
Python Coding -
One Year Later

A treasure trove of practical and simple examples.

Cathy Young

Look Inside

Learn the difference between data structures and explore
range and generator objects. Chapter 3 looks at lists, tuples, strings,
dictionaries, zips, maps, sets, and filters.

• Add
• Update
• Remove or replace characters with slicing and functions
• Delete
• Sort (with multiple values)
• Copy objects & remove duplicate objects with “sets”
• Split & combine objects
• Change type
• Search objects
• Comparisons

Save time and simplify your code. Learn about time-saving functions
like namedtuples, Counters, and defaultdicts. We’ll also look at zip, map, and
filter functions, as well as lambda expressions and comprehensions. Because
comprehensions are powerful, I’ve included several detailed examples.

• A simple lambda expression
• A lambda expression with map()
• A dictionary comprehension
• Zip and unzip using zip() and unpacking with zip
• Two list comprehension examples

Lab Experiments. In Chapter 6, you’ll work with objects in the
interactive Console, Debug Mode, Variable Explorer, and Editor. Here you’ll
also see the specific indexing syntax, which varies between strings, lists,
tuples, or dictionaries. We’ll also dig into how you can find critical information
about any function.

• What is the object value or type?
• Use len() to find how many items are in non-scalar object.
• What arguments does a function expect?
• What are unpacking operators?

Python Coding2

• What does the function do?
• What does the function return?

Compound objects are more complex to index and copy. Work
along with the step-by-step examples to build the “Elements in a Dictionary”
example. The multi-level lists and tuples use indexing to walk through items.
The topic, “Indexing Elements in Nested Lists” has five pages of charts and
detailed examples. We’ll also explore shallow and deep copy behavior of
multi-dimensional compound objects.

Review scope diagrams for recursive function calls and walk
through five memory stacks analyzing values within each scope. Use the
locals() and globals() functions with Variable Explorer to watch local, global,
and enclosing scope change with three nested functions and a global
variable.

Table of Contents

1. Introduction
1.1 Overview� 17
1.2 What This Book is About� 17
1.3 What’s Next?� 18

2. Debugging Overview
2.1 Plan for Debugging� 20

Start Small� 20
Keep Multiple Versions of Your Code� 20
Intended Outcome� 20
Computational Complexity� 21
Testing� 22
Test Data Files� 23
Plan for Tomorrow� 23

2.2 Debugging Steps� 23
Logbook� 24
Divide and Conquer� 24
Backup Files Before Debugging� 25
Problem Statement� 25
Doubt Everything� 25
Look Around Your Environment� 25
Create a List of Suspects� 26
What Do You Think is the Cause?� 26
Refine Your Experiment � 26
Experiment� 27
Success at Last� 27

2.3 The Debugging Environment� 27
Python� 27
Anaconda� 28
Spyder� 28
Run a Script or Program� 30

4

Stop a Program or Restart the Kernel� 31

2.4 Help� 32
2.5 What’s Next?� 32

3. Python Basics
3.1 Python Syntax� 34

Referencing Object Values� 35
Variables in Imported Modules� 36

3.2 Objects� 36
3.3 Immutable Objects� 36
3.4 Variables� 37

Global Variables � 38
Unpacking� 41

Ignore or Throw Away Variables� 41

3.5 Expressions� 42
Comments� 42
Joining Lines� 42
Escape Sequence� 42

3.6 Types of Data� 43
Boolean Values� 44
What is the Data Type?� 44
Converting Data Types� 45

Converting Floats to Ints� 45
Converting Strings to Ints� 45

NoneType or None� 46

3.7 Numbers� 46
Floating Point Numbers� 46
NAN� 47

3.8 Data Structures� 47
3.9 Strings� 49

String Methods� 50
Split String� 51

The String Module� 51
Create a String of Lowercase letters� 52
Create a String of Numbers 0-9� 53
Whitespace Characters� 53

Iterate (Loop) Through Strings� 53

3.10 Lists� 54

Table of Contents 5

Update an Element in a List� 55
Iterate Through Items in a List � 55
Copy Lists� 56

Create a Reference or Alias� 56
Copy a Simple List� 56
Copy a List with Compound Objects� 57

List Comprehension� 58
Remove Characters When Converting� 59
Delete an Item from a List� 60
Change a List to a String� 60
Change a String to a List� 60

3.11 Methods for Lists� 61
Append an Item to a List� 61
Extend a List, or Combine 2 Lists� 62
Index: Location of a List Element� 62
Insert an Item to a List� 63
Join List Elements into a String� 63
Add Character When Joining Strings� 64
Pop (Remove) an Element from a List� 64
Remove an Element from a List� 64
Remove Duplicate Elements from a List� 65
The sort() Method� 65
The sorted() Function� 65

Sort Order and the Key Parameter� 66
Sorting by the Second Element in the List� 66

3.12 Tuple� 66
Tuple Assignment� 66
Tuples are Immutable� 67
Tuple Indexes� 68
Iterate Through Items in a Tuple� 69
Tuples and Function Return Objects� 70
Repetition and Concatenation� 70
Related Tuples� 71
NamedTuple� 72

3.13 Dictionary� 74
Elements in a Dictionary� 75
Create a Dictionary� 79
Append to a Dictionary List Value� 80
Copy a Dictionary� 80
How Many Elements are in the Dictionary List?� 81
Assign a Dictionary Value Using the Key Name� 81
Update a “List” Value in a Dictionary� 81
Find the Value of a Dictionary Item� 82
Find the Type of a Dictionary Element� 82
Add a New Key:pair to an Existing Dictionary� 83

6

Delete a Key in an Existing Dictionary� 83
Iterate Through Dictionary Key:pair Values� 83
Iterate Through Keys in a Dictionary� 84
Retrieve Keys� 84
Search for a Key Name� 84
Test if Key is in the Dictionary� 85
Value Method� 85
Combine Dictionaries� 85
Dictionary Comprehensions� 86

3.14 Range� 87
3.15 Generator & Yield Expressions� 88
3.16 Sets� 89

Union� 91
Intersection� 92
Difference� 92
Symmetric Difference� 93
Common Elements� 93
Uncommon Elements� 93
Set Comprehension� 93

3.17 collections� 95
Counter� 95
defaultdict� 95

3.18 Indexes� 96
Indexing Elements in Nested Lists� 97
Indexing Lists & Tuples in Dictionaries� 98

3.19 Slicing� 102
Slice()� 103
Slicing Examples� 104

3.20 Operators� 106
Numerical Operators� 106

Select Odd or Even Numbers� 106
Modulo Operator� 107

Select Odd or Even Numbers� 107
Integer Division� 107
Concatenation, Repetition and Sequence Operations� 108
Comparison Operators� 108
Boolean Operations� 109
Identity Comparison� 109
Comparison Operators� 110
Difference Operator� 110
The Union Operator for Sets� 110

Table of Contents 7

Comparing Floats� 110
Comparisons that Return True or False� 111
Bitwise Operators� 111
Find a Substring� 112
Find Last Element in a String� 113

3.21 Identifiers� 113
Interactive Interpreter� 113
Class-Private Names� 113
System-Defined Names� 113

3.22 Compound & Conditional Statements� 115
Conditional Expression� 115
For Loop� 116
Continue Until Break� 117
Iterables� 117

iter()� 117

3.23 Indented Code (a Suite)� 118
3.24 Functions and Methods� 120

Defining a Function� 121
Calling or Invoking a Function or Method� 121
Parameters� 122
Arguments� 122

Keyword (Optional) Arguments� 123
Positional Arguments� 123
Unpacking Operator Arguments� 124
Unpacking Operators� 124
How to View the Function Argument Definition� 125

Function Return or Yield Objects� 126
Boolean Return Object� 127
Return the Statement that is True� 127
All Paths Do Not Have a Return Value� 127
Index Example for a Tuple Return Object� 128
The Type of Return Value� 129
Recursive Functions� 129

Recursive Memory Stacks� 130
The Zip Function� 136
The Map() Function� 140
Lambda Functions� 141
The Filter() Function� 142

Lambda with Filter� 143
The iter() Function� 144
The Print() Function� 144

3.25 Classes� 145
Special Methods and Override Behavior� 145
Create a Class� 146

8

The DocString� 146
Class Variables - Attributes� 147
Instance Variables and Class Variables� 147
Create an Instance of the Class� 148
Methods� 148
Dotted Notation for Attributes� 148
Calling a Method� 148
Superclass and Subclass� 149

3.26 Modules and Libraries� 149
Variables in Imported Modules� 149

3.27 Attributes� 150
3.28 Scope, Namespace & Memory� 150

A Function that Accesses a Global Variable� 152
A Function Variable with the Same Name as a Global Variable

� 156
Scope in Nested Functions� 159

4. Debugging Tools
4.1 Debugging Overview� 164

Backup Files� 165

4.2 Print Statements� 166
Indenting Loop Print Statements� 167

4.3 Overview of the Editor � 168
Code Completion Pop-up� 170

4.4 The Help Pane� 171
4.5 Debug Mode� 171

End Debug Mode� 173

4.6 Variable Explorer� 173
4.7 Example: My Program Loops & Never Ends� 174
4.8 Debug Commands� 176
4.9 Console Interactive Mode � 177

Increment Counters� 178
Watch Out for Changing Values� 178
iPython Session� 178

4.10 Variables and Objects in Memory� 179

Table of Contents 9

4.11 Introspection� 179
Using ? in the Console� 180
dir()� 181
dir(object)� 182
help()� 183
The Inspect Library� 184
What Version of Python?� 184
The type() Function� 185
The id() Function� 185
The repr() Function� 185
The len() Function� 185
The locals() Function� 185
The globals() Function� 186
The docstring� 186

4.12 Logging� 186
4.13 The timeit() Function� 187
4.14 Logging Time and Loop Counters� 188
4.15 Focused Testing� 189

Actual Result� 189
Incorrect Code� 190

4.16 Create Test Data� 191
Test Objects� 193
Create a Test Dictionary� 194

5. Exceptions� 197
5.1 Kinds of Errors� 198

Syntax Errors� 198
Logic or Semantic Errors� 198
Runtime Errors� 198

5.2 The Stack Trace or Traceback� 199
Don’t Be Fooled� 200

5.3 Try and Except� 200
5.4 Raise� 201
5.5 Assert� 201
5.6 Built-in Error Types� 203

ArithmeticError� 203

10

AssertionError� 203
AttributeError� 203
EOFError� 204
FloatingPointError� 204
ImportError� 204
Indentation Error� 204
IndexError� 204
IOError� 205
KeyError� 205
KeyboardInterrupt� 205
LookupError� 205
MemoryError� 205
ModuleNotFoundError� 205
NameError� 205
OSError� 206
OverflowError� 206
RecursionError� 206
RuntimeError� 206
StopIteration� 206
SyntaxError� 207
SystemError� 207
SystemExit� 207
TabError� 207
TypeError� 207

Tuple Object does not Support Item Assignment� 207
String Indices Must be Integers� 208

UnboundLocalError� 208
ValueError� 209
ZeroDivisionError� 209

6. Try This
6.1 What is the Object Value?� 212
6.2 String and Number Variable Values� 212

Print the Value of a String Variable� 213
Variables in Imported Modules� 213
Inspect a Number Variable in Debug Mode� 213
Inspect a String Value with Interactive Mode� 214

6.3 True & False Values� 214
While True� 215
Boolean Return Object� 216
Conditional Statements� 216
Return the True Statement� 216
Print the Value of a Boolean Variable� 216

Table of Contents 11

Inspect a Boolean Variable in Debug Mode� 217
Inspect a Boolean Value with Interactive Mode� 217
Boolean Operations� 218

6.4 Tuple Objects and Values� 218
Print All Tuple Item Values� 219
Print a Tuple Item Value� 219
Inspect All Tuple Items in Interactive Mode� 220
Inspect A Tuple Item in Interactive Mode� 220

6.5 List Objects and Values� 221
Print All List Item Values� 221
Print the Value of a List Item� 222
Inspect a List Item in Debug Mode� 223
Inspect All Items of a List in the Console� 224
Inspect a List Item in the Console� 224

6.6 Dictionary Objects and Values� 225
Print the Value of a Dictionary Key:Value Pair� 225
Inspect All Dictionary Items in the Console� 226
Inspect a Dictionary Item Value in the Console� 226
Inspect a Dictionary Item in Variable Explorer� 227

6.7 Does the Object have a Value of None or Whitespace?
� 228

Whitepsace Characters� 228

6.8 What is the Object Type?� 229
6.9 What is the Length of the Object?� 229
6.10 What are the Function Arguments?� 229

The Function Call Signature� 230
Inspect the Docstring� 230

6.11 What Type of Object Does a Function Return?� 231

7. Examples
7.1 List Index Out of Range� 236
7.2 Index Error� 238
7.3 Wrong Variable� 242
7.4 Invalid Assignment� 245
7.5 While Indentation Error� 247
7.6 Incorrect Method Arguments� 249

12

7.7 Empty Block of Code� 251
7.8 Parentheses Not Matched� 253
7.9 Missing Colon� 254
7.10 Case Sensitive� 255
7.11 Missing Keyword� 257
7.12 Illegal Character� 259
7.13 Undefined Name� 260
7.14 FileNotFound� 261
7.15 Error Adding Numbers� 263
7.16 Misspelled Keyword� 265
7.17 Value is None� 266
7.18 Method Not Found� 268
7.19 Module Not Found� 270
7.20 Key Not in Dictionary� 272
7.21 Incorrect Argument Type� 275
7.22 Name Error� 277
7.23 Value Error� 278
7.24 Divide by Zero Error� 280
7.25 Math Logic Error� 282
7.26 ValueError Assigning Date� 282
7.27 Matching Strings NoneType Error� 284
7.28 Matching Strings Fails� 286
7.29 Whitespace or Special Characters� 288
7.30 Debug: Step Through Your Function� 289
7.31 Key Not in Dictionary� 292
7.32 Error Combining Strings� 293
7.33 Function Returns 2 Values� 295
7.34 Unsupported Operand� 296
7.35 Code Goes Beyond Last Yield Statement� 297
7.36 Missing positional argument� 299
7.37 Reserved Keyword� 300
7.38 Dot Instead of Underscore� 301
7.39 Key error in new dictionary key:pair� 303

Table of Contents 13

7.40 Assign a dictionary key:value� 304
7.41 Too many values to unpack� 305
7.42 Tuple Assignment Error� 307
7.43 str object is not callable� 308
7.44 Can only Concatenate Tuple� 309
7.45 Float Comparison� 310
7.46 Unhashable type:dict � 312
7.47 builtin_function_or_method’ object is not subscriptable� 313
7.48 String Comparison Error� 314
7.49 Invalid literal for int() with base 10� 316
7.50 Variable Referenced Before Assignment� 317
7.51 Plot: Shape Mismatch� 319
7.52 Unpacking Operator� 321
7.53 Unpack Non-iterable Bool� 323

Glossary

Appendix � 333

Index� 347

14

1. Introduction

The primary goal of this book is to learn the simple basics of debugging a
Python script. Debugging is the process of finding and removing “bugs” or defects
in a program. Debugging is also useful in quickly getting your code to run in the
first place! Chapter 3 presents “Python Basics” because a big part of debugging is
knowing the correct syntax for a particular object and task. This book doesn’t try to
cover all the nuances of Python but does cover the terms and syntax you’re likely
to encounter in your first few weeks or months of programming. The overhead and
clutter are gone, leaving behind clear and simple instructions.

Code examples are self-contained, so you can copy and paste them into
your IDE and run the program. There are certainly more elegant ways to do many
of these tasks, but I wanted to demonstrate each concept with a working piece
of code limited to a few lines. In Chapter 3, we’ll look at the following topics and
more.

•	 Functions, Lists, Dictionaries, Tuples, Ranges, Comprehensions

•	 Indexing, Slicing, Comparison Operators, Control Statements

When looking at concepts such as indexing, slicing, scope, or recursive
functions, I’ve included lots of diagrams. We’ll look at syntax relevant to each type
of object. For example, to add to a “list,” you could use ‘append,’ ‘join’ or ‘extend’
methods. While adding a new key:value pair to a dictionary is straightforward,
adding to an existing dictionary is not. In this scenario, it’s not about the value
of the object in the key:value pair, but more about the “type” of object in the
key:value pair. Once you know the type of the dictionary object, you’ll use the
corresponding methods to add or change values, whether it’s a “list,” “string,”
“tuple,” or even another dictionary.

Chapter 1 16

There are dozens of code examples, and I tried to use real-world examples.
Between the detailed Table of Contents and extensive Index, I hope you can quickly
find what you’re looking for. The Index includes common phrases for those times
when you don’t know the technical term. For example, to find a string in Python,
you could use the “in” comparison operator. Whether you look for “find,” “search,”
or “locate,” the Index refers you to the “in” comparison operator. The examples are
varied so you can work with different types of data, such as:

XML

HTML

matplotlib (plots/charts/graphs)

OS (files/directories)

*.txt, *.csv

user input

URL

datetime

To help my daughter with her first Python class, I looked around for
debugging information that I could share with her. I wanted a simple guide with
everything in one place and suggestions for how to go about the process of
debugging. Initially, my research focused on gathering examples of common issues,
but I knew something was missing. After all, what happens if there is no example
of the “bug” that you’re experiencing?

