[Pandas-dev] Drop all columns which are not normal numeric nor text values
Tom Augspurger
tom.augspurger88 at gmail.com
Mon Nov 16 14:18:06 EST 2020
> On Nov 16, 2020, at 10:51 AM, Shaozhong SHI <shishaozhong at gmail.com> wrote:
>
> After applying myDF = json_normalize(result)
>
> We get
> brandId brandName careHome constituency currentRatings.overall.keyQuestionRatings currentRatings.overall.rating currentRatings.overall.reportDate currentRatings.overall.reportLinkId currentRatings.reportDate dormancy ... providerId region registrationDate registrationStatus regulatedActivities relationships reports specialisms type uprn
> 0 BD510 BRAND MACC Care Y Birmingham, Northfield [{u'reportDate': u'2020-10-01', u'rating': u'R... Requires improvement 2020-10-01 1157c975-c2f1-423e-a2b4-66901779e014 2020-10-01 N ... 1-101641521 West Midlands 2013-12-16 Registered [{u'code': u'RA2', u'name': u'Accommodation fo... [] [{u'reportDate': u'2020-10-01', u'linkId': u'1... [{u'name': u'Caring for adults over 65 yrs'}, ... Social Care Org 100070537642
>
>
>
>
>
>
> How to replace or drop all columns which are neither numeric nor text values?
>
> What is the fastest way?
>
> Regards,
>
> David
Hi David,
This mailing list is for pandas development. We recommend stack overflow for usage questions.
Tom
> _______________________________________________
> Pandas-dev mailing list
> Pandas-dev at python.org
> https://mail.python.org/mailman/listinfo/pandas-dev
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <https://mail.python.org/pipermail/pandas-dev/attachments/20201116/5390333d/attachment-0001.html>
More information about the Pandas-dev
mailing list