.nonzero())
@@ -215,35 +216,35 @@
 
     def check_mem_dot(self,level=rlevel):
         """Ticket #106"""
-        x = N.random.randn(0,1)
-        y = N.random.randn(10,1)
-        z = N.dot(x, N.transpose(y))
+        x = np.random.randn(0,1)
+        y = np.random.randn(10,1)
+        z = np.dot(x, np.transpose(y))
 
     def check_arange_endian(self,level=rlevel):
         """Ticket #111"""
-        ref = N.arange(10)
-        x = N.arange(10,dtype='<f8')
+        ref = np.arange(10)
+        x = np.arange(10,dtype='<f8')
         assert_array_equal(ref,x)
-        x = N.arange(10,dtype='>f8')
+        x = np.arange(10,dtype='>f8')
         assert_array_equal(ref,x)
 
 #    Longfloat support is not consistent enough across
 #     platforms for this test to be meaningful.
 #    def check_longfloat_repr(self,level=rlevel):
 #        """Ticket #112"""
-#        if N.longfloat(0).itemsize > 8:
-#            a = N.exp(N.array([1000],dtype=N.longfloat))
+#        if np.longfloat(0).itemsize > 8:
+#            a = np.exp(N.array([1000],dtype=N.longfloat))
 #            assert(str(a)[1:9] == str(a[0])[:8])
 
     def check_argmax(self,level=rlevel):
         """Ticket #119"""
-        a = N.random.normal(0,1,(4,5,6,7,8))
+        a = np.random.normal(0,1,(4,5,6,7,8))
         for i in xrange(a.ndim):
             aargmax = a.argmax(i)
 
     def check_matrix_properties(self,level=rlevel):
         """Ticket #125"""
-        a = N.matrix([1.0],dtype=float)
+        a = np.matrix([1.0],dtype=float)
         assert(type(a.real) is N.matrix)
         assert(type(a.imag) is N.matrix)
         c,d = N.matrix([0.0]).nonzero()

Modified: trunk/numpy/doc/swig/test/testArray.py
===================================================================
--- trunk/numpy/doc/swig/test/testArray.py	2007-12-29 00:30:47 UTC (rev 4653)
+++ trunk/numpy/doc/swig/test/testArray.py	2007-12-29 01:32:27 UTC (rev 4654)
@@ -7,10 +7,12 @@
 import unittest
 
 # Import NumPy
-import numpy as N
-major, minor = [ int(d) for d in N.__version__.split(".")[:2] ]
-if major == 0: BadListError = TypeError
-else:          BadListError = ValueError
+import numpy as np
+major, minor = [ int(d) for d in np.__version__.split(".")[:2] ]
+if major == 0:
+    BadListError = TypeError
+else:
+    BadListError = ValueError
 
 # Add the distutils-generated build directory to the python search path and then
 # import the extension module
@@ -38,7 +40,7 @@
 
     def testConstructor2(self):
         "Test Array1 array constructor"
-        na = N.arange(self.length)
+        na = np.arange(self.length)
         aa = Array.Array1(na)
         self.failUnless(isinstance(aa, Array.Array1))
 
@@ -68,7 +70,7 @@
 
     def testResize1(self):
         "Test Array1 resize method, array"
-        a = N.zeros((2*self.length,), dtype='l')
+        a = np.zeros((2*self.length,), dtype='l')
         self.array1.resize(a)
         self.failUnless(len(self.array1) == len(a))
 
@@ -114,7 +116,7 @@
         "Test Array1 view method"
         for i in range(self.array1.length()): self.array1[i] = i+1
         a = self.array1.view()
-        self.failUnless(isinstance(a, N.ndarray))
+        self.failUnless(isinstance(a, np.ndarray))
         self.failUnless(len(a) == self.length)
         self.failUnless((a == [1,2,3,4,5]).all())
 
@@ -139,7 +141,7 @@
 
     def testConstructor2(self):
         "Test Array2 array constructor"
-        na = N.zeros((3,4), dtype="l")
+        na = np.zeros((3,4), dtype="l")
         aa = Array.Array2(na)
         self.failUnless(isinstance(aa, Array.Array2))
 