I knew I needed to provide a debugging “foundation.” Not just how to use
debugging tools, but when to take action and why. With that goal in mind, Chapters
1 through 6 build a debugging arsenal, so you’re ready to tackle the examples in
Chapter 7. Each example has “References” to the related topics covered in earlier
chapters. So theoretically, you could jump right into the examples in Chapter 7.

I also made a point to cross-reference topics so you can easily locate
whatever you’re interested in from any point in the material. This approach means
you can pick up the book at any time and quickly jump back in where you left off.
Or, if you prefer, you can hop around from topic to topic with as much detail as you
want.

 Hopefully, after reading this book, you won’t feel like this man who posted a
plea for help on a chat board. His frustration show’s through in his comment, “For
the love of God, how is this done?” Instead, you’ll know exactly how it’s done and
have fun doing it!

Introduction 17

1.1 Overview
How you may ask, are we going to build your debugging arsenal? Let’s begin

with these topics.

•	 How to use the debug environment.

•	 Python Error Codes and specific examples of how they happen.

•	 Step-by-step instructions on the process of debugging code.

•	 Finding the information you need to modify your program: help on
Syntax, Functions, Classes, and more.

The goal of debugging is a working program, and debugging is just part of
writing code. When I realize I have a “bug,” I’ll experiment and try a few things to
find a clue where the issue is. You’ll see this process in the examples in Chapter 7,
where I use different approaches from my “debugging toolbox” to isolate an issue.
You might take a different approach to the sample problem, and there is no wrong
approach. The idea is to try a few things and see what works.

In this book, I demonstrate Python using the open-source “Anaconda Data
Science Distribution” that includes Python version 3.7. Spyder, the Scientific Python
Development Environment, comes with Anaconda. The Spyder IDE, or Integrated
Design Environment, includes an Editor, Console, and debugging tools. You may
notice slight differences in screenshots, depending on whether I am using Spyder
on my Windows or Mac computer.

1.2 What This Book is About
My intent in writing this book is to provide a guide to debugging Python

with Anaconda’s Spyder application and IDE. Python debugging concepts apply
equally to other IDEs, but the screens and debugging tools may vary slightly. I
found it difficult to explain an IndexError without first explaining data structures
and their indexes. Similarly, a Dictionary KeyError doesn’t mean much without an
understanding of a Dictionary. Syntax errors are fairly obvious in Spyder, but it
doesn’t hurt to have a brief explanation of the syntax the parser expects. Chapter
3 has many examples and details of the basic Python language and is a wonderful
reference.

Finally, Chapter 6 demonstrates how to view values, types, and the length
of objects. Since the syntax varies by the type of object, I wanted to provide a
reference with the exact syntax for each object type.

Chapter 1 18

1.3 What’s Next?
The next chapter walks you through installing Anaconda and the basic

Spyder environment. We’ll also look at an overall plan for debugging code. You can
download the sample code at:

https://github.com/cryoung6/Python_Coding_One_Year_Later

2. Debugging Overview

In this chapter, we discuss
Plan for Debugging

Debugging Steps

The Debugging Environment

	 Python

	 Anaconda & Spyder

Help

What’s Next?

Writing code begins with your vision of what the program should do. You
write code, see what happens, and make changes along the way. When the code
doesn’t do what you want, debugging helps you zero in on what’s happening while
the code runs. In essence, you can pause program execution and “freeze” your
program at that point in time, looking at variable and object values at that moment.

This chapter outlines a few suggestions to approach programming and
debugging. The Examples in Chapter 7 follow a similar methodology.

Intended Outcome: What I wanted the program to do.

Actual Result: What the program did.

Incorrect Code: A look at the code before any changes.

Debugging Experiment: What I suspect is wrong with the program and the steps
I tried to “debug” what the program is doing.

Chapter 2 20

How to Resolve the Issue: A brief description of the change to the code to
achieve my “Intended Outcome.”

Correct Code: The finished code that works as I intended.

2.1 Plan for Debugging
Programming is not my primary job. Instead, programming is a tool I use for

data mining or organizing projects. A day in my programming life includes lots of
interruptions. It may be weeks or months before I pick up a project and continue
coding. For this reason, I’ve adopted a few suggestions from programming friends
to make my life easier.

1.	 Work on small chunks of code, test, and then move on to the next piece.

2.	 Keep multiple backup versions of your files.

3.	 Have a clear idea of what you want your program to do.

4.	 Use small data file samples that you know have clean data to develop your
code. When you’ve tested your code and are confident there are no bugs,
use live data connections or real data files.

5.	 Keep notes of where you stopped programming and the next steps.

Start Small
Write small chunks of code. Test and validate that piece of code, then move

on. This “Correct Code” is also a good baseline for backups.

Keep Multiple Versions of Your Code
Keep multiple backup versions of your files. My backup files often include

the date and time in the filename. That way, if I really mess up the code, I can
easily go back to the “Correct Code” that worked earlier today or last month. The
Chapter 4 topic, “Backups,” has a sample Python script to backup files every five
minutes.

Intended Outcome
While I’m not suggesting you have a vision statement for your program, it

doesn’t hurt to have an “Intended Outcome” of what you’re trying to accomplish.
This synopsis is beneficial in several ways:

Debugging Overview 21

•	 Pair programming or asking for another opinion.

•	 When you check-in your code to a source control program.

•	 During peer review.

•	 In a Sprint Review, where you demonstrate your program to
others.

In case you reach out to another programmer for assistance, share as much
information as possible.

1.	 The incorrect code. If you have the last working version of your code, that
might also be helpful.

2.	 Your Debugging Experiment methodology and what you’ve already tried.

3.	 The “Actual Result.” What happens when you run the program?

Computational Complexity
While writing code, strive for efficient programs. Sometimes my program

runs as expected, except that it takes too long to complete because it’s inefficient.
Chapter 4 looks at several ways to identify timing bottlenecks. Let’s look at three
simple ways to improve run time.

•	 Working with a *.txt file, I could import the file each time, which is
straightforward, but it’s more efficient to import the file into a dictionary
and reuse the dictionary.

•	 It’s more efficient to “update” a list than make a copy of a list or use a
“generator” to retrieve list data; this is especially true if you have a large
list of potentially millions of elements.

•	 When looking up data in a list several times, use a sorted list. However, if I
only use the data one time, the cost of sorting the list just adds overhead
to my program.

When discussing the relationship of running time to the size of data,
programmers use asymptotic notation. “Big O” is a common form of asymptotic
notation to refer to algorithmic complexity. Evaluate programs looking at these
scenarios.

Chapter 2 22

• Best-case

• Expected-case

• Worst-case

Count each “operation,” taking into account loops and nested loops.

• Comparisons

• Mathematical operations

• Assignments

• Accessing objects in memory

Constant running time, O(1), is more efficient than other operations
and does not change based on the size of data input. One example of constant
complexity is a simple mathematical operation like 2.02 * 3.03. There may be
loops or recursive calls in the code, but the data input size does not affect constant
running time.

Logarithmic running time, O(log n), increases based on the size of the data.
A bisection search that divides itself in half is an example of logarithmic complexity.

Linear complexity, O(n), is based on each element “n.” For example, printing
a list is based on the length of the list.

With this brief introduction to computational complexity, you may decide to
pursue an in-depth exploration of the subject.

Testing
To simplify testing, I’ll often break my functions into external *.py files and

later combine them as needed. I write a small “test script” that creates variables
and invokes the function. For example, a function menu() takes mydictionary as
an argument - or menu(mydictionary).

For testing purposes, I only need a mydictionary object with a few
elements. To create a dictionary for testing purposes, first, I run the main
program that creates mydictionary. Then, in the Console, I type mydictionary.
The Console prints out all the values so I can copy a smaller subset of data for a
test version of mydictionary. In my test script, I use the data in an assignment
statement for the “test” dictionary.

In Chapter 4, the topic “Test Objects” demonstrates this concept and code to
create a dictionary with many elements.

Debugging Overview 23

Test Data Files
Web scraping and external data files can be messy and huge. Take a moment

to familiarize yourself with samples of the live data or data dumps. Make small “test
data files” or mock-ups of the data. Scrub the data to ensure it’s clean.

If you plan to code for blank data, hidden characters, or type conversions,
set aside a version of the data for that purpose. Initially, keep the test data as
simple as possible. Use these test data files to save time iterating through
thousands (or millions) of rows of data.

Look for hidden characters and blank cells or data elements. Make notes of
data types and other issues as a reminder. Later you can add logic to your code to
handle the data correctly.

Often, when you dump database data to a CSV or Excel file, there is an error
when you try to open the file. For example, as you open an Excel file, the app
prompts you to “fix” data. I always open my data files at least once and “clear” all
rows that appear empty to avoid hidden characters.

Chapter 4 has an example of a mock-up HTML data file in the topic “Create
Test Data.”

Plan for Tomorrow
When you’re done for the day or decide to take a break, leave a note for

yourself of where you stopped. Include what is or is not working and what you want
to do next.

Review your pseudocode and Intended Outcome to be sure you’re on
the right track. Pseudocode is an outline of your program design in simple terms,
often written in plain English. Pseudocode notes remind me of where I left off
programming and what I need to work on next.

2.2 Debugging Steps
In some ways, debugging is more of an art than science. Since I’m

analytical, I am more inclined to use the scientific method for my debugging. It’s
really up to you to decide on your debugging style and if you’ll use any of these
suggestions.

Chapter 2 24

1.	 When debugging, keep a logbook of your experiments, so you know what
you’ve already tried.

2.	 Divide and conquer. Divide the code in half and test each half to see which
part has the error. Repeat these steps to drill down to the location with the
error.

3.	 Make a backup of your files before starting your experiments.

4.	 Start with a clear Problem Statement of the defect.

5.	 Don’t believe everything you hear. If the initial defect is that the program
works with Oracle data and not Cassandra data, verify that is really the
case.

6.	 Examine the environment.

7.	 Create a list of possible suspects.

8.	 If you’re out of ideas and haven’t found the defect, take a break. Work on
something else, go for a walk, or come back to the problem tomorrow.

Logbook
Keep a logbook of your debugging experiments. Write down the steps and

outcome for each task. Writing down my issues frees my mind from worrying about
the problem and allows me to brainstorm at my leisure.

Divide and Conquer
When debugging, pick a logical point to divide the code in half. Use a process

of elimination to drill down to the error in the code.

1.	 Divide the program into Part 1 Code and Part 2 Code.

2.	 Run Part 1 Code. If there are no errors, you know that Part 1 is working.
If you have errors, divide Part 1 Code again. Repeat the process until you
drill down to the root cause.

3.	 If Part 1 Code ran without errors, run Part 2 Code. If you find an error,
divide Part 2 Code and repeat the steps.

Wherever possible, eliminate the code that is unrelated to the error. Chapter
4 has an example of skipping unrelated code in the topic “Focused Testing.”

Debugging Overview 25

Backup Files Before Debugging
Create a backup of your files before you change anything.

Problem Statement
Develop a clear problem statement with as much detail as possible. Who

can you contact for more details? When determining how critical the issue is,
consider the impact on business and if there is a workaround.

Doubt Everything
Verify the accuracy of the original defect report by recreating the issue

yourself.

Look Around Your Environment
Before creating a list of possible causes, gather background on the

environment.

1.	 Has the program ever worked?

2.	 When was the last time the program ran successfully?

•	 Did it work last month?

•	 Is this the first time it ran on a Monday or the first day of the month?

•	 Is there a heavy load on the environment because it’s the end of the
month or quarter?

3.	 Can you connect to devices outside of the program successfully? Can you
query the Cassandra database outside of your program? Is the webserver
responding to requests? Is one of the integrated systems down?

4.	 If the program is OK on your machine, and doesn’t work on a user’s
machine, look at what is different. Could it be a timing error caused by
the user’s slower machine? Is the user working remotely or running other
conflicting applications?

5.	 Did the program encounter an Out of Memory error?

Chapter 2 26

Create a List of Suspects
As a starting point for your experiments, make a list of components that

could be causing the defect.

•	 Your app

•	 The last few lines of code you changed, or the line(s) just before the code
causing an “exception”

•	 Reset memory and run your code again to ensure your variables are correct

•	 Python language

•	 OS

•	 Connection to a web page

•	 The format of a database table or web page changed

•	 Is there a scope issue? Draw a diagram of the scope and namespace
variables as outlined in Chapter 3.

•	 Does the program produce the desired outcome?

•	 Does the program work except on the first day of the month?

•	 Does the program take too long to run? (Look at the algorithmic complexity
of your code).

•	 Are there two libraries with the same name in different directories? Does
one of your script files have the same name as a library or module?

What Do You Think is the Cause?
Chances are, at this point, you have some idea where you want to start your

investigation. Make a list of your ideas or hypothesis of what might be wrong.

Refine Your Experiment
As you refine your Debugging Experiment, you’ll probably notice parts of

the code you don’t need to test. Your goal is to narrow the search by removing
things that don’t contribute to your hypothesis. Chapter 4 has an example that
narrows your search in the topic “Focused Testing.” Modify your program to
eliminate these items temporarily from your experiment. Consider hard coding
values or using temporary mock-ups of data.

Debugging Overview 27

Experiment
Change one thing at a time, and observe what happens. Please, write

everything down in your logbook, noting each step and the outcome. The simple
act of writing down my experiment forces me to pause and consider what happened
and why.

• What steps did you take?

• What did you expect to happen?

• What actually happened?

Review the experiment and see if you can develop a theory about the cause
of the defect.

• 	 Is there something you should not see?

• 	 Do you need to refine your experiment further?

• 	 Do you have a theory about what might be causing the defect?

• 	 Do all your test results fit in with your theory, or is there one result that
doesn’t quite fit? Don’t ignore the evidence that contradicts your theory.
If you aren’t sure how that piece of code works, dig into the code because
that might be where the problem lies.

Keep a log of the things you’ve tried as you debug your program to avoid
repeating the same tests.

Success at Last
The last experiment you conduct that unequivocally works is the fix. The

program does what you want, and you reach your “Intended Outcome.”

2.3 The Debugging Environment
For this book, I am using the Anaconda Distribution that includes the Spyder

application. My Anaconda programs support Python 3.7.

Python
Python is an open-source (free) programming language for Web

Development, GUI development, Scientific and Numeric data science, Software

Chapter 2 28

Development, and System Administration. The examples use the open-source
Anaconda Data Science Distribution that includes Python version 3.7.

Spyder, the Scientific Python Development Environment, comes with
Anaconda, and I run Python scripts in Spyder primarily on a Windows machine. For
variety, I’ve also included several examples on a MAC computer.

In this chapter, we’ll install Anaconda and set up your environment. If you
are familiar with Python and want to jump into debugging, feel free to skip ahead to
Chapter 4.

Anaconda
Download the Anaconda Distribution that includes Python version 3.7. Other

Python versions may vary slightly compared to the examples in this manual. When
prompted, update your path settings. The install takes a while, so you might want
to grab a cup of coffee or something.

Spyder
Spyder is an Integrated Desktop Environment or IDE. Spyder includes an

Editor, Console or Spyder Shell, Variable Explorer, Help module, and other tools.
These modules are displayed in “Panes” in Spyder.

On a Windows machine, launch Spyder from the Start Menu in the Anaconda
folder. On a MAC computer, open the Anaconda Navigator and launch “Spyder.”

A Spyder layout with three panes is shown below. You can return to the
default layout at any time from the View menu under Windows - Layouts. You can
close or open other panes to suit your preferences.

Debugging Overview 29

Figure 2.1	 Spyder

1.	 The Editor pane is where you type your code and create your script files.

2.	 The Variable Explorer pane lists variables in the current program scope
after you run the code.

3.	 The iPython Console or Python shell is located in the lower right panel by
default. When you start Spyder, the Console prompt is In[1]:.

4.	 When you click “Run,” the results are output to the Console. When you
type a command in the Console, Python immediately runs the command.
The Console is useful when debugging or experimenting with different
statements for your code.

5.	 Results displayed in the Console include code output and error messages.
For example, if you use the print() method, the results are output
to the Console window. In the example below, the Console displays
“Welcome to Project1.1.py.”

Chapter 2 30

Figure 2.2	 The iPython Console

6.	 The Help pane displays syntax, function help, and more.

Run a Script or Program
With Spyder open, click on the File menu to “Open” or create a “new” script

file. In the next example, the “Ex_8.py” file is open in the Editor.

Click on the green arrow or use the Run menu, as shown below.  

Figure 2.3	 Run the Program

Debugging Overview 31

In the Run menu, select “Run selection or current line” to run only the
selected lines of code.  

In the next figure, I have three panes open. The Editor is on the left, and the
Console window is on the right. Initially, the Console window displays the prompt
In [1]:. After I click “Run,” the Console window changes, as shown below. The first
output line displays the name of the program file and the working directory.

‘/Users/hlz/Python_Coding/CODE/Ex_1.py’,

In [1]:	 runfile(‘/users/hlz/Python_Coding/CODE/Ex_1.py’,
wdir=’C:/Python_lab1/Project1’)
150.00 31

In [2]:

Figure 2.4	 The Console

Stop a Program or Restart the Kernel
Click within the Console window and press any key followed by “Cntrl C” to stop

program execution with a keyboard interrupt. You can also select “Restart kernel”
from the “Consoles” menu.

Adding a “break” statement to your code causes program execution
within that code block to stop. For example, if you are inside a loop, the “break”
statement halts the loop, exits the loop, and continues running the next code block.