@@ -180,7 +182,7 @@
 
     #def testResize1(self):
     #    "Test Array2 resize method, array"
-    #    a = N.zeros((2*self.nrows, 2*self.ncols), dtype='l')
+    #    a = np.zeros((2*self.nrows, 2*self.ncols), dtype='l')
     #    self.array2.resize(a)
     #    self.failUnless(len(self.array2) == len(a))
 
@@ -197,7 +199,7 @@
         m = self.nrows
         n = self.ncols
         array1 = [ ]
-        a = N.arange(n, dtype="l")
+        a = np.arange(n, dtype="l")
         for i in range(m):
             array1.append(Array.Array1(i*a))
         for i in range(m):
@@ -265,7 +267,7 @@
     def testView(self):
         "Test Array2 view method"
         a = self.array2.view()
-        self.failUnless(isinstance(a, N.ndarray))
+        self.failUnless(isinstance(a, np.ndarray))
         self.failUnless(len(a) == self.nrows)
 
 ######################################################################
@@ -279,7 +281,7 @@
 
     # Execute the test suite
     print "Testing Classes of Module Array"
-    print "NumPy version", N.__version__
+    print "NumPy version", np.__version__
     print
     result = unittest.TextTestRunner(verbosity=2).run(suite)
     sys.exit(len(result.errors) + len(result.failures))

Modified: trunk/numpy/f2py/f90mod_rules.py
===================================================================
--- trunk/numpy/f2py/f90mod_rules.py	2007-12-29 00:30:47 UTC (rev 4653)
+++ trunk/numpy/f2py/f90mod_rules.py	2007-12-29 01:32:27 UTC (rev 4654)
@@ -17,17 +17,15 @@
 
 f2py_version='See `f2py -v`'
 
-import pprint
-import sys
+import pprint.pprint as show
+import sys.stderr.write as errmess
+import sys.stdout.write as outmess
 import time
 import types
 import copy
-errmess=sys.stderr.write
-outmess=sys.stdout.write
-show=pprint.pprint
 
 from auxfuncs import *
-import numpy as N
+import numpy as np
 import capi_maps
 import cfuncs
 import rules
@@ -61,7 +59,7 @@
             deallocate(d)
          end if
       end if
-      if ((.not.allocated(d)).and.(s(1).ge.1)) then""" % N.intp().itemsize
+      if ((.not.allocated(d)).and.(s(1).ge.1)) then""" % np.intp().itemsize
 
 fgetdims2="""\
       end if

Modified: trunk/numpy/fft/tests/test_fftpack.py
===================================================================
--- trunk/numpy/fft/tests/test_fftpack.py	2007-12-29 00:30:47 UTC (rev 4653)
+++ trunk/numpy/fft/tests/test_fftpack.py	2007-12-29 01:32:27 UTC (rev 4654)
@@ -1,24 +1,24 @@
 import sys
 from numpy.testing import *
 set_package_path()
-import numpy as N
+import numpy as np
 restore_path()
 
 def fft1(x):
     L = len(x)
-    phase = -2j*N.pi*(N.arange(L)/float(L))
-    phase = N.arange(L).reshape(-1,1) * phase
-    return N.sum(x*N.exp(phase),axis=1)
+    phase = -2j*np.pi*(np.arange(L)/float(L))
+    phase = np.arange(L).reshape(-1,1) * phase
+    return np.sum(x*np.exp(phase),axis=1)
 
 class TestFFTShift(NumpyTestCase):
     def check_fft_n(self):
-        self.failUnlessRaises(ValueError,N.fft.fft,[1,2,3],0)
+        self.failUnlessRaises(ValueError,np.fft.fft,[1,2,3],0)
 
 class TestFFT1D(NumpyTestCase):
     def check_basic(self):
-        rand = N.random.random
+        rand = np.random.random
         x = rand(30) + 1j*rand(30)
-        assert_array_almost_equal(fft1(x), N.fft.fft(x))
+        assert_array_almost_equal(fft1(x), np.fft.fft(x))
 
 if __name__ == "__main__":
     NumpyTest().run()