Chapter 2 32

2.4 Help
In Spyder, click on the View menu and click “Panes” to open the “Help”

pane. Now, click on the Help menu and click on “Spyder Tutorial.” The tutorial
opens in the Help pane. The topic “Recommended first steps for Python beginners”
is an excellent resource for new programmers.

Chapter 4 demonstrates Debug Mode, Interactive Mode, and Variable
Explorer. These tools look at your code while it’s running, in effect, “debugging.”

To open Help for an object, place the cursor on an object name in the
Editor, press Ctrl-I or Command-I on a MAC. Help inspects the object and gathers
docstring information.

2.5 What’s Next?
Your Lab environment is now setup. Let’s move on to Chapter 3 and review a

few basic Python language guidelines.

Python Basics 33

3. Python Basics

In this Chapter, we discuss

Python Syntax

Objects

Immutable Objects

Variables

Expressions

Types of Data

Numbers

Data Structures

Strings

Lists

Methods for Lists

Tuple

Dictionary

Range

Generators

Set

collections

Indexes

Slicing

Operators

Identifiers

Compound Statements

 Chapter 3 34

Indented Code (a Suite)

Functions & Methods

Classes

Modules & Libraries

Attributes

Scope, Namespace & Memory

Now that your environment is set up, we’ll take a brief look at a few basic
Python concepts. Syntax and runtime errors often involve incorrect syntax,
indentation errors, or a mismatch in object types. This chapter is by no means
a complete Python language guide; instead, think of it as an abbreviated part of
the Python language documentation. I need this small subset of information to
demonstrate how you will refer back to the Python documentation as you debug
your program. The “Appendix - References” at the end of this book has links to the
Python documentation related to these topics.

3.1 Python Syntax
The Spyder Integrated Development Environment (IDE) includes an

Editor that warns you when you have a syntax error in your script. A yellow
triangle on the left side of the Editor pane next to the line number indicates an
error. Next, we’ll look at a few common causes of syntax errors. The python.org
site has the PEP documents, or Python Enhancement Proposals.

•	 Valid characters for variable names or identifiers vary between Python 2.x
and Python 3.x. Python 3 added support for Unicode characters in PEP
3131 to accommodate programmers who are unfamiliar with the English
language. To avoid errors, I adhere to these guidelines.

•	 Identifiers begin with a letter.

•	 Numbers are allowed in object names, except as the first character.
Object names are also known as identifiers.

•	 In Python 2.x, the only special character allowed in an identifier
name is an underscore. Instead of spaces in identifier names, try an
underscore. Illegal spaces or characters like $, #, and @ will cause a
syntax error, as shown in Example 7.12 in Chapter 7.

•	 The PEP 8 Style Guide suggests lowercase characters for identifier names
and functions. A PEP is a design document providing information to the

Python Basics 35

Python community. Classes begin with an uppercase letter. For example,
variables and list names are lowercase.

•	 Python is case sensitive. There is a difference between “myString” and
“mystring.” The Python Interpreter displays a NameError when there is a
misspelled identifier, as shown in Example 7.10 in Chapter 7.

•	 When defining a function or control statement, the line should always end
with a colon.

•	 Text to the right of the # hash character is a comment. You can add
comments anywhere in the line.

•	 A data structure name should be plural, and items in the data set should
be singular. For example, a List named “vacations” with List items:
vacation[0], vacation[1], etc.

•	 Do not use reserved keywords as identifiers. Example 7.16 in Chapter 7
has a misspelled keyword. Example 7.43 uses the reserved keyword “str”
incorrectly. A missing keyword in a function call also causes a SyntaxError,
as shown in Example 7.37. Functions also have keyword arguments.

•	 An empty Suite (indented block of code) is illegal. See “Indented Code
(Suite)” or Example 7.7 for more information.

Python has reserved keywords like “global” or “try.” When you use a
keyword as a variable name, it causes a syntax error. To see keywords, in
the Console type help(“keywords”). 

These Chapter 7 examples illustrate a few syntax errors: Example 7.7, 7.8,
7.9, 7.10, 7.11, 7.12, and 7.16.

Referencing Object Values
To begin you may ask, “How do I get the value inside a variable.” At any

time, you can type the object name in the Console, and the Python Interpreter will
display the value at that moment. Here my variable “mystr” has a value of “apple.”

In [1]: mystr

Out[1]: apple

Chapters 3 and 6 walk you through examples with the syntax for the various
objects, including items inside data structures or objects from imported modules or

 Chapter 3 36

libraries.

Variables in Imported Modules
To reference a class attribute or a variable inside another module, use dotted

notation. In this script, I import a module “mymodule2” that has the variable
“mystr2.” The expression module2.mystr2 returns the value of mystr2.

1
2

import mymodule2
print(mymodule2.mystr2)

3.2 Objects
The building blocks of Python are objects. Objects have an identity, type, and

value and are Python’s abstraction for data.

• Data with state

• Defined behavior (methods)

State refers to the properties of an object, the attributes or value of the
object. The object’s behavior is how the Python Interpreter interacts with that type
of object.

The “identifier” or “identity” of the object is the “name” of the object. With
the library “openpyxl,” you assign objects to both the workbook and worksheet,
and then you use those objects with methods to read or update values (the
data). In this example “wb2” is the name of the workbook. There is also a unique
“identifier” associated with the object “wb2.” In the next topic we’ll look at a
variable “bfr” and bfr’s identifier.

1
2
3

from openpyxl import load_workbook
wb2 = load_workbook(‘myfile.xlsx’, data_only = True)
ws2 = wb2[“ExportedData”]

3.3 Immutable Objects
In Python strings, numbers, and “tuple” types are immutable, meaning the

values are fixed and can’t change. While you can not change existing strings,
numbers (integers or floats) or tuples, you can create new objects with changed

Python Basics 37

data to replace objects.

If you’re new to programming, this concept may seem strange. Take the case
of a Python object of the type “int.” The code statement bfr = bfr + 1 seems to
change the value of bfr. In reality, this statement creates a new object. The new
object has a new identifier and a different location in memory. To see this in action,
run this code in the Console to see the identifiers for the bfr objects.

In [1]: bfr = ‘Hello’

In [2]: print(id(bfr))

Out [2]: 12345678

In [3]: bfr = bfr + 1

In [4]: print(id(bfr))

Out [4]: 9876543210

The comparison operator “is” returns “True” when two variables point to the
same object in memory, as shown later in the topic “Operators.”

Immutable objects are quicker to access and hashable, and this improves
code performance. Another advantage of immutable objects is understandability,
and knowing the object will never change.

The Python definition of “hashable” is an object that “has a hash value
which never changes during its lifetime (it needs a __hash__() method), and can
be compared to other objects (it needs an __eq__() method).” We’ll look at these
special methods at the end of this chapter.

__hash__()

__eq__()

3.4 Variables
In Python, a variable name refers to an object. An object is a place in

memory that has a value such as a letter or number. An assignment statement
or “binding” creates a variable and binds or associates the name with an object.
The object is a place in memory. You must have an equal number of variables and
values on the left and right side of the assignment statement. Chapter 7 examples 7.4,
7.41, and 7.50 demonstrate assignment statements.

Python is case sensitive, and mixing case can cause a NameError as shown
in Example 7.10 in Chapter 7. Special characters like $, #, and @ are not allowed
for variable names, and will cause an error as shown in Example 7.12. The left side
of an assignment statement must be a variable name, and the right side is a value.
The assignment operator is the equals = sign.

 Chapter 3 38

mynumber = 2000000

The Python style guide suggests that variable names begin with a letter.

Indirection is using a name to refer to an object. When you add “mynumber”
to a list named “mylist,” there are two levels of indirection. When a program runs,
the variable might be assigned a different value; meaning the variable name might
be assigned to a different object in memory, or the object itself might be updated.

Global Variables

When you have a variable with a different value than you expected, it
may be due to scope. When you run the program, the Python Interpreter creates
variables and adds them to the “global scope” or the first memory “stack.”
While the program execution remains in this suite of code, the objects are also
in the “local scope.” In Python, you can read, but not change, the value of a
global variable at any point in your program or from within functions, as long as
everything is within the same *.py file.

Each time the code moves into a “function,” a new “local” scope is created.
Within the local scope of a function, you can’t change the values of objects in the
outer global scope or enclosing scopes. At any time, you can only change values within
the local scope. When you create objects inside a function or method, those objects
or variables are typically not available outside the scope of that function. To change
a global variable within a function, use the keyword “global” to make the global
variable part of the “local” scope.

We look at scope in detail at the end of this chapter in the topic, “Scope,
Namespace, and Memory.”

Python Basics 39

A word of warning about global variables, they are dangerous! It’s easy to
lose track of which function is updating a global variable. To avoid global variables,
try a recursive function and pass the data through an optional function parameter.

In a bit, we’ll look at using a function argument with a default value
as another way to implement the concept of a “global variable.”
There is an example of this process in the “Function” topic “optional
arguments” later in this chapter, as well as the topic recursive functions. 

In the next diagram, the program has “var1” in the main body of the
program (lines 5-7) and “var2” (on line 2) within myfunction().

To explore global variables, run this code in debug mode and step through
the code, running one line at a time.

1.	 The Python Interpreter evaluates the function definition on line 1 and
quickly moves to line 5. If myfunction() had optional arguments with
default values, they are assigned using the “scope” that exists at line 1
(the global scope.)

	 If there had been an error within the function definition, the interpreter
would stop and raise the error.

2.	 The Python Interpreter then runs line 6.

3.	 If you choose to “step into” myfunction() on line 6, the code moves up to
line 1.

4.	 Next, the code moves inside the function, to lines 2 and 3. At this point,
you’ll see Variable Explorer displays both var1 and var2.

5.	 The program then moves back to line 7. At this point, var2 disappears
from Variable Explorer, and that “scope” is gone.

1 def myfunction():

2 var2 = 4

3 print(var2)

4

5 var1 = 7

6 myfunction()

7 print(var1)

 Chapter 3 40

In the next block of code, let’s explore using “var1” inside of “myfunction.”
This code runs as expected and prints “var1” on line 2 because I’m not trying to
change the value of var1.

1 def myfunction():

2 print(var1)

3 var2 = 4

4 print(var2)

5

6

7 var1 = 7

8 myfunction()

9 print(var1)

However, it’s a different story if I attempt to change “var1” within
myfunction(). This next code causes an error and the Console displays the
UnboundLocalError shown below. The UnboundLocalError is raised because
“var1” does not exist within the local scope of “myfunction().”

“UnboundLocalError” local variable ‘var1’ referenced before assignment.

1 def myfunction():

2 print(var1)

3 var2 = 4

4 var1 = 9

5

6

7 var1 = 7

8 myfunction()

9 print(var1)

To prevent the UnboundLocalError use the keyword “global” to declare “var1”
a global variable on line 2 inside myfunction(). Notice in the next example there
is no “assignment” value on line 2. When line 3 prints “var1,” it has a value of
“7” from the assignment statement for “var1” on line 7 in the main program. Line
5 assigns “9” to the global variable “var1” within the local scope of myfunction().
When line 9 prints “var1,” the value is now 9.

You can read more about scope and namespace at the end of this chapter.

Python Basics 41

1 def myfunction():

2 global var1

3 print(var1)

4 var2 = 4

5 var1 = 9

6

7

8 var1 = 7

9 myfunction()

10 print(var1)

Unpacking
When you unpack a tuple or list you assign individual elements to new

variables. We’ll look at unpacking later in this chapter in the topic, “Functions,
Unpacking Operator. In the next example, mytuple has four elements. On the
second line, I unpack the four tuple elements and assign them to four variables.

In [1]: mytuple = (1, 2, 3, 4)
In [2]: myvar1, myvar2, myvar3, myvar4 = mytuple

Ignore or Throw Away Variables

Sometimes you’ll see code where the underscore character is used when a
programmer wants to ignore an element in a tuple or list. These are often called
“throw away” variables. In the second statement below, the “2” element is assigned
to the underscore _. In the third statement I use the variable “dummy” as a “throw
away” variable, which may provide more clarity.

a, b, c, d = (1, 2, 3, 4)
a, _, c, d = (1, 2, 3, 4)
a, dummy, c, d = (1, 2, 3, 4)

The PEP 3132 “Extended Iterable Unpacking” specifies a “catch-all” name
which is assigned to a list of all items not assigned to a “regular” name.

a, *b = (1, 2, 3, 4)

a = 1
b = (2, 3, 4)

 Chapter 3 42

3.5 Expressions
An expression is a piece of syntax that evaluates to some value. The actions

that a program takes are referred to as “expressions” or statements. A simple
statement is comprised in a single logical line. A compound statement contains
groups of other statements; for example: for, with, or while. Objects, literals,
names, function calls and operators are combined to form expressions.

<object><operator><object>

myvar = 7

We’ll look at comparison operators, compound control statements, and loops
later in this Chapter.

Comments
Code comments begin with the hash # symbol.

Joining Lines

Python uses explicit line joining. Expressions that span more than one
physical line are joined into logical lines with a backslash.

print(‘the swift fox jumped over the \
lazy dog and then ran into the briar patch.’

Python also implements implicit line joining. Expressions in parentheses,
square brackets, or curly braces can be split over more than one physical line
without using backslashes.

Escape Sequence
Special characters in strings are identified with an “escape sequence” or

backslash. For example, the line feed character is ‘\n’ within a string. When you
add the ‘r’ prefix the raw quotes tell the Python Interpreter to ignore the escape
sequence so that the backslash is simply a backslash character.

r’c:\users’

In the previous example, if you omit the prefix ‘r,’ a SyntaxError is raised.

Python Basics 43

SyntaxError: (unicode error) ‘unicodeescape’ codec can’t decode bytes in
position 2-3: truncated \uXXXX escape

Apostrophes in strings also use escape sequences, with a backslash as shown
below.

mystr = ‘\”’

In the Editor, when you hover your mouse over a parenthesis,
the paired parenthesis is highlighted in green. If a parentheses
is missing, the starting parenthesis is highlighted in orange.
In Chapter 7, Example 7.8 demonstrates this behavior. 

3.6 Types of Data
Python has several types of data. Numeric primitives such as “floats” and

“ints” are scalar objects, in that there is no internal structure. A ‘bool’ and the
“None” type are also primitive scalar objects. A string is a non-scalar primitive
object, and you use an index to indicate the position within the string. Moving
through items using an index is referred to as iteration.

Containers are non-scalar objects with internal structures. Examples of
container objects are a list, tuple, dictionary, or range. A range was introduced with
Python v3. We’ll look at these data structures in-depth in later topics. For now, a
few of the basic data types are shown in the next table.

Type Description Assignment Value(s)

int integer my_var = 3 3

float floating-point number my_var = 3.85 3.85

bool boolean (true/false) my_var4 = False False

NoneType Function with no return
value myfunction() None

str string of characters my_var2 = ‘Hi’ Hi

tuple any type of data -
immutable mytuple = (‘Hi’, 4) Hi, 4

list any type of data -
mutable mylist = [4, 9, ‘hi’] 4, 9, hi

range integers - immutable range(4, 9) 4, 5, 6,
7, 8

Table 3.1  Data Types

 Chapter 3 44

When my_var = 3, the statement float(my_var+5) returns 8.0.  

When my_var = 3, the statement print(34//my_var) returns 11. 

In the case of the statement 3 == 3, the Python Interpreter returns “True.”

Boolean Values
 A boolean value is either “False” or “True” and behaves like the integers 0

and 1 respectively. Therefore, the statement “not 0” is True. In Chapter 7, Example
7.53 encounters a bool error.

In [1]: not 0
Out[1]: True

The next example uses the “modulo” operator “%” that returns the
remainder when dividing two numbers. This expression returns “0” indicating there
is no remainder. In simple terms I am asking, “does x % 7 have a remainder?” and
the answer is “no” or “0.”

In [1]: x = 21
In [2]: x % 7
Out[2]: 0

When combined with the boolean “not” operator the expression is “True.”I n
this example I am asking, “is it true that x % 7 does not have a remainder?” and
the answer is “yes that is True.”

In [3]: x = 21
In [4]: not x % 7
Out[4]: True

What is the Data Type?
If you’re unsure of an object’s type, the type() function displays the type

of data. The second statement below uses the “isinstance()” function that returns
“True” when an object is the specified type. In this example, I am testing if the
“mystr” is a “str” type. To see this in action, type the code in the Editor and click
“run.”

Python Basics 45

1
2

print(type(mystr))
print(isinstance(mystr, str))

Later in this chapter, we’ll look at identifying types of objects in dictionaries
in the topic, “Find the Type of a Dictionary Element.” In Chapter 7, Example 7.21
looks at a function with the wrong argument type.

Converting Data Types
When working with data, you may need to change or convert the data type.

In other programming languages this is called casting. For example, during a
calculation, you may want to convert between a float and an int to remove decimal
places.

int(my_var)

str(my_var)

float(my_var)

bool(my_var)

Converting Floats to Ints

Notice in this example the value “45.9” is converted to “45.”

1
2

myfloat = 45.9
int(myfloat)

The next statement rounds the float number up to the whole number “46.”

1
2

myfloat = 45.9
round(myfloat, 0)

Converting Strings to Ints

When concatenating numeric values and strings, the statement str(my_int)
converts the string to an integer. While I can’t convert the string ‘1.25’ into a whole
number int, it is legal to first convert the string to a float, and then convert the
float to an int, as shown in Example 7.49 in Chapter 7.

 Chapter 3 46

NoneType or None
In Python, the absence of a value is called “None,” which is capitalized. The

type is “NoneType” and the value is “None.” In other languages, this would be a
null value. A function with no return statement returns the value “None.” When
working with external data sources, you may have to account for this type of value,
as shown in Chapter 7 in Example 7.17. An “if statement” that tests for a value of
“None” is shown below. Example 7.27 demonstrates matching strings and taking
into account a NoneType value. The Chapter 6 topic, Does the Object have a Value
of None or Whitespace? looks at NoneType and whiteSpace.

1
2

if myvar is not None:
pass

While I could compare the type of “mystr” on line 2 to type(None), the
preferred expression is to use “isinstance,” as shown on line 5. The expression on
line 2 would return “True.”

1 mystr = None

2 if type(mystr) is type(None):

3 print(‘the type of mystr is None’)

4

5 print(isinstance(mystr, str))

3.7 Numbers
Floats and integer types represent numbers in Python and are scalar objects

that have no internal data structure. When assigning integer values to variables,
do not use commas. Python interprets 2,000,000 as three integers separated by
commas.

mynumber = 2000000

In the previous example, I assign 2000000 to the integer variable
“mynumber.” For readability, in Python 3.6 and later, you can add underscores as
a separator.

mynumber = 2_000_000

Floating Point Numbers
Non-integer numbers or floats are stored in computer memory as a binary

representation of 0’s and 1’s. Calculations can introduce subtle differences where

Python Basics 47

you may think both float values are 1.08, but the actual binary representation is
slightly different.

The function repr() displays a printable representation of a float, and is
useful in troubleshooting rounding errors.

Example 7.45 in chpater 7 demonstrates float comparisons,
and the “comparison” topic later in this chapter
has details on comparing ‘floating point’ numbers. 

NAN
A NAN is a special floating-point value that can’t be converted. NAN stands

for “not a number.” The “math” function math.isnan(x) returns True if “x” isn’t a
number.

3.8 Data Structures
Python has several built-in compound data structures or sequence types for

non-scalar objects. Non-scalar objects have an internal structure. A list, tuple, or
range is a sequence type. A string is a text sequence type. Objects that contain
references to other objects are “containers.” These data structures have an ordered
sequence of elements or items. That is not to say the items are arranged in a
particular order, but rather that Python assigns a sequence of indexes to the items.

The docs.python.org site refers to containers or sequence objects as
“iterables.” Iterables are objects with a sequence of elements referenced by an
index. You use an index to iterate through these containers to access the value of a
particular element in the container.

• Lists

• Tuples

• Strings

• Range

We’ll look at iterables later in this chapter in the topic, “Control
Statements - Iterables.”

 Chapter 3 48

While there are other data structures in Python, the last common one we’ll
look at in-depth is a dictionary. A dictionary is a “mapping type” of data. Later in
this chapter we’ll briefly look at set, zip, map, and filter data structures.

• Dictionary

• Set

• Zip

• Map

• Filter

Python uses the operations listed below for all of these data structures. Later
in this chapter, we’ll look at these common operations, and you’ll see the syntax
is the same regardless of whether you’re working with a list, tuple, string, or
dictionary. For example, the function len() tells you how many objects are in the
data structure. In the case of a string, len() tells you how many characters are in
the string. For a list, len() tells you how many elements are in the list.

• len()

• Comparison operators “in” and “not in”

• Control loops like “for”

A list, tuple, or string also uses these operations, which we’ll look at in detail
later in this chapter.

• Indexing

• Slicing

With the exception of a range, you can use concatenation and multiplication
on data structures. For example, to concatenate two lists using the plus “+”
symbol, use the expression mylist1 + mylist2.

• Concatenation

• Multiplication

Tuples also support concatenation, as shown below and in Chapter 7,
Example 7.44.

In [1]: mytuple = (1,’two’, 3)
In [2]: mytuple
Out [2]: (1, ‘two’, 3)

Python Basics 49

In [3]: mytuple + (‘H’, 2, ‘O’)
In [4]: mytuple
Out [4]: (1,’two’, 3, ‘H’, 2, ‘O’)

3.9 Strings
A string is a sequence of characters. These non-scalar objects have an

internal data structure accessed through indexes. To assign a value to a string
variable, use single quotation mark ‘’ or double quotation “” marks, as shown
below. When you add the ‘r’ prefix the raw quotes tell the Python Interpreter the
backslash is a literal backslash character and not an escape sequence.

b = ‘bookstore’

If you forget the closing apostrophe in your assignment statement, a
SyntaxError is raised for “EOL while scanning string literal.” A byte literal is prefixed
with a ‘b’ or ‘B’ and a formatted string literal is prefixed with an ‘f’ or ‘F.’

Strings can be concatenated, indexed, and sliced. In the previous example,
the index for the letter ‘s’ is b[4] because Python starts counting at 0. String
indices must be integers. We’ll look at string indices and slicing in later topics.

Strings are immutable and can not be changed. Later in this chapter, in
the topic “Append to Dictionary,” we look at an AttributeError caused by trying to
change a string value in a dictionary. To assign a value to a string, use the same
syntax and, in effect, create a new string variable with the same name. The new
string has a different “identifier” and location in memory, as discussed earlier in the
topic “Immutable.” Strings support concatenation; for example, ‘hello’ + ‘world.’
In Chapter 7, Example 7.32 concatenates two strings.

Before comparing string values, you may want to ensure both objects are of
type “string,” and account for uppercase and lowercase letters. The string methods
.upper() and .lower() convert a string. The example below converts a variable to
a string with all uppercase letters and is also shown in Example 7.27.

str(my_var).upper()

Occasionally, you may run across whitespace or a special character with an
escape sequence, like the line feed ‘\n’ character. The “string module” also has
a function to create a list of whitespace characters. The function repr() displays
a printable representation of a string including whitespace and is demonstrated in

 Chapter 3 50

Chapter 7 in Example 7.28.

To see the methods available to a string variable, in the Console type
dir(my_str_var). Or, type help(str) for more detailed information.  

String Methods
Let’s take a moment to look at some of the common string methods. In a

bit we’ll also look at the “String Module.” To see all the string methods available
for your version of Python, checkout the web site docs.python.org. In the top left
corner of the web site you can select your language and version, and then on
the right side of the page under “Text Sequence Type -- String, click on “String
Methods.” After creating a string variable ”mystr,” in the Console, type “dir(mystr)”
to see additional information.

Syntax Comments

mystr.isalpha() Returns True if all characters in the string are
alphabetic (a-z) and there is at least one character.

mystr.capitalize() Converts to Camel Case

mystr.count(‘39’) How often is ‘39’ in “mystr”

mystr.find(‘39’) Index of first occurrence of ‘39’

mystr.index(‘9’) Returns the index for ‘9’, or returns error if not found

mystr.isnumeric() Returns True if all characters are number (0-9) and
there is at least one character.

mystr.join(mytuple)
Creates a new string by joining an iterable (tuple, list,
set, dictionary.) Elements are separated by the “mystr”
value.

mystr.lower() Change to lowercase

mystr.lstrip() Remove whitespace on the left

mystr.rindex(‘9’) Same as index but counting from right

mystr.replace(old, new) Return a copy of the string with old substring replaced
by new.

mystr.rpartition(‘,’) Spiti or tokenize string into a tuple based on the
separator ‘,’

mylist.rsplit(sep=’a’)
Returns list of words in the string, using sep as the
delimiter string. Similar to the idea of tokens in C
programming.

mylist.rstrip() Remove whitespace on the right

mylist.split(sep=’a’) Returns a list of words in the string, using sep as the
delimiter string.

Python Basics 51

Syntax Comments

mystr.strip() Return a copy of the string with the leading and trailing
characters removed.

mystr.swapcase() Return a copy of the string with uppercase characters
converted to lowercase and vice versa.

mystr.upper() Change to uppercase

mystr.zfill(width)
Return a copy of the string left filled with ‘0’ digits to
make the string length width. Think of zfill as padding
numbers.

Table 3.2  String Methods

In Chapter 4, the topic “Test Objects” demonstrates removing characters at
the end of a string using the .rstrip() method.

An example using the find() method with a string is shown
in the “Find a Substring” topic that follows. The topic
“Slicing” also demonstrates retrieving part of a string. 

Split String

The split() function is useful for splitting strings into a “list.” If no argument
is given, split() assumes a space.

1
2

mystr = ‘hello world’
mystr.split()

After I run the program the Console shows the value of “mystr” is a list.

In [2]: mystr
[‘hello’, ‘world’]

The String Module

In addition to the built-in string methods we just looked at, there is a
“string” module with several invaluable methods. The string module is useful to
create strings of ASCII characters.

 Chapter 3 52

The next chart shows a few of the functions in the “string” module. In the
Console, after importing the string module, you could also type “help(string)” to
see more information.

Syntax Comments

.ascii_letters Both lower and uppercase letters

.ascii_lowercase abcdefghijklmnopqrstuvwxyz

.ascii_uppercase ABCDEFGHIJKLMNOPQRSTUVWXYZ

.digits ‘012345689’

.punctuation !”#$%&’()*+,-./:;<=>?@[\]^_`{|}~

.whitespace ‘ \t\n\r\x0b\x0c’

.printable all printable characters

Table 3.3  Some String Module Methods

The string.ascii_letters() method is a simple way to build a list of letters.
On line 1 I import the string module. The list() function converts the string to a list,
as shown below.

1 import string

2

3 alphabet_string = string.ascii_letters

4 alphabet_list = list(alphabet_string)

5 print(alphabet_list)

Create a String of Lowercase letters

To create a string of lowercase letters use the syntax shown below. Notice in
line 4 I convert the new string into a list.

1
2
3
4
5

import string
all_ltrs = string.ascii_lowercase
print(all_ltrs)
all_ltrs_list = list(all_ltrs)
print(all_ltrs_list)

After I run the program the Console shows:

In [2]:
abcdefghijklmnopqrstuvwxyz

Python Basics 53

[‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’, ‘g’, ‘h’, ‘i’, ‘j’, ‘k’, ‘l’, ‘m’, ‘n’, ‘o’, ‘p’, ‘q’, ‘r’, ‘s’, ‘t’, ‘u’, ‘v’, ‘w’, ‘x’,
‘y’, ‘z’]

Create a String of Numbers 0-9

To create a string of numbers 0-9 use the syntax shown below. 

1
2
3

import string
str_Numbers = string.digits
print(str_Numbers)

After I run the program the Console shows:

In [3]:
0123456789

Whitespace Characters

To see “whitespace” characters use the repr() function, as shown below.
On line 3, I use the repr() function to display the printable representation of the
whitespace characters.

1
2
3

import string
all_ltrs = string.whitespace
print(repr(all_ltrs))

After I run the program the Console shows:

In [3]:
\t\n\r\x0b\x0c

In the Chapter 6 topic, “Does the Object have a Value of None or
Whitespace?” we look at functions to remove whitespace. Example 7.29 in Chapter
7 demonstrates whitespace errors.

Iterate (Loop) Through Strings
String indices must be integers. The next example of a “for” loop is perfectly

legal for the loop expression, and prints the message, ‘abc’

mystr = ‘abc’
for i in mystr:

print(mystr)

What happens if you want to print the string values using the index notation?

 Chapter 3 54

The “print” statement shown below uses “i” as the index. An error is raised
because the respective “i” values are “a”, “b,” and “c,” and are not integers.

1 mystr = ‘abc’

2 for i in mystr:

3 print(‘mystr char is:’, mystr[i])

The Console displays a traceback message with a “TypeError.” I’ve
abbreviated the traceback message below for readability.

In [2]:
Traceback (most recent call last):
TypeError: string indices must be integers

A slight modification in the code would prevent the error. In the example
below, I am using the “range()” function combined with the length function “len()”
to get the length of the list. The range() function returns a data structure of
integers. We’ll look at “range” in detail later in this chapter.

1 mystr = ‘abc’

2 for i in range(len(mystr)):

3 print(‘mystr char is:’, mystr[i])

3.10 Lists
A list is a collection of objects. Lists are usually of the same type but can be

a combination of types. A list is similar to an array in other languages and contains
a sequence of elements. A unique index refers to each list item, and the index is
an integer. When creating Lists, use square brackets []. An index is used when
updating a particular list item.

mylist = [‘a’, ‘b’, ‘c’]
mylist[2]

List values are mutable which means the values can change. Because
lists are mutable, they cannot be used as dictionary keys. Lists can be used as
dictionary “values” as demonstrated later in the topic, “Append to a Dictionary.” A

Python Basics 55

list can grow or shrink as needed.

Python starts counting at 0. The first item in a list has an index
of 0, and the second item has an index of 1. Examples 7.1 and 7.2
demonstrate an IndexError when the list index is out of range. 

When creating a List, use square brackets []. A list will usually have
homogeneous data but can mix different data types - commas separate items.

Description Syntax Comments

Create a List and assign values mylist = [‘a’, ‘b’, ‘c’]

Create a List and assign
number values mylist2=[1,2,3,4]

Assign a value to the first item
in the List mylist2[0] = 8

Access the value of the List
item mylist2[1] Returns the value of the

second item in the List

Access the value of the last List
item mylist2[-1]

Use negative index
numbers when counting
from the right

Return all items in a List mylist

Table 3.4  List Objects

Update an Element in a List
Use the index to update a particular element in a list. This example updates

the second element in the list. See the topic that follows, “Index: Location of a List
Element,” to locate a particular index.

mylist2[1] = 8

Iterate Through Items in a List
A “for loop” is one option to iterate through items in a list, as shown below.

1 myList = [0, 1, 2]

2 for j in myList:

3 print(‘mylist item is:’, myList[j])

These Chapter 7 examples illustrate a few list errors: Example 7.1, 7.2, and

 Chapter 3 56

7.3.

Copy Lists
List copies have different behavior depending on how you make a copy of the

list, as outlined in the python.org docs.

• Create a reference (same values, different identifiers)

• A shallow copy with one level

• A shallow copy with compound objects

• A deep copy

Create a Reference or Alias

The statement mylist1 = mylist2 creates a reference or alias. This behavior
is referred to as “indirection.” With an alias, regardless of the object name, you
are actually using “mylist1.” If mylist1 has values [1, 2, 3, 4], mylist2 references
the same exact values [1, 2, 3, 4]. A change to any of the values in mylist1 is seen
in mylist2, and vice versa.

Copy a Simple List

To make a copy of a list, add [:] at the end of the expression, as shown
below. This creates a shallow copy that is one level deep. A shallow copy creates
mylist2 and inserts references to objects found in mylist1. You can also use the
second expression to copy a list. If you leave off the [:] Python creates an “alias”
or “reference,” so that “mylist2” points to the “mylist1” object in memory.

mylist2 = mylist1[:]
mylist2 = list(mylist1)

In the case of a simple list object that is one level deep, this type of copy
behaves the way you would expect. Changes at the first level are independent
between the parent and copied lists, and vice versa. If you add objects to the
second list, there is no change in the original list.

In [1]: mylist1 = [0, 1, 2]
In [2]: mylist2 = mylist1[:]
In [3]: mylist2[0] = 8
In [4]: mylist1
Out[4]: [0, 1, 2]
In [5]: mylist1
Out[5]: [8, 1, 2]

Python Basics 57

Copy a List with Compound Objects

The same copy syntax behaves differently with compound objects.
Compound objects contain other compound objects. In this next example, “mylist3”
has two lists, and is two levels deep. These internal lists are shown below:

mylist3[0] = [1, 2, 3, 4]
mylist3[1] = [‘a’, ‘b’, ‘c’, ‘d’]

Here I create a shallow copy of mylist3 called mylist4.

mylist3 = [[1, 2, 3, 4], [‘a’, ‘b’, ‘c’, ‘d’]]
mylist4 = mylist3[:]

The first level of mylist3 is the combined list:

 [[1, 2, 3, 4], [‘a’, ‘b’, ‘c’, ‘d’]]

Changes made at the first level are independent between mylist3 and
mylist4. When I replace the first level compound list mylist3[0] with a string, it has
no impact on “mylist4,” and vice versa.

In [6]: mylist3[0] = ‘hello’
In [7]: mylist3
Out [7]: [‘hello’, [‘a’, ‘b’, ‘c’, ‘d’]]
In [8]: mylist4
Out [8]: [[1, 2, 3, 4], [‘a’, ‘b’, ‘c’, ‘d’]]

Let’s start over with mylist3 and mylist4 just after the copy that creates
mylist4.

In [9]: mylist3
Out [9]: [[1, 2, 3, 4], [‘a’, ‘b’, ‘c’, ‘d’]]
In [10]: mylist4
Out [10]: [[1, 2, 3, 4], [‘a’, ‘b’, ‘c’, ‘d’]]

The first list object in both mylist3[0][0] and mylist4[0][0] is [1, 2, 3, 4].

The second list object in mylist3[0][1] and mylist4[0][1] is [‘a’, ‘b’, ‘c’, ‘d’].

Now I’m going to change an object at the second level. A simple copy is only
one level deep, which means changes at the second level effect both the original
list mylist3 and the copied list mylist4. As expected, a change to mylist4[0][2]
changes mylist3[0][2], and vice versa.

 Chapter 3 58

In [11]: mylist4[0][2] = ‘z’
In [12]: mylist4
Out [12]: [[1, 2, ‘z’, 4], [‘a’, ‘b’, ‘c’, ‘d’]]
In [13]: mylist3
Out [13]: [[1, 2, ‘z’, 4], [‘a’, ‘b’, ‘c’, ‘d’]]

To avoid this shallow copy behavior with compound objects, import the
“copy” library to use copy.deepcopy() to create a new list and insert copies of
all objects in the original list. The new list is completely independent of the original
list.