Modified: trunk/numpy/numarray/functions.py
===================================================================
--- trunk/numpy/numarray/functions.py	2007-12-29 00:30:47 UTC (rev 4653)
+++ trunk/numpy/numarray/functions.py	2007-12-29 01:32:27 UTC (rev 4654)
@@ -36,8 +36,13 @@
             'togglebyteorder'
             ]
 
-import copy, copy_reg, types
-import os, sys, math, operator
+import copy,
+import copy_reg
+import types
+import os
+import sys
+import math
+import operator
 
 from numpy import dot as matrixmultiply, dot, vdot, ravel, concatenate, all,\
      allclose, any, around, argsort, array_equal, array_equiv,\
@@ -45,7 +50,7 @@
      diagonal, e, pi, indices, inner as innerproduct, nonzero, \
      outer as outerproduct, kron as kroneckerproduct, lexsort, putmask, rank, \
      resize, searchsorted, shape, size, sort, swapaxes, trace, transpose
-import numpy as N
+import numpy as np
 
 from numerictypes import typefrom
 
@@ -62,46 +67,46 @@
     if dtype is None:
         if type is None:
             if use_default or typecode is not None:
-                dtype = N.dtype(typecode)
+                dtype = np.dtype(typecode)
         else:
-            dtype = N.dtype(type)
+            dtype = np.dtype(type)
     if use_default and dtype is None:
-        dtype = N.dtype('int')
+        dtype = np.dtype('int')
     return dtype
 
 def fromfunction(shape, dimensions, type=None, typecode=None, dtype=None):
     dtype = type2dtype(typecode, type, dtype, 1)
-    return N.fromfunction(shape, dimensions, dtype=dtype)
+    return np.fromfunction(shape, dimensions, dtype=dtype)
 def ones(shape, type=None, typecode=None, dtype=None):
     dtype = type2dtype(typecode, type, dtype, 1)
-    return N.ones(shape, dtype)
+    return np.ones(shape, dtype)
 
 def zeros(shape, type=None, typecode=None, dtype=None):
     dtype = type2dtype(typecode, type, dtype, 1)
-    return N.zeros(shape, dtype)
+    return np.zeros(shape, dtype)
 
 def where(condition, x=None, y=None, out=None):
     if x is None and y is None:
-        arr = N.where(condition)
+        arr = np.where(condition)
     else:
-        arr = N.where(condition, x, y)
+        arr = np.where(condition, x, y)
     if out is not None:
         out[...] = arr
         return out
     return arr
 
 def indices(shape, type=None):
-    return N.indices(shape, type)
+    return np.indices(shape, type)
 
 def arange(a1, a2=None, stride=1, type=None, shape=None,
            typecode=None, dtype=None):
     dtype = type2dtype(typecode, type, dtype, 0)
-    return N.arange(a1, a2, stride, dtype)
+    return np.arange(a1, a2, stride, dtype)
 
 arrayrange = arange
 
 def alltrue(x, axis=0):
-    return N.alltrue(x, axis)
+    return np.alltrue(x, axis)
 
 def and_(a, b):
     """Same as a & b
@@ -113,7 +118,7 @@
     return (a/b,a%b)
 
 def around(array, digits=0, output=None):
-    ret = N.around(array, digits, output)
+    ret = np.around(array, digits, output)
     if output is None:
         return ret
     return
@@ -123,14 +128,14 @@
 
 
 def choose(selector, population, outarr=None, clipmode=RAISE):
-    a = N.asarray(selector)
+    a = np.asarray(selector)
     ret = a.choose(population, out=outarr, mode=clipmode)
     if outarr is None:
         return ret
     return
 
 def compress(condition, a, axis=0):
-    return N.compress(condition, a, axis)
+    return np.compress(condition, a, axis)
 
 # only returns a view
 def explicit_type(a):
@@ -180,7 +185,7 @@
     if -1 not in shape:
         if sizing != STRICT:
             raise ValueError("sizing must be STRICT if size complete")
-        arr = N.empty(shape, dtype)
+        arr = np.empty(shape, dtype)
         bytesleft=arr.nbytes
         bytesread=0
         while(bytesleft > _BLOCKSIZE):
@@ -208,7 +213,7 @@
     ##file whose size may be determined before allocation, should be
     ##quick -- only one allocation will be needed.
 
-    recsize = dtype.itemsize * N.product([i for i in shape if i != -1])
+    recsize = dtype.itemsize * np.product([i for i in shape if i != -1])
     blocksize = max(_BLOCKSIZE/recsize, 1)*recsize
 
     ##try to estimate file size
@@ -222,7 +227,7 @@
     else:
         initsize=max(1,(endpos-curpos)/recsize)*recsize
 
-    buf = N.newbuffer(initsize)
+    buf = np.newbuffer(initsize)
 
     bytesread=0
     while 1:
@@ -260,9 +265,9 @@
     uidx = shape.index(-1)
     shape[uidx]=len(buf) / recsize
 
-    a = N.ndarray(shape=shape, dtype=type, buffer=buf)
+    a = np.ndarray(shape=shape, dtype=type, buffer=buf)
     if a.dtype.char == '?':
-        N.not_equal(a, 0, a)
+        np.not_equal(a, 0, a)
     return a
 
 def fromstring(datastring, type=None, shape=None, typecode=None, dtype=None):
@@ -270,8 +275,8 @@
     if shape is None:
         count = -1
     else:
-        count = N.product(shape)
-    res = N.fromstring(datastring, dtype=dtype, count=count)
+        count = np.product(shape)
+    res = np.fromstring(datastring, dtype=dtype, count=count)
     if shape is not None:
         res.shape = shape
     return res
@@ -280,7 +285,7 @@
 # check_overflow is ignored
 def fromlist(seq, type=None, shape=None, check_overflow=0, typecode=None, dtype=None):
     dtype = type2dtype(typecode, type, dtype, False)
-    return N.array(seq, dtype)
+    return np.array(seq, dtype)
 
 def array(sequence=None, typecode=None, copy=1, savespace=0,
           type=None, shape=None, dtype=None):
@@ -290,21 +295,21 @@
             return None
         if dtype is None:
             dtype = 'l'
-        return N.empty(shape, dtype)
+        return np.empty(shape, dtype)
     if isinstance(sequence, file):
         return fromfile(sequence, dtype=dtype, shape=shape)
     if isinstance(sequence, str):
         return fromstring(sequence, dtype=dtype, shape=shape)
     if isinstance(sequence, buffer):
-        arr = N.frombuffer(sequence, dtype=dtype)
+        arr = np.frombuffer(sequence, dtype=dtype)
     else:
-        arr = N.array(sequence, dtype, copy=copy)
+        arr = np.array(sequence, dtype, copy=copy)
     if shape is not None:
         arr.shape = shape
     return arr
 
 def asarray(seq, type=None, typecode=None, dtype=None):
-    if isinstance(seq, N.ndarray) and type is None and \
+    if isinstance(seq, np.ndarray) and type is None and \
            typecode is None and dtype is None:
         return seq
     return array(seq, type=type, typecode=typecode, copy=0, dtype=dtype)
@@ -328,10 +333,10 @@
             shape = (shape, ) + args
         else:
             shape = tuple(shape)
-        dummy = N.array(shape)
-        if not issubclass(dummy.dtype.type, N.integer):
+        dummy = np.array(shape)
+        if not issubclass(dummy.dtype.type, np.integer):
             raise TypeError
-        if len(dummy) > N.MAXDIMS:
+        if len(dummy) > np.MAXDIMS:
             raise TypeError
     except:
         raise TypeError("Shape must be a sequence of integers")
@@ -340,7 +345,7 @@
 