List Comprehension
A List comprehension is an elegant way to create a new list from a

comprehension. A comprehension consists of a single expression followed by at
least one for clause and zero or more for or if clauses. The only difference between
a list comprehension and map() is Python returns a list instead of a map object.
The comprehension is an “expression” followed by “for” loop(s) to iterate over
elements. The comprehension may also include conditional “if” statement(s).

newList = [expression or variable - for item in iterable- if]

The code below has three statements that I want to combine in a “list
comprehension.” The list comprehension will compute sales tax for “sales_list”
elements of type “float.”

expression or variable round(i * 1.065, 2)

for item in iterable for i in sales_list

if if type(i) == float

1 for i in sales_list

2 if type(i) == float:

3 round(i * 1.065, 2)

1.	 In the example below, the slash \ at the end of line 2 below means the
list comprehension continues onto line 3. The Python Interpreter considers
lines 2 and 3 one statement.

	 On line 2, the first part of the list comprehension computes the price of
items with sales tax, and rounds the result to two decimal places.

2.	 The second statement loops over items in the “sales_list”.

Python Basics 59

3.	 Finally, the third statement on line 3 checks that elements are a float,
skipping over strings and integers in the sales_list. The result is assigned
to a new “receipt_list.”

1 sales_list = [1, ‘iPad’, 399.99, 2, ‘charging cable’, 29.99]

2 receipt_list = [round(i * 1.065, 2) for i in sales_list \

3 if type(i) == float]

4 print(receipt_list)

After I run the program the Console shows the output below. Note that the first
element in sales_list is a whole integer and not a float, so “1” is not included in

the rounding calculation.

In [2]: receipt_list
Out [2]: [425.99, 31.94]

This comprehension creates a list of vowels from a string.

1
2

mystr = ‘charging cable’
newList = [v for v in mystr if v in ‘aeiou’]

After I run the program the Console shows:

In [2]: newList
Out [2]: [‘a’, ‘i’, ‘a’, ‘e’]

Remove Characters When Converting
In the previous example, the console printed the brackets, apostrophes, and

commas as part of newlist. When you convert a list to a string, the square brackets
around the original list, the apostrophes, and the commas between list elements
become part of the new string, as shown in the next topic, “Change a List to a
String.”

When converting objects, you might want to remove those extra characters.
Example 7.27 in Chapter 7 demonstrates slicing to remove square brackets and
apostrophes. With strings, you can use the .replace() function to remove square
brackets or commas. In Chapter 4, the topic “Test Objects” demonstrates removing
characters at the end of a string.

The same principle applies when you convert a string object to a list. A string
object begins with an apostrophe and ends with an apostrophe. The apostrophes
become part of the new list element.

 Chapter 3 60

Delete an Item from a List
This expression uses the del() function to delete the second item in “mylist.”

del(mylist[1])

In the example below, the statement “del(mylist[4])” deletes element ‘o’
from your original “mylist” object.

1
2
3

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
del(mylist[4])
print(mylist)

After I run the program the Console shows:

In [2]:
[‘h’, ‘e’, ‘l’, ‘l’]

Change a List to a String
In case you have a “list” object and need a “string” type instead, convert the

list to a string using “str(myList).” In this example, I convert a list element to a
string.

1
2

myList = [‘hi’]
mynewvar = str(myList)

After I run the program the Console shows:

In [2]: mynewvar

“[‘h’, ‘i’]”

In the Console, type “mynewvar.” The object has double quotes around
the output, indicating the object is now a string. The square brackets that were
around the original list object, as well as the quotes and commas that separated
the original list elements are part of the value of the new string object “mynewvar.”
Example 7.27 in Chapter 7 demonstrates slicing to remove unwanted characters.

Change a String to a List
You can convert a string to a list using “list(mystring).” You might need to

convert a string to a list to change data with a “list” method, since a list is mutable
and can be changed.

Python Basics 61

1
2

myList = [‘hello’]
str(mysList)

After I run the program the Console shows:

In [2]: myStr

‘hello’

3.11 Methods for Lists
In this topic, we’ll look at several handy list methods. To see common

sequence operations available for your version of Python, check out the
docs.python.org. In the top left corner, you can select your language and version,
and then on the left side of the page under “Sequence Types -- list, tuple, range,
click on Mutable Sequence Types.

Syntax Comments

mylist.append(‘there’) Adds an element to the end of the list

mylist.clear() Removes all items from mylist

mylist.copy()
Creates a shallow copy of mylist (same as
newlist = mylist[:])

mylist.count(‘l’) Count occurences of ‘l’

mylist.extend(‘you’) Add 1 element to end of list

mylist.index[1] Returns 2nd element

mylist.insert(2, ‘a’) Insert item at index location

mystring = ‘_’.join(mylist) Joins list elements into a new string

mylist.pop(2) Deletes element ‘2’ and returns ‘2’

mylist.remove(2) Removes element ‘2’ from mylist

mylist.reverse() Reverses the items of mylist in place

mylist.sort() Sorts the original list & returns nothing

Table 3.5  List Methods

Append an Item to a List
 The function “append()” adds a single element to the end of your list.

Append changes your original list.

 Chapter 3 62

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mylist.append(‘there’)

When I run the program the Console shows:

In [2]:
[‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘there’]

Extend a List, or Combine 2 Lists
The function “extend()” adds each element in the second string as a separate

element to the end of the first list. In this example, when I extend the list with
‘you,’ it separates the letters in ‘you’ into three elements.

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mylist.extend(‘you’)

When I run the program the Console shows:

In [2]:
[‘h’, ‘e’, ‘l’, ‘l’, ‘o’, ‘y’, ‘o’, ‘u’]

Index: Location of a List Element
To find the index for the element ‘e,’ use the .index method. In this example,

.index returns “1” which is the index for the letter ‘e.’ Python begins counting at
“0,” so the second element ‘e’ has an index of “1.” Once you know the index for an
element, you can change that element.

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mylist.index(‘e’)

After I run the program the Console shows “1,” indicating “e” is the second
element in “mylist.”

In [2]:
1

Python Basics 63

Insert an Item to a List
 To add an item “a” at index position ‘2’ in a list, use the following

expression.

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mylist.insert(2, ‘a’)

After I run the program the Console shows:

In [2]:
[‘h’, ‘e’, ‘a’, ‘l’, ‘l’, ‘o’]

Join List Elements into a String
The join() function is useful for joining elements in an iterable such as a list,

tuple, dictionary, or set. In this example, I am creating a new string from the
elements in “mylist.” The “_” underline character is used as an argument so that
the new string “mylist2” has “_” between each letter.

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mystring = ‘_’.join(mylist)

After I run the program the Console shows:

In [2]: mystring
h_e_l_l_o

In the next example, I join “mylist” elements into a string, and nothing is
added between the elements.

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mystring = ‘‘.join(mylist)

After I run the program the Console shows:

In [2]: mystring

 Chapter 3 64

‘hello’

Instead of ‘_’, you could use ‘\n’ to add a line feed between elements. 

Add Character When Joining Strings
In the next example, I use the “map” function to change elements to a string

with the str() function. Then, I join the elements together with a comma as the
separator. The output to the Console when I run the program is hi, stranger.

1
2
3

mylist = [‘hi’, ‘ stranger’]
mystr = ‘,’.join(map(str, mylist))
print(myStr)

Pop (Remove) an Element from a List
The function “mylist.pop()” removes the last item in the list or the item

where you provide the index. The function “pop()” also returns the item you
remove.

1
2
3

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
pop_item = mylist.pop(4)
print(pop_item)

After I run the program the Console shows:

In [2]:
o

Remove an Element from a List
 The function mylist.remove(‘o’) removes the argument in parentheses

from a list, but does not return the object. In this example, I remove ‘o’ from
“mylist.”

1
2
3

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mylist.remove(‘o’)
print(mylist)

Python Basics 65

After I run the program the Console shows:

In [2]:
[‘h’, ‘e’, ‘l’, ‘l’]

Remove Duplicate Elements from a List
To quickly remove duplicate elements in a list, convert the list into a Set, as

explained in the topic, “Set” later in this chapter.

The sort() Method
There are several ways to sort list items. The

mylist.sort() method changes the original “mylist” into a sorted list and returns
nothing.

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mylist.sort()

After I run the program the Console shows:

In [2]:
[‘e’, ‘h’, ‘l’, ‘l’, ‘o’]

The sort() method also has two keyword arguments: key and reverse. The
following shows two possible keyword arguments for the list.sort() method.

key=str.lower

reverse=True (reverse sort)

The sorted() Function
The “sorted()” function returns a new, sorted version of your list (or any

iterable.) In this example, mylist2 is a new sorted list.

1
2

mylist = [‘h’, ‘e’, ‘l’, ‘l’, ‘o’]
mylist2 =sorted(mylist)

After I run the program the Console shows:

 Chapter 3 66

In [2]: mylist2
[‘e’, ‘h’, ‘l’, ‘l’, ‘o’]

Sort Order and the Key Parameter

The sorted() function also has the key and reverse keyword arguments.
The reverse keyword allows you to sort in “descending” or “ascending” order. In
the next example, “reverse” is a keyword argument of the sorted() function. The
key argument specifies a function to be called on each list element prior to making
comparisons. In this example, I use the str.lower method to change strings to
lowercase before the sort comparison. You could also use the len() function to sort
words by length.

1
2

mylist = [‘red’, ‘Red’, ‘blue’]
mylist2 = sorted(mylist, key=str.lower, reverse=True)

Sorting by the Second Element in the List

The “operator” library includes the “itemgetter()” function which allows you
to choose which element in the list you want to sort. In this example, on line 4 I am
sorting by the second element and then the first element.

1 from operator import itemgetter

2

3 mylist = [(‘red’, 3), (‘Red’, 1), (‘blue’, 2)]

4 mylist2 = sorted(mylist, key=itemgetter(1, 0))

3.12 Tuple
A tuple is similar to a list in that it is an ordered sequence of elements. That

is not to say the items are arranged in a particular order, but rather that Python
assigns a sequence of indexes to the items. The first item in a tuple has an index of
“0.” Tuples are enclosed in parentheses () and commas separate items. Tuples are
immutable, which means they cannot be changed, as demonstrated in Chapter 7 in
Example 7.42.

Tuple Assignment
Tuples can also contain other tuples. In this next example, when I create

“mytuple2,” the fourth element [3] is “mytuple1.” Notice mytuple2 includes
numbers, strings, and a tuple. Tuples can have heterogeneous data, meaning tuples
can have different data types.

Python Basics 67

In [1]: mytuple1 = (1,’two’, 3)
In [2]: mytuple2 = (‘H’, 2, ‘O’, mytuple1, 4)
In [3]: mytuple2
Out [3]:(‘H’, 2, ‘O’, (1, ‘two’, 3), 4)

Using the mytuple object we just created, when you type this expression in
the Console to test the value, the Python Interpreter returns “True.”

In [4]: mytuple2[2] == ‘O’
Out [4]:True

When working with functions, you’ll notice they often return a tuple. An
alternate expression for tuple assignment follows.

1 def myfunction():

2 return 1, 2

3

4 myvar1, myvar2 = myfunction()

After the program runs, myvar1 = 1 and myvar2 = 2.

Tuples are Immutable
If you try to assign a new value to an item in a tuple, a TypeError is raised.

Tuples are immutable, and the value can not be changed. In Chapter 7, Example
7.42 looks at this error.

In [3]: mytuple[1] = ‘three’
Traceback (most recent call last):

File “<ipython-input-3-db66c3391d15>”, line 1, in <module> mytuple[1] = ‘three’

TypeError: ‘tuple’ object does not support item assignment

Elements are separated by commas. Dictionary keys are always immutable
elements so you can use tuples as dictionary keys. Lists are mutable and therefore
can’t be dictionary keys.

Tuple indices must be integers not strings. 

 Chapter 3 68

Description Syntax Comments

Create a Tuple and
assign values to 4
items

mytuple = (‘a’, ‘b’, ‘c’, ‘d’)

Create an empty Tuple mytuple = tuple()

Create a Tuple with one
item mytuple2 = (‘fruit’,)

Notice the comma at the
end to instruct Python this
is a Tuple and not a String.

Assign number values
to several Tuple items mytuple3 = (1, 2, 3)

View the value of the
2nd Tuple item

In [1]: mytuple4[1]
Out [1]: Orange

The Python Interpreter
returns the value Orange.

one-line swap a, b = b, a swap values

Table 3.6  Tuple Objects

Tuple Indexes
Earlier, I created mytuple2 and assigned these values:

(‘H’, 2, ‘O’, (1, ‘two’, 3), 4). When I use indexing with my tuple, I can retrieve
the value of the fourth item, as shown below. The index for the fourth item is “3”
because Python starts counting at zero.

In [4]: mytuple2[3]
Out [4]:(1, ‘two’, 3)

Looking at this same example, (‘H’, 2, ‘O’, (1, ‘two’, 3), 4), what index
would I use to retrieve the 2nd element “two” inside of mytuple1, which is inside
mytuple2? Hint: because Python starts counting at zero, the index of the second
element is [1].

mytuple2[3][1]

Let’s say I wanted to use the last element in mytuple2 for addition. Because
“4” is inside of tuple2, I use this expression.

10 + mytuple2[4]

This expression evaluates to “14.”

Python Basics 69

Iterate Through Items in a Tuple

A “while loop” is one option to iterate through items in a tuple, as shown
below.

1 mytuple4 = (‘Apple’, ‘Orange’, ‘Watermelon’)

2 j = 0

3 while j < 3:

4 print(‘my fruit is:’, mytuple4[j])

5 j += 1

A “for loop” is another option to iterate through items in a tuple. Indices
must be valid integers. The two samples below are valid and do the same thing.

1 mytuple4 = (0, 1, 2)

2 for k in mytuple4:

3 print(‘my number is:’, k)

1 mytuple4 = (0, 1, 2)

2 for k in mytuple4:

3 print(‘my number is:’, mytuple4[k])

The sample code below is invalid and causes an “IndexError,” because there
are only three objects in the tuple with values 1, 2, 3. Python starts counting at
0. The print statement is using “mytuple4[k]” or mytuple[1], mytuple[2], and
mytuple[3]. When you run the program, the Python Interpreter warns that “3” is
not a valid index because ‘3’ is beyond the limits of the tuple.

1 mytuple4 = (1, 2, 3)

2 for k in mytuple4:

3 print(‘my number is:’, mytuple4[k])

Example 7.52 in Chapter 7 looks at a tuple index error.

 Chapter 3 70

Tuples and Function Return Objects
By definition, a function can only return one object. One way around this

is to return a tuple of more than one object. Sometimes you’ll see return values
“swapped,” as shown below. We look at these “unpacking” statements later in this
Chapter in the topic, “Functions.” Also, the function in Chapter 7 in Example 7.33
returns a tuple.

myvar1, myvar2 = myvar2, myvar1

The example below is a function that returns one tuple with two objects
in the tuple. The first few lines create the function. Line 7 invokes the function
and assigns “myint1” and “myint2” to the function’s return objects. Because the
function returns “var1” and “var2,” the result is the same as the expressions that
assign myint1, myint2 = (“var1, “var2”).

1 def myfunction():

2 var1 = 3

3 var2 = 4

4 return var1, var2

5

6

7 myvar1, myvar2 = myfunction()

8 print(‘myvar1 is:’, str(myvar1) + ‘; myvar2 is:’, str(myvar2)

Example 7.52 in Chapter 7 looks at a tuple index error.

Repetition and Concatenation
Tuples support both concatenation and repetition. In the examples that

follow, I am using repetition and concatenation for tuples. Because tuples are
immutable and can’t be changed, this concatenation does not change the value
stored in “mytuple.” The Console output shows the result of the concatenation,
but the result is not assigned to an object. This behavior is illustrated in the
expressions I typed in my Console, as shown below.

In [1]: mytuple = (1, ‘two’, 3)

In [2]: mytuple
Out [2]: (1, ‘two’, 3)

In [3]: mytuple + (‘H’, 2, ‘O’)

In [4]: mytuple

Python Basics 71

Out [4]: (1, ‘two’, 3, ‘H’, 2, ‘O’)

Example 7.44 in Chapter 7 concatenates a tuple to a tuple. You can’t
concatenate a tuple with a string object.

Expression Returns:

Repetition 2 * (‘H’, 2, ‘O’) (‘H’, 2, ‘O’, ‘H’, 2, ‘O’)

Addition mytuple + (‘H’, 2, ‘O’) (1,’two’, 3, ‘H’, 2, ‘O’)

Table 3.7  Tuple Expressions

Related Tuples
Often, the relationship between elements in two or more tuples is dependent

on the “order” of the elements. In this section, we use multidimensional data
in simple tuples. For additional examples of multidimensional data, check out
numpy.py which is specifically for arrays.

roster1 = ((‘Joan’, [‘art’, ‘pc’], [60, 59]), (‘Henry’, [‘math’], [96]),
(‘John’, [‘english’, ‘SS’], [80, 87]))

•	 The first element in the tuple is the student name.

•	 The second element in the tuple is a list of courses.

•	 The third element in the tuple is a list with the grades for the
corresponding course.