 def identity(n, type=None, typecode=None, dtype=None):
     dtype = type2dtype(typecode, type, dtype, True)
-    return N.identity(n, dtype)
+    return np.identity(n, dtype)
 
 def info(obj, output=sys.stdout, numpy=0):
     if numpy:
@@ -396,7 +401,7 @@
 
 #clipmode is ignored if axis is not 0 and array is not 1d
 def put(array, indices, values, axis=0, clipmode=RAISE):
-    if not isinstance(array, N.ndarray):
+    if not isinstance(array, np.ndarray):
         raise TypeError("put only works on subclass of ndarray")
     work = asarray(array)
     if axis == 0:
@@ -404,7 +409,7 @@
             work.put(indices, values, clipmode)
         else:
             work[indices] = values
-    elif isinstance(axis, (int, long, N.integer)):
+    elif isinstance(axis, (int, long, np.integer)):
         work = work.swapaxes(0, axis)
         work[indices] = values
         work = work.swapaxes(0, axis)
@@ -418,13 +423,13 @@
         work = work.transpose(axis)
 
 def repeat(array, repeats, axis=0):
-    return N.repeat(array, repeats, axis)
+    return np.repeat(array, repeats, axis)
 
 
 def reshape(array, shape, *args):
     if len(args) > 0:
         shape = (shape,) + args
-    return N.reshape(array, shape)
+    return np.reshape(array, shape)
 
 
 import warnings as _warnings
@@ -434,12 +439,12 @@
     return around(*args, **keys)
 
 def sometrue(array, axis=0):
-    return N.sometrue(array, axis)
+    return np.sometrue(array, axis)
 
 #clipmode is ignored if axis is not an integer
 def take(array, indices, axis=0, outarr=None, clipmode=RAISE):
-    array = N.asarray(array)
-    if isinstance(axis, (int, long, N.integer)):
+    array = np.asarray(array)
+    if isinstance(axis, (int, long, np.integer)):
         res = array.take(indices, axis, outarr, clipmode)
         if outarr is None:
             return res
@@ -457,34 +462,34 @@
         return
 
 def tensormultiply(a1, a2):
-    a1, a2 = N.asarray(a1), N.asarray(a2)
+    a1, a2 = np.asarray(a1), np.asarray(a2)
     if (a1.shape[-1] != a2.shape[0]):
         raise ValueError("Unmatched dimensions")
     shape = a1.shape[:-1] + a2.shape[1:]
-    return N.reshape(dot(N.reshape(a1, (-1, a1.shape[-1])),
-                         N.reshape(a2, (a2.shape[0],-1))),
+    return np.reshape(dot(N.reshape(a1, (-1, a1.shape[-1])),
+                         np.reshape(a2, (a2.shape[0],-1))),
                      shape)
 
 def cumsum(a1, axis=0, out=None, type=None, dim=0):
-    return N.asarray(a1).cumsum(axis,dtype=type,out=out)
+    return np.asarray(a1).cumsum(axis,dtype=type,out=out)
 
 def cumproduct(a1, axis=0, out=None, type=None, dim=0):
-    return N.asarray(a1).cumprod(axis,dtype=type,out=out)
+    return np.asarray(a1).cumprod(axis,dtype=type,out=out)
 
 def argmax(x, axis=-1):
-    return N.argmax(x, axis)
+    return np.argmax(x, axis)
 
 def argmin(x, axis=-1):
-    return N.argmin(x, axis)
+    return np.argmin(x, axis)
 
 def newobj(self, type):
     if type is None:
-        return N.empty_like(self)
+        return np.empty_like(self)
     else:
-        return N.empty(self.shape, type)
+        return np.empty(self.shape, type)
 
 def togglebyteorder(self):
     self.dtype=self.dtype.newbyteorder()
 
 def average(a, axis=0, weights=None, returned=0):
-    return N.average(a, axis, weights, returned)
+    return = np.average(a, axis, weights, returned)




More information about the Numpy-svn mailing list