Henry data in roster1

Name Course Grade

index roster1[1][0] roster1[1][1][0] roster1[1][2][0]

value Henry math 96

Table 3.8  Index Values for Henry in Roster1

The roster1 tuples

(‘Joan’, [‘art’, ‘pc’], [60, 59])
(‘Henry’, [‘math’], [96])
(‘John’, [‘english’, ‘SS’], [80, 87])

Table 3.9  Class Roster

 Chapter 3 72

You may decide that you want to add a third list for the school term to each
student’s tuple. In the next example, I create a new tuple “roster2” with each
student’s data in their own tuple, as shown below.

•	 The first element in the tuple is the student name.

•	 The second element in the tuple is a list of courses.

•	 The third element in the tuple is a new list with the course term for the
corresponding course.

•	 The fourth element in the tuple is a list of grades for the corresponding
courses.

roster2 = ((‘Joan’, [‘art’, ‘pc’], [‘spr’, ‘spr’], [60, 59]),
(‘Henry’, [‘math’], [‘fall’], [96]),
(‘John’, [‘english’, ‘SS’], [‘fall’, ‘fall’], [80, 87]))

The new roster2 tuples

(‘Joan’, [‘art’, ‘pc’], [‘spr’, ‘spr’], [60, 59])
(‘Henry’, [‘math’], [‘fall’], [96])
(‘John’, [‘english’, ‘SS’], [‘fall’, ‘fall’], [80, 87])

Henry data in roster2

Name Course Term Grade

index roster2[1][0] roster2[1][1][0] roster2[1][2][0] roster2[1][3][0]

value Henry math fall 96

Table 3.10  Class Roster2

Because you changed the elements in the tuple, the code needs to be
“refactored” to account for this change. In this example, we need to refactor or
change the internal code so it behaves the same way with the course and grade
elements.

Henry’s grade initially: roster1[1][2][0]

Henry’s grade after the change: roster2[1][3][0]

NamedTuple
To avoid having to refactor code, the “collections” library includes a

“namedtuple” which makes these types of tasks very simple. In the example
below, I create a new namedtuple “Roster” on line 3. On lines 5-7, I assign values

Python Basics 73

to “Roster3.”

Figure 3.1  Create a namedtuple

Now that we are using a “namedtuple” called Roster3, the syntax to access
the data is a little different. First, let’s look at Henry’s data.

Henry’s data in roster3

Name Course Term Grade

roster3[1].
student

roster3[1].
course[0]

roster3[1].
term[0] roster3[1].grade[0]

Henry math fall 96

Table 3.11  New Class Roster3 data for Henry

Joan is the first tuple in Roster3. Here we look at her second course, term
and grade, which is index [1].

Joan’s data in roster3

Name Course Term Grade

roster3[0].
student

roster3[0].
course[1]

roster3[0].
term[1] roster3[0].grade[1]

Joan PC spr 59

Table 3.12  New Class Roster3 data for Joan

 Chapter 3 74

3.13 Dictionary
A dictionary contains key:value pairs and is a non-scalar object with an

internal data structure. The key:value pairs are not in any particular order, and any
type of object may be used for values. Only immutable objcts can be dictionary
“keys.”

Dictionaries are often depicted as two columns, with the list of keys in the
first column and values in the second column. Dictionaries are mutable and you can
change or add key:value pairs. Values can be duplicated, but keys must be unique
and hashable. You can only use immutable elements such as integers or strings as
dictionary keys, as shown in Chapter 7 in examples 7.39 and 7.46. While tuples
can be used as dictionary keys, mutable lists can not be used as dictionary keys. I
would avoid floats as keys, given the way floats are actually stored in memory.

Keys
(Immutable Objects)

Values
(may be any object type)

Name John

Grade A

Course Python Programming

Table 3.13  Sample Dictionary

A dictionary has unsorted elements that can grow and shrink as needed.
When creating dictionaries, use curly braces {}. In the assignment statement, the
key is followed by a colon : and a value.

myDict = {key:value, key:value, key:value}

The syntax for changing dictionary objects depends on the type of object in
the dictionary “value.” If the value is a list, you can use list methods to change
data. If the value is a string, you can’t change the string because strings are
immutable; however, you can replace the value in the key:pair with a new object of
any type.

In this section we’ll explore these topics.

•	 Elements in a Dictionary

•	 Create a Dictionary

•	 Append to a Dictionary

•	 Copy a Dictionary

•	 How Many Elements are in a Dictionary List?

•	 Assign a Dictionary Value Using the Key Name

Python Basics 75

•	 Update a “List” Value in a Dictionary

•	 Find the Value of a Dictionary Item

•	 Find the Type of a Dictionary Element

•	 Add a New Key to an Existing Dictionary

•	 Delete a Key in an Existing Dictionary

•	 Iterate Through Dictionary Key-Pairs

•	 Iterate Through Keys in a Dictionary

•	 Retrieve Keys

•	 Search for a Key Name

•	 Title and Value Methods

•	 Combine Dictionaries

Earlier I said adding a new key:value pair to a dictionary is straightforward,
but adding to an existing dictionary is not. When changing dictionary elements
the important aspect is the “type” of object in the key:value pair. As you’ll see
in the next topic, you must know the type of the value so that you can use the
corresponding methods to add or change values.

Elements in a Dictionary
This topic explores the relationship between elements in a dictionary. A

dictionary is a set of key:value pairs that are not in any particular order. The keys
are immutable objects like strings or integers. The values in the key:value pair
can be any type of object. Often you’ll see nested lists, tuples, or dictionaries in a
dictionary key:value pair.

In the following example, we combine two lists into one “combined” list. The
“combined” list will be the dictionary value. The order of elements in the two lists
establishes the relationship between the two lists. The keys are student names, and
the value for each student is a “combined” list that contains two lists. Recall that a
dictionary is not in any kind of order, so there is no guarantee that the key “Joan”
will be the first in the dictionary.

Key Value

Joan [[‘art’, ‘social studies’], [‘A’, ‘D’]]
Henry [[‘math, ‘english’, ‘science’], [‘A’, ‘B’, ‘C’]]
John [[‘english’, ‘history’, ‘algebra’], [‘B’, ‘B+’, ‘C’]]

Table 3.14  Student Dictionary

Because dictionaries don’t store data in the same order you input the data,

 Chapter 3 76

the actual data can end up looking like the next example.

Figure 3.2  Variable Explorer Showing Dictionary

When looking at Joan’s data, you can see two lists. The first course list has
two elements. The second grade list also has two elements. If Joan is taking four
classes, each list would have four elements.

[‘art’, ‘social studies’]
[‘A’, ‘D’]

The “combined” list represents the “value” for the key “Joan.”

[[‘art’, ‘social studies’], [‘A’, ‘D’]]

When looking at this combined list, the first element in the “combined” list is
a list of classes. The second element is a list of grades.

[0] -> class_list

[1] - > grade_list

We’re going to create a dictionary with three students, and each student
is taking several classes. Notice that we assign the list data when we create the
dictionary. We don’t have a separate statement to create the two lists, although we
could add an additional statement for clarity.

Joan is taking art and social studies. Joan’s respective grades are A and D.

Python Basics 77

[‘art’, ‘social studies’]
[‘A’, ‘D’]

John is taking English, history, and algebra. John’s respective grades are B,
B+, and C. When we create the dictionary, our class list will look like this example.

[‘english’, ‘history’, ‘algebra’]

The grade list will look like this example.

[‘B’, ‘B+’, ‘C’]

Henry is taking math, English, and science. Henry’s respective grades are A,
B, and C.

[‘math’, ‘english’, ‘science’]
[‘A’, ‘B’, ‘C’]

Now let’s create the “students” dictionary with one student.

students = {‘John’: [[‘english’, ‘history’, ‘algebra’], [‘B’, ‘B+’, ‘C’]]}

At this point, let’s say I want to display John’s grade in his history class. I
will use indexing to look at the data in this dictionary key:value pair. You can follow
along with this code in your iPython Console to see the data returned. To see all of
John’s classes type the statement below. In this example, the first list is element
[0].

students[‘John’][0]

To see all of John’s grades type this statement. In this example, the second
list is element [1].

students[‘John’][1]

 Chapter 3 78

Because dictionaries don’t store data in the same order you input the data,
the actual data can end up looking like the next example.

Figure 3.3  John’s Grades

To see the class name ‘history’ type this statement. In this example, you
want to see the second element [1] in the first list [0].

students[‘John’][0][1]

Finally, to see the class name algebra with John’s grade, type this
statement. Here we are using the third element in the first list [0][2], along with
the third element in the second list [1][2].

print(students[‘John’][0][2], students[‘John’][1][2])

Recall that a dictionary assignment statement follows this syntax.

myDict = {key:value, key:value, key:value}

To create a dictionary with all students use this expression.

students = {‘John’: [[‘english’, ‘history’, ‘algebra’], [‘B’, ‘B+’, ‘C’]],
‘Henry’: [[‘math’, ‘english’, ‘science’], [‘A’, ‘B’, ‘C’]],
‘Joan’:[[‘art’, ‘social studies’], [‘A’, ‘D’]]}

To view Joan’s grade in social studies, use this statement. In this example,
we’re looking at the second element [1] in the first list [0], and the second
element[1] in the second list [1].

Python Basics 79

print(students[‘Joan’][0][1], students[‘Joan’][1][1])

Figure 3.4  Joan’s Grade in Social Studies

Create a Dictionary

 To create an empty dictionary use the following expression.

mydictionary = { }

To create a dictionary with three key:pairs, use the following syntax. In
the example below, the first key is ‘Name,’ and the value is ‘Zimmerman.’ The
second key is ‘Grade,’ and the value is ‘A.’ A comma “,” separates the key:pairs. For
readability, the key:pairs are usually written in this format. To create a dictionary
with “string” values use the following syntax.

mydictionary = {‘Name’: ‘Zimmerman’
‘Grade’: ‘A’,
‘Course’: ‘Python Programming’}

In the following example, I am creating a dictionary with “list” values. Inside
the “list’ is a string value. Because it is a “list” there are square brackets around the
string values.

mmydictionary2 = {‘Name’: [‘Young’]
‘Grade’: [‘B’],
‘Course’: [‘Excel Fundamentals’]}

 Chapter 3 80

Because a dictionary can have any type of object, you must know the
object’s type in order to work with the data. Strings are contained in quotes (single
or double), tuples use parentheses(), and lists use square brackets [].

Append to a Dictionary List Value
Append adds elements to an existing key that contains a “list.” For example,

if you have a key “Name” with a “list” value, you can use append to add additional
strings ‘Smith’ and ‘Jones’ to the “list.”

Why should you care about the object type of elements in your dictionary?
If you try to add elements to a “string” using the “append” method, the Python
Interpreter raises an AttributeError, as shown below.

In [4]: mydictionary[‘Name’].append(‘Smith’)
AttributeError: ‘str’ object has no attribute ‘append’

The same syntax for “mydictionary2” is successful, because the value in
the key:pair “Name” is of type “list.”

In [5]: mydictionary2[‘Name’] = [‘Zimmerman’]
In [6]: mydictionary2[‘Name’].append(‘Smith’)

To see the new dictionary values, in the Console, I type “mydictionary2.”
Notice the output shows the key “Name” now has two values. The square brackets
indicate [‘Zimmerman’, ‘Smith’] is a “list.”

In [6]: mydictionary2
Out [3]: {‘Name’: [‘Zimmerman’, ‘Smith’],
‘Grade’: [‘A’],
‘Course’: [‘Python Programming’]}

Copy a Dictionary
Use the .copy() method to make a shallow copy of a dictionary.

thisdict1 = {3: ‘k’}
thisdict2 = dict1.copy()

Import the “copy” library and use copy.deepcopy() if the dictionary
contains mutable objects that can be changed.

Python Basics 81

How Many Elements are in the Dictionary List?
Continuing with the earlier example, I can count the number of values

associated with the key “Name” by using the len() method to retrieve the length of
the list.

In [6]: len(mydictionary[‘Name’])
Out [3]: 2

Assign a Dictionary Value Using the Key Name
To update a dictionary value use the following syntax.

mydictionary[‘Name’] = ‘Smith’

Update a “List” Value in a Dictionary
There will be times when you want to “update” the value for a key in your

dictionary. In this example, the key:value pair has a value that is a “list.” First,
I check if the key already exists in the dictionary. If the key is there, I append
“myvar2” to the “list.” If the key is new, I add the key and “list” value to the
dictionary.

1 mydict = {}

2 mykey = ‘phrase’

3 myvar2 = ‘hello’

4 if mykey not in mydict:

5 mydict[mykey] = [myvar2]

6 else:

7 mydict[mykey].append(myvar2)

Next I’ll use .setdefault() for the same task on line 4.

1 mydict = {}

2 mykey = ‘phrase’

3 myvar2 = ‘hello’

4 mydict.setdefault(mykey, []).append(myvar2)

The .get() method is another way to avoid an error if a key is not in the
dictionary. Later in this chapter we’ll look at the “defaultdict” object in the
collections library.

 Chapter 3 82

	 The .get() method

	 The collections library “defaultdict”  

	 The .setdefault() method

Examples 7.20 and 7.31 in Chapter 7 demonstrate
an error when a key is not in a dictionary. 

Find the Value of a Dictionary Item
This example uses the Console to display the value of the key “Name.”

Compared to a list where I need to know the correct list index, with a dictionary,
I simply provide the name of the “key.” The Python Interpreter returns the value
“Zimmerman” to the Console pane.

In [3]: mydictionary[‘Name’]
‘Zimmerman’

Keep in mind that a dictionary key:pair might contain anything. For example,
the key:pair value could contain a tuple with several lists, and each list could have
multiple elements. In that case, you use indexes to locate the elements that may
be nested several layers into the dictionary key:pair.

To test if a particular key is in a dictionary, you could use the “in” operator.
Continuing with our previous dictionary example, I might look for the keys “DoB” or
“Course” with these expressions.

In [4]: “DoB” in mydictionary
Out [4]: False

In [5]: “Course” in mydictionary
Out [5]: True

Find the Type of a Dictionary Element
In case you’ve run across a dictionary and are wondering about the type

of an object, let’s look at how to find the object type. In the Editor, I’ve created
“mydictionary2.” Notice the values are in square brackets, indicating they are “lists.”

mydictionary2 = {‘Name’: [‘Young’]
‘Grade’: [‘B’],
‘Course’: [‘Excel Fundamentals’]}

Python Basics 83

After running this code in the Editor, I want to look at the type of the value
in the key:pair. As shown below, in the Console, I use the type() function to
determine the type of the value where the key is ‘Name.’ The Python Interpreter
returns “list.”

In [2]: type(mydictionary2[‘Name’])
Out [2]: list

Now let’s revisit the first dictionary and look at the type of the values.

mydictionary = {‘Name’: ‘Zimmerman’

‘Grade’: ‘A’,

‘Course’: ‘Python Programming’}

After running this code in the Editor, I want to look at the type of the
value in the key:pair. As shown below, in the Console, I use the type function to
determine the type of the value where the key is ‘Name.’ The Python Interpreter
returns “string.”

In [3]: type(mydictionary[‘Name’])
Out [3]: str

Add a New Key:pair to an Existing Dictionary
To add a new key ‘Credits’ to an existing dictionary, use this syntax. Recall

that you can only use immutable elements such as integers or strings as dictionary
keys.

	 mydictionary[‘Credits’] = ‘3’

Delete a Key in an Existing Dictionary
To remove the key:value pair [‘Credits’]:‘3’ from the dictionary, use “del.”

	 del(mydictionary[‘Credits’])

Iterate Through Dictionary Key:pair Values
This “for loop” returns the key:pairs in the dictionary. Line 4 in this example

creates two variables, “mykey” and “myvalue,” that will represent the key:value
pairs. The method items() returns a list of the key-value pairs.

for mykey, myvalue in mydictionary.items():
print(“\pKey: ”, mykey, “\tValue: ”, myvalue)

 Chapter 3 84

Figure 3.5  Print Key-Value Pairs

Iterate Through Keys in a Dictionary
This “for loop” returns the keys in the dictionary. To make your code easier to

read, add the keys() method to the same statement.

for mykey in mydictionary:
print(“\pKey: ”, mykey)

The next example is the same statement with the .keys() method.

for mykey in mydictionary.keys():
print(“\pKey: ”, mykey)

Retrieve Keys
To retrieve the dictionary keys use the “.keys()” method.

In [6]: mydictionary.keys()
Out [6]: dict_keys([‘Name’,’Grade’, ‘Course’])

Search for a Key Name
To test if a particular key is in a dictionary, you can use the “in” operator.

Continuing with our previous dictionary example, I might look for the keys
“Grades” or “Course” with these expressions. In this example, I am typing in the
Console, and the expression returns either False or True.

Python Basics 85

In [4]: “Grades” in mydictionary
Out [4]: False

In [5]: “Course” in mydictionary
Out [5]: True

Test if Key is in the Dictionary
In another example, let’s say you have a dictionary called ‘mydictionary’

for student IDs, where the key name is the student ID number. This expression
that uses the “in” operator to find a student ID “12345” returns “True.” Note I am
searching for the key name, not the value in the key:pair.

In [6]: if ‘12345’ in mydictionary:
Out [6]: True

Value Method
In this next example, I modified the previous code that returned the keys

in the dictionary. Here I use the value() method to access the dictionary values.
The first expression returns all values in the dictionary, while the second expression
entered in the Editor iterates through each item.

In [7]: mydictionary.values()
Out [7]: dict_keys([‘Name’, ‘Grade’, ‘Course’])

for myvalue in mydictionary.values():
print(myvalue)

In [8]:

Combine Dictionaries
The update() method combines two dictionaries. If key names are the

same, the key:pair is updated with the newer value. If the key:pair doesn’t exist, it
is added.

dict1, dict2 = {key1: ‘data1’, key2: 3}, {key3: ‘4’}

dict1.update(dict2)

 Chapter 3 86

Dictionary Comprehensions

Earlier, we looked at list comprehensions. Dictionaries also support
comprehensions.

{expression or variable - for item in iterable- if}

In [16]:
In [17]:
In [18]:

myl = [1, 2, 3, 1, 3, 4, 1]
dd = {num: myl.count(num) for num in myl}
print(dd)
{1: 3, 2: 1, 3: 2, 4: 1}

expression or variable num: myl.count(num)

for item in iterable for num in myl

Now let’s look at code that reads data from an Excel file. Sample data from
the Excel file is shown below.

A B C

1 Term Index Definition

2 NAN Nan Not-a-number.

3 set Set A collection of objects.

Python Basics 87

This code creates a dictionary with data from columns A-C from the Excel file
“words.xlsx.” The “for” loop begins on line 8 and goes through line 15.

1 from openpyxl import load_workbook

2

3

4 wb3 = load_workbook(‘words.xlsx’)

5 ws = wb3[‘words’]

6 wordDict = {}

7

8 for i in range(2, ws.max_row + 1):

9 term, indx, wordDef, url = ‘’, ‘’, ‘’, ‘’

10 term = ws.cell(i, 1).value

11 if term is not None:

12 indx = ws.cell(i, 2).value

13 wordDef = ws.cell(i, 3).value

14 if indx != ‘’ and indx is not None:

15 wordDict[term] = [indx, wordDef]

The same code with lines 8-15 rewritten as a dictionary expression on lines
8-11 follows.

1 from openpyxl import load_workbook

2

3

4 wb3 = load_workbook(‘words.xlsx’)

5 ws = wb3[‘words’]

6 wordDict = {}

7

8 wordDict = {ws.cell(i, 1).value: [ws.cell(i, 2).value, ws.cell(i, 3).value]

9 for i in range(2, ws.max_row + 1):

10 if ws.cell(i, 1).value is not None and ws.cell(i, 2).value != ‘’

11 and ws.cell(i, 2).value is not None}

3.14 Range
The range function was introduced with Python 3 and is used to generate

a range of integers. A range is immutable and can not be changed. When you
run an expression with a range, the Python Interpreter creates the first integer in
the range. The next integer is created when you ask for it, and so on. So you are

 Chapter 3 88

not hampered waiting on Python to generate a large list of integers; it’s more of a
just-in-time approach. The format for a range is shown below.

for i in range(start: stop: step):
print(‘Hello #’, i)

If only one argument is provided, the argument becomes the ‘stop’ value.
Start defaults to 0, and step defaults to 1. The range(0, 4) starts at index 0, and
ends at index 3.

for i in range(1,4):
print(i)

When I run this “for” loop from the Editor, it prints 1, 2, 3, to the Console as
shown below.

In [43]:
1
2
3

A range uses indexing, slicing, len(), the comparison operators “in” and “not
in,” and works with the “for” control loop. A range is an ideal way to iterate over
a list. In the next example, the length of the list is the “stop” argument for the
range() function.

for i in range(len(my_list)):
print(‘The list item is:’, my_list[i])

3.15 Generator & Yield Expressions
An expression that returns an iterator is a generator expression. This

combined expression generates values for the enclosing function.

sum(i*i for i in range(10))

Earlier we looked at this list comprehension to create a list of vowels from a
string. To change the list comprehension into a generator expression, I update line
2 with parenthesis instead of brackets. Line 2 returns an iterable generator object.
Variables used in the generator expression are evaluated lazily when the __next__
() method is called for the generator object.

1
2

mystr = ‘charging cable’
newList = (v for v in mystr if v in ‘aeiou’)

Python Basics 89

A generator function returns a ‘yield’ expression and is an iterator. A
generator runs up to the first ‘yield’ expression and returns that value. The next
time the generator is invoked, it resumes execution at the point it left off and runs
until the next ‘yield’ statement. If you have a list of a million names, you don’t
have to create the list in memory. Instead, the generator creates each name when
needed.

Figure 3.6  A Generator

Line 11 could also be rewritten with the next() method, as shown below.

print(next(studentNames))

3.16 Sets
A Set contains unordered elements with no duplicates. A Set is mutable and

grows or shrinks as needed; so you can use .add() or .remove() to add or remove
immutable elements like strings, tuples, or integers. However, you can’t change the
immutable elements in the set. Set elements can be different types.

When creating a set, use curly braces {} and separate items with a comma.
Line 5 creates an empty set.

In [4]: myset = {‘apple’, ‘orange’}

 Chapter 3 90

In [5]: myset = set()

The set(<iterable>) function creates a new set from an immutble iterable
such as a list, tuple, dictionary, or string. While you can create a “set” from a list
(which is mutable) using the set() function, the elements in the new “set” are
immutable and can’t be changed.

In Variable Explorer, click on the Settings icon and uncheck “Exclude
unsupported data types” to view an object of type “set”. When you double click on
the set object, Variable Explorer displays set functions, as shown below.

Figure 3.7  A Set in Variable Explorer

In this example, on input line 7 I enclose an immutable “string” variable in
braces {}, creating a set.

In [6]: myvar = ‘123’
In [7]: {myvar}

In [8]: type({myvar})
Out[8]: set

Python Basics 91

Notice a TypeError is raised when I try the same syntax using a
mutable “list” to create a set on line 10. The “Intersection” topic that follows
demonstrates using the set() function to convert a list to a set.

In [9]: myvar = [1, 2, 3]
In [10]: {myvar}
Traceback (most recent call last):

 File “<ipython-input-20-597c80421cc7>”, line 1, in <module>
 {mylist}
TypeError: unhashable type: ‘list’

Description Syntax

Create a Set and assign values myset = {‘a’, 7, ‘c’}

Create an empty Set myset3 = set()

Create a Set and assign values myset3 = set(‘abc’)

Table 3.15  Creating Sets

We’ll look at these built-in functions next.

• Union

• Intersection

• Difference

• Symmetric

Union
First, let’s use the “union” | operator to combine two sets.

In [12]:
In [13]:
In [14]:
Out[14]:

myset1 = {‘apples’}
myset2 = {‘pears’}
myset1 | myset2
{‘apples’, ‘pears’}

The union() function accepts other iterator types and returns a new set. In
the next example, I combine a set and a list into a new set.

 Chapter 3 92

In [15]:
In [16]:
In [17]:
Out[17]:

myset1 = {‘apples’}
mylist1 = [‘oranges’]
myset1.union(mylist1)
{‘apples’, ‘oranges’}

Intersection
The intersection() function finds elements in common between two sets and

returns a set.

In [18]:
In [19]:
In [20]:
Out[20]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1.intersection(myset2)
{3}

The next example uses the intersection operator & to create a new set with
the elements in common between the two sets.

In [21]:
In [22]:
In [23]:
Out[23]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 & myset2
{3}

To count how many items are in common between two sets, use the len()
function. This example converts two lists to sets.

In [21]:
In [22]:
In [23]:
Out[23]:

myset = set([4.95, 3.20, 8.95, 5.99, 3.99])
sale = set([4.95, 3.99])
len(myset & sale)
2

Difference
The difference() function returns a new set of elements in myset1 that are

not in myset2.

In [18]:
In [19]:
In [20]:
Out[20]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1.difference(myset2)
{1, 2}

Python Basics 93

The next example uses the difference operator - to create a new set with the
elements in myset1 that are not in myset2.

In [21]:
In [22]:
In [23]:
Out[23]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 - myset2
{1, 2}

Symmetric Difference

The symmetric_difference() function returns a new set of elements in either
set that are not in both sets.  

In [18]:
In [19]:
In [20]:
Out[20]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1.symmetric_difference(myset2)
{3}

Common Elements
The bitwise operator & returns a new set with the elements in common

between the two sets.

In [21]:
In [22]:
In [23]:
Out[23]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 & myset2
{3}

Uncommon Elements
The next example uses the exclusive bitwise operator ^ to create a new set

with the elements not in common between the two sets.

In [21]:
In [22]:
In [23]:
Out[23]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 ^ myset2
{1, 2, 4, 5}

Set Comprehension
This example is a set comprehension that creates a new set with unique

values. A set comprehension uses this format.

 Chapter 3 94

newSet = {expression or variable - for item in iterable- if}

Let’s briefly look at the original code I want to convert to a set
comprehension. Line 1 creates a tuple of float “prices.” Sale items end in “.99,” and
I’d like to create a “set” of all items on sale.

• convert “floats” to “strings”

• use slicing to find the last three digits of the price

• select ‘.99’ items

1 prices = (4.99, 8.75, 3.20, 1.80, 9.99)

2 for x in range(len(prices)):

3 if str(prices[x])[-3:] == ‘.99’:

4 newSet.add(prices[x])

Now, let’s break down each step and gradually work up to the final
set comprehension, “saleItems.”

saleItems = {x for x in prices if str(x)[-3:] == ‘.99’}

1.	 The first part of the comprehension is simply the “variable” x.

variable x

for item in iterable for x in prices

if if str(x)[-3:] == ‘.99’

2.	 Next, I add the “for” logic for each item in “prices.” 	

for x in prices

3.	 The final part of the expression is the conditional “if” statement.

if str(x)[-3:] == ‘.99’

Python Basics 95

4.	 The original line 4 added the item to the set. Because this is now a “set
comprehension” Python automatically adds items to the set.

saleItems = {expression or variable - for item in iterable- if}

variable x

for item in iterable for x in prices

if if str(x)[-3:] == ‘.99’

	 The combined set comprehension is shown on line 2.

1 prices = (4.99, 8.75, 3.20, 1.80, 9.99)

2 saleItems = {x for x in prices if str(x)[-3:] == ‘.99’}

3.17 collections
The “collections” library has some interesting “container datatypes.” Earlier

in the “Tuples” topic, we looked at an example of a “namedtuple” from the
collections library. Now we’ll also look at the “Counter” and “defaultdict” functions.

Counter
The “Counter” subclass is a dict subclass and is a simple way to keep track

of counts, as shown in the next example. On line 4 I create a “Counter” object. I
increment a counter on line 6 to count each instance of an element in the “bills”
list. On line 7 I assign “ones” to the cnt[‘one’] value.

1 from collections import Counter

2

3 bills = [‘one’, ‘five’, ‘ten’, ‘one’]

4 cnt = Counter()

5 for i in bills:

6 cnt.update([i])

7 ones = cnt[‘one’]

8 print(‘there are %d ones’ % (ones))

defaultdict
The “defaultdict” is a subclass of the dictionary class, and returns a

 Chapter 3 96

dictionary-like object. Interaction with a defaultdict object is the same as a
dictionary, except that a defaultdict has a default callable object when a key
is not in the dictionary. In this example, line 4 sets the default value for my
defaultdict “dd” to a “list.” On line 7 I’m using the list “append” method to add
items to the “dd” object. With this syntax, if I try to access a key that is not in “dd,”
the Python Interpreter returns a list object and does not raise an error.

1 from collections import defaultdict

2

3 mylist = [(1, ‘one’), (2, ‘two’)]

4 dd = defaultdict(list)

5 cnt = Counter()

6 for k, v in myList:

7 dd[k].append(v)

In the Console, I type “dd” to see the values.

In [2]: dd
Out[2]: defaultdict(list, {1: [‘one’], 2: [‘two’]})

3.18 Indexes
An iterable such as a string, tuple, range, or list is a non-scalar sequence

object with an internal data structure. A sequence is an iterable object that
supports efficient element access using integer indices. These objects use indexing
to locate a particular element in the sequence. The format for an index is the object
name with square brackets around the index. For example, in the “bookstore”
example that follows, mystr[4] evaluates to “s” in the string “mystr.”

b o o k s t o r e

0 1 2 3 4 5 6 7 8

Table 3.16  String Index Example

In Python, the sequence protocol starts an index at position 0. Indexes must
be integers or a TypeError occurs. In the example below, ‘bookstore’ is assigned
to mystr, and there are nine characters. The start index is [0], and the end index
is [8]. If you go beyond the end of the index, it causes an “IndexError,” as shown in
Example 7.1 in Chapter 7.

Python Basics 97

mystr = “bookstore”

0	 start index

8	 end index

9	 length of string

To find the length of string “mystr” use the len() function.

In [1]: len(mystr)
Out [1]: 9

len() works with many types of objects including
strings, tuples, ranges, dictionaries, and lists. 

Indexing is a fundamental part of Python, so we’ll take a moment to look at
a couple of “indexes” with data structures that have multiple levels.

Indexing Elements in Nested Lists

Earlier in the topic, “Elements in a Dictionary,” we looked at how to index two
lists inside of a dictionary. In this example, we’ll look at three lists nested inside of
the main list.

list1 = [‘apple’, ‘tangerine’]
list2 = [‘tangy’, ‘sweet’]
list3 = [‘red’, ‘orange’]

mainlist = [list1, list2, list3]

The first three lists are elements [0], [1], and [2] in “mainlist.” Each of the
three lists has two strings, with elements [0] and [1].

To retrieve ‘tangerine,’ you access the second element [1] in “list1,” and
“list1” is the first element [0] in “mainlist.”

In [1]: mainlist[0][1]
Out [1]: ‘tangerine’

To view the value ‘sweet,’ you access the second element [1] in “list2,” and
“list2” is the second element [1] in “mainlist.”

In [2]: mainlist[1][1]

 Chapter 3 98

Out [1]: ‘sweet’

To view the value ‘orange’ you access the second element [1] in “list3,” and
“list3” is the third element [2] in “mainlist.”

In [2]: mainlist[2][1]
Out [1]: ‘orange’

Indexing Lists & Tuples in Dictionaries
These examples use strings, lists, and tuples with dictionary key:value pairs.

First, I create three lists with various fruit values. The relationship between the lists
is such that the first element in each list describes the “apple” - “sweet” and “red.”

f1 = [‘apple’, ‘lemon’]
f2 = [‘sweet’, ‘sour’]
f3 = [‘red’, ‘yellow’]

Element Value

f1[0] apple

f1[1] lemon

f2[0] sweet

f2[1] sour

f3[0] red

f3[1] yellow

Table 3.17  Fruit Lists

In the Console, I can type the following to see information about the
“lemon.” My design is such that the data about the “lemon” is the second element
[1] in lists f1, f2, and f3.

In [1]: f1[1]
Out [1]: ‘lemon’

In [2]: f2[1]
Out [2]: ‘sour’

In [3]: f3[1]
Out [3]: ‘yellow’

Next, I create some lists for vegetable values.

Python Basics 99

v1 = [‘spinach’, ‘carrots’]
v2 = [‘leafy’, ‘crunchy’]
v3 = [‘green’, ‘orange’]

Element Value

v1[0] spinach

v1[1] carrots

v2[0] leafy

v2[1] crunchy

v3[0] green

v3[1] orange

Table 3.18  Vegetable Lists

Now I create two tuples, and each tuple consists of three lists.

f = (f1, f2, f3)
v = (v1, v2, v3)

Tuple Element Value

f[0] f1

f[1] f2

f[2] f3

v[0] v1

v[1] v2

v[2] v3

Table 3.19  Two Tuples

As an example, the chart below outlines the indexes for all the values in the
“f” tuple.

Tuple
(3 list

elements)

List
2 string

elements
Values

Tuple “f”
Index

f[0] f1[0] apple f[0][0]

f[0] f1[1] lemon f[0][1]

f[1] f2[0] sweet f[1][0]

 Chapter 3 100

Tuple
(3 list

elements)

List
2 string

elements
Values

Tuple “f”
Index

f[1] f2[1] sour f[1][1]

f[2] f3[0] red f[2][0]

f[2] f3[1] yellow f[2][1]

Table 3.20  Tuple Indexes

In the Console, I can type the following to see information about “lemon”
in the “f” tuple. The layout of data is such that the data about the “lemon” is the
second element [1] in each list. Because Python starts counting at zero, the second
element index is [1].

In [1]: f[0][1]
Out [1]: ‘lemon’

In [2]: f[1][1]
Out [2]: ‘sour’

In [3]: f[2][1]
Out [3]: ‘yellow’

Finally, I create a dictionary with two key:value pairs. The values are the “f”
and “v” tuples. The dictionary key names are “fruit” and “vegies.”

d = {‘fruit’: f, ‘vegie’: v}

Element Value

d[‘fruit’] f

d[‘vegie’] v

Table 3.21  Dictionary

At a glance, the dictionary might look simplistic. However, when we look
inside the dictionary, you see there is quite a bit of data.

Dictionary
(2 tuple elements)

“f” or “v” tuples
f1,f2, f3, v1, v2, or

v3 Lists
Values (strings)

d[‘fruit’] f[0] f1[0] apple

d[‘fruit’] f[0] f1[0] lemon

d[‘fruit’] f[1] f2[1] sweet

d[‘fruit’] f[1] f2[1] sour

d[‘fruit’] f[2] f3[0] red

Python Basics 101

Dictionary
(2 tuple elements)

“f” or “v” tuples
f1,f2, f3, v1, v2, or

v3 Lists
Values (strings)

d[‘fruit’] f[2] f3[0] yellow

d[‘vegie’] v[0] v1[1] spinach

d[‘vegie’] v[0] v1[1] carrots

d[‘vegie’] v[1] v2[0] leafy

d[‘vegie’] v[1] v2[0] crunchy

d[‘vegie’] v[2] v3[1] green

d[‘vegie’] v[2] v3[1] orange

Table 3.22  Dictionary Elements

So far, we’ve looked at indexing for lists and tuples. Now, I want to look at
the values in the dictionary, beginning with “apple.” In the Console, I can access
the data using the dictionary key name and indexing, as shown below and in the
chart that follows.

In [1]: d[‘fruit’][0][0]
Out [1]: ‘apple’

In [2]: d[‘fruit’][1][0]
Out [1]: ‘sweet’

In [3]: d[‘fruit’][2][0]
Out [3]: ‘red’

In the previous examples, the key name is “fruit.” The list ‘f’ is the value in
d[‘fruit’]. List ‘f’ has three lists that are index [0], [1], and [2]. I’m accessing the
first element [0] in all three lists.

Dictionary
Key

“f”
Tuple

f1, f2, or
f3” List

Values
Dictionary key name

and indexes

d[‘fruit’] f[0] f1[0] apple d[‘fruit’][0][0]

d[‘fruit’] f[0] f1[1] lemon

d[‘fruit’] f[1] f2[0] sweet d[‘fruit’][1][0]

d[‘fruit’] f[1] f2[1] sour

d[‘fruit’] f[2] f3[0] red d[‘fruit’][2][0]

d[‘fruit’] f[2] f3[1] yellow

Table 3.23  Dictionary: List Indexes

Example 7.52 in Chapter 7 looks at a tuple index error.

 Chapter 3 102

3.19 Slicing
Slicing is used with strings, ranges, tuples, lists and other sequence types.

“Slicing” breaks a sequence into a substring of elements. Notice in the example
below, slicing uses square brackets [] and takes three arguments separated
by colons. The keyword argument “start” tells the function where to start slicing
the string. Start defaults to 0 and “step” defaults to 1. Both start and step are
optional keyword arguments. If only one argument is given, it is used as the “stop”
argument.

mystr[start:stop:step]

The default for the second argument “stop” is the length of the object, in this
case len(mystr). Using the “bookstore” string from the previous example, follow
along as we look at slicing. The function len(bookstore) returns 9, so the string’s
length is 9 characters.

b = “bookstore”
b[4:9:1]

The Console prints: store.

The “stop” value “9” evaluates to “9 - 1.” Recall that Python starts counting
at 0, so this slice b[4:9:1] stops at “8” and returns characters 4-8.

The previous example equates to the following, if you were to type the len()
function.

b[4:len(b):1]

The third argument “step,” tells the function which characters to return.
For example, step 2 would skip every other character. “Step” can be omitted. In
that case, you would type b[4:len(b)]. Here, the stop argument is the length of
“bookstore.”

The default slicing values are:

Argument Description Default Value

start Start is the index to begin slicing 0

stop
The stop index where you want to stop. The
default value len(b) evaluates to stop value - 1

len(bookstore)

Python Basics 103

Argument Description Default Value

step Return every “1” character. (Step “2” skips every
other character) 1

Table 3.24  Default Slicing Values

In Chapter 4, the topic “Test Objects” demonstrates removing characters
at the end of a string using slicing.

Slice()
The built-in slice() function is demonstrated in the next example. I like to use

slice() to assign a name to my slices. Line 1 uses raw quotes. The “r” preface tells
the Python Interpreter the backslash “\” isn’t an escape character, but rather simply
a backslash.

1 mystr = r“c:\data\python\Example1.py”

2 path = slice(14)

3 name = slice(15, 23)

4 extension = slice(24, 26)

5 print(mystr[path])

6 print(mystr[name)

7 print(mystr[extension])

On line 2, there is one slice() argument, which is the “stop” value. On line 3
and 4, I use both the start and stop arguments. The output from lines 5-7 is shown
below.

c:\data\python
Example1
py

 Chapter 3 104

Slicing Examples

This example b[0:4] evaluates to book. The Python Interpreter starts at “0”
and ends at “3.”

b[0:4]

b o o k s t o r e

0 1 2 3 4 5 6 7 8

The next example b[4:] evaluates to store because only the ‘4’ start
argument is provided. If you don’t provide a “stop” argument, the default of
len(bookstore) is used.

b[4:]

b o o k s t o r e

0 1 2 3 4 5 6 7 8

Don’t forget the colon at the end of the start argument! 

Notice the example below b[4] looks similar to the previous example but
omits the colon. Now Python returns only the character “s” at index 4.

b[4]

b o o k s t o r e

0 1 2 3 4 5 6 7 8

Negative values tell Python to start counting from the right. The example
below b[::-1] evaluates to:

erotskoob

b[:: -1]

b o o k s t o r e

0 1 2 3 4 5 6 7 8

Python Basics 105

In this example b[5:2:-1], the “-1” step argument tells the Python
Interpreter to move right to left. This example starts at “5,” steps right to left
because of “-1”, and stops before index “2” at “k”:

tsk

b[5:2: -1]

b o o k s t o r e

0 1 2 3 4 5 6 7 8

In Chapter 7, Example 7.27 uses slicing to remove square
brackets and apostrophes after converting a list to a string. 

In this example b[-8:-3:] a negative start argument “-8” counts from right
to left, beginning with “o.” There is no step argument, so the default of “1” is used,
meaning you move left to right, from -8 to -7 to -6, and so on. The stop argument
is “-3,” telling Python to stop before it reaches -3. This slice evaluates to:

ookst

b[-8:-3:]

b o o k s t o r e

-9 -8 -7 -6 -5 -4 -3 -2 -1

The last example, b[-7:2:-1] below, evaluates to an empty string because it
goes beyond the end of the string. It starts at -7, moves to -8, and then -9. At that
point, it has moved three indices from right to left and can’t move anymore.

b[-7:2: -1]

b o o k s t o r e

-9 -8 -7 -6 -5 -4 -3 -2 -1

In the topic “Find a Substring” that follows, we’ll
use slicing to find the word “from” in a string. 

 Chapter 3 106

3.20 Operators
Now let’s take a look at using operators for numerical operations,

concatenation, and comparisons. The docs.python.org has a complete list of
operators in the topic “Mapping Operators to Functions.”

Numerical Operators
Arithmetic operators work pretty much the way you would expect in Python.

Operator Example Description

+ x + y the sum

- x - y the difference

+= x += 1 add 1

-= x -= 1 minus 1

* x * y the product

/ x / y division

// x // y floor division: 5 // 2 returns 2

% x%y modulo: the remainder when x is divided by y

** i**j i to the power of j or exponentiation

Table 3.25  Numerical Operators

These two statements both add 1 to the mynumber variable.

mynumber = mynumber + 1
mynumber += 1

Select Odd or Even Numbers

One way to select odd or even index numbers is to use “+=”. Given that
the first element in a tuple is mytuple1[0], I can increment a counter += 2 to
iterate through all the even index elements in the tuple. The following example
creates a new tuple with the first element, third element, and fifth elements from
“mytuple1.”

1 myTuple1 = (1, 2, 3, 4, 5)

2 myTuple2 = ()

Python Basics 107

3 i = 1

4 while i < len(myTuple1):

5 myTuple2 += (myTuple1[i],)

6 i += 2

7 print(myTuple2)

Modulo Operator
The “modulo” operator “%” returns the remainder when dividing two

numbers. If you divide any number by 10, the modulo is the last digit in a number.
This example returns ‘7’ in the Console.

In [1]: n = 107
In [2]: last_digit = n % 100
In [3]: print(last_digit)
7

Select Odd or Even Numbers

You’ll often see the remainder “%” operator used to identify odd or even
numbers, as shown below.

for i in range(0, 20):
if i % 2 != 0:

print(“i is an odd number”, i)

Integer Division
The ‘//’ operator does integer division also known as floor division. Integer

division returns the quotient and ignores the remainder. This example returns ‘12’
in the Console, in effect reducing the original number by one digit.

In [1]: n = 123
In [2]: myvar = n // 10
In [3]: print(myvar)
12

 Chapter 3 108

Concatenation, Repetition and Sequence Operations
The + operator is used to concatenate string objects. You can also use the

+ operator to concatenate two lists and other object types. In Chapter 7, Examples
7.32, 7.34 and 7.44 demonstrate concatenation.

The * repetition operator is supported by most sequence types. An example
of repetition is 3 * ‘ho’, which evaluates to “ho ho ho.”

To see common sequence operations available for your version of Python,
check out the docs.python.org. In the top left corner, you can select your
language and version, and then on the left side of the page under, “Sequence
Types, click on “Common Sequence Operations.”

Operator Description

len(s) length of s

min(s) smallest item of s

max(s) largest item of s

s.count(x) total number of occurances of x in s

Comparison Operators
Use Comparison Operators to compare two values. The “in” and “not in”

operators are handy for searching or finding elements in a data structure.

Operator Description

in Test for membership in a sequence

not in Returns True if not a member of a sequence

To test whether a character or substring is in a string, use the “in”
comparison operator, as shown below. Example 7.48 in Chapter 7 illustrates
comparing two strings.

mystr = ‘apple’
if ‘a’ in mystr:

print(‘a is in’, mystr)

In the previous example, I searched for the string “a” in “mystr.” The left
operand and the right operand are both strings. A TypeError is raised if you use a
“list” as the left operand and a string as the right operand. In Chapter 7, Example

Python Basics 109

7.48 illustrates this example.

The “in” comparison operator is used
with strings, tuples, ranges, and lists. 

Boolean Operations
The boolean operators are “and,” “or,” and “not” and are sometimes referred

to as short-circuit operators. The evaluation of a compound boolean expression
stops when an outcome is reached. In this example, the Python Interpreter stops
evaluating the expression after the argument “5 == 4” evaluates to “False.”

if 5 == 4 and 2 != 6:

Identity Comparison
The “is” and “is not” operators test an object’s identity. If “x” and “y”

variables point to the same object identifier “x is y” returns True. This next
statement returns “True.”

5 is not 4

Let’s say you create a variable “myvar1” and assign the value “hello.” You
then create a new variable, “myvar2,” and assign it to “myvar1” with the statement
myvar2 = myvar1. In effect, you create an “alias” from “myvar2” to “myvar1”. The
two statements below return “True” because the objects are the same.

myvar1 == myvar2

myvar1 is myvar2

You could also use the id() function to verify these two variables point to the
same object. In this example, notice the identifier is the same.

In [14]: id(myvar1)
Out [14]: 140498313577904
In [15]: id(myvar2)
Out [15]: 140498313577904

 Chapter 3 110

Comparison Operators

Operator Description

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

== Equal (values)

!= Not equal

Table 3.26  Comparison Operators

Difference Operator

Earlier, in the Sets topic, we looked at the difference operator - dash. This
creates a new set with the elements in “myset1” that are not in “myset2.”

In [21]:
In [22]:
In [23]:
Out[23]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 - myset2
{1, 2}

The Union Operator for Sets
Earlier in the “Sets” topic we looked at the “union” | operator to combine two

sets.

Comparing Floats
Non-integer numbers, or floats, are stored in computer memory as a binary

representation of 0’s and 1’s. Calculations can introduce subtle differences where
you may think both float values are 1.08, but the actual binary representation is
slightly different. Comparing two floats, as shown below, could potentially return
False.

x == y

Instead of the == equals comparison for floats, use an arbitrarily small
positive number (an epsilon) to compare two floats. In the next statement, the
epsilon is .000001, and the statement returns ‘True’ if the float values are within
.000001 of each other, which is good enough for this example. The abs() function
converts floats to positive numbers for the comparison. Example 7.45 demonstrates

Python Basics 111

float comparisons.

if abs(x-y) < .000001:

See the cmath library function isclose() for comparing floats.

Comparisons that Return True or False
When you compare two objects, the Python Interpreter returns “True” if the

comparison is “True” or “False” if the comparison is not True. In the Console type
the following statement. Python returns “True.”

In [1]: ‘apple’ == ‘apple’
Out [1]: True

The next two functions both return “True”. Because the second function
“myfunction2” is simpler, it is considered more “Pythonic.”

def myfunction():
if 2 == 2:

return True

def myfunction2():
return 2 == 2

print(myfunction())
print(myfunction2())

Bitwise Operators
The ampersand & bitwise operator copies a bit if it exists in both operands.

In this example, the bitwise operator & returns a new set with the elements in
common between the two sets. The symmetric_difference() function also returns
common objects.

In [18]:
In [19]:
In [20]:
Out[20]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 & myset2
{3}

 Chapter 3 112

The next example uses the bitwise exclusive or ^ carat operator to create a
new set with the elements not in common between the two sets.

In [21]:
In [22]:
In [23]:
Out[23]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 ^ myset2
{1, 2, 4, 5}

The bitwise | pipe operator returns a set of all objects.

In [21]:
In [22]:
In [23]:
Out[23]:

myset1 = {1, 2, 3}
myset2 = {3, 4, 5}
myset1 | myset2
{1, 2, 3, 4, 5}

Find a Substring
Earlier we looked at slicing which is a simple way to parse a string into

substrings. In the next example, I use the find() method to locate all instances of
the substring “from.” I’m using a “start” variable for the beginning of the string
and a “stop” variable for the end of the string.

1.	 As I loop through the code, each time I find a match on line 7, I print the
value on line 10.

2.	 On line 8, I update the stop value. I am searching for “from” which has 4
characters.

3.	 To continue searching the remaining string, I reset the start value on line
12.

4.	 On line 11 I update “search_str” to reflect the “remaining” string.

1 original_str = “the apple fell far from the tree”

2 found_str = ‘’

3 search_str = original_str

4 start = 0

5 while start < len(original_str):

6 start = search_str.find(‘from’)

7 if start != -1:

8 stop = start + 4

9 found_str = search_str[start:stop]

Python Basics 113

10 print(found_str)

11 search_str = search_str[stop:]

12 start = 0

13 else:

14 break

Find Last Element in a String
This next example uses the split() method to search a string for a ‘ ’ space,

and then uses slicing to return the last word in the string.

In [16]: my_str = “the apple fell far from the tree”
In [17]: print(my_str.split(‘’)[-1])
Out[16]: tree

The next example uses the .rindex() method to return the start index of the
last list element. In this example, the stop index in the square brackets [] is set
by [my_str.rindex(‘ ’)].

In [18]: print(my_str[my_str.rindex(‘ ’)])
Out [18]: tree

3.21 Identifiers
Classes identified by patterns of leading and trailing underscore characters

have special meanings.

Interactive Interpreter
The special identifier “_” underscore is used in the interactive interpreter (or

Console) to store the result of the last evaluation.

Class-Private Names
Within the context of a class definition, class-private names are often

renamed to avoid clashes between “private” attributes of base and derived classes.
For example, a private class variable/method/class may begin with an underscore.

System-Defined Names
Special method names refer to system-defined or “dunder” names. These

 Chapter 3 114

“special method names” begin and end with two underline characters. These
methods are invoked by special syntax, such as arithmetic operators or subscripting
and slicing. This is Python’s approach to operator overloading.

__add__

__enter__

__eq__

__exit__

__hash__

__init__

__len__

__lt__

__main__

__name__

__new__

__str__

__sub__

__version__

A module’s __name__ is set equal to ‘__main__’ when read from standard
input, a script, or from an interactive prompt. Top-level code executes at the
‘__main__’ scope, as outlined at docs.python.org. A module can discover whether
or not it is running in the main scope by checking its own __name__.

In the Console, type the module name plus .__version__ to view the
version of the module, as shown below.

openpyxl.__version__

The name of the class is found in the .__name__ method.

openpyxl.__name__

A “with statement” uses the context management protocol that requires
the __enter__ and __exit__ methods. PEP343 defines a “with statement”
that wraps the execution of a block of code with methods defined by the context

Python Basics 115

manager. The most common uses of a “with statement” are for file handling or
network ports.

3.22 Compound & Conditional
Statements

Python compound statements control the flow of the program. Compound
statements begin with for, while, if, else, try, or with. Chapter 5 looks at the try
& except statement. When the control statement is True, the indented lines that
follow run.

• for

• while

• if

• else

The control statement always ends with a colon : and you indent the next
line of code to the right. If you want to run several lines of code as part of the
control statement, the lines are all indented.

The first line of the control statement, and all the indented lines that follow,
are called a “Suite” in Python. Other programming languages often refer to this
structure as a block of code. A statement is part of a suite (a “block” of code). A
statement is either an expression or one of several constructs with a keyword, such
as if, while or for. The next topic looks at suites.

The “for” control statement is used with
objects like strings, tuples, ranges, and lists. 

In Chapter 7, Example 7.5 demonstrates a while loop. The tests from an
“if” or “else” statement move the program into different branches depending on
whether the test is “True” or “False.”

Conditional Expression

The simple conditional expression below returns “x” if C is true, otherwise it
returns “y”.

 Chapter 3 116

x if C else y

To demonstrate an if-else expression searching for letters, this example
returns ‘Found’ because “h” is in “hi”.

‘Found’ if “h” in “hi” else ‘not found’

For Loop

A “for” or “while” loop repeats itself until a condition is met. The condition
might be the end of an iterable list, or when a conditional statement is False. The
Python Interpreter evaluates the statement and continues executing that block of
code if the statement is True. If the statement is False, the loop ends.

for i in range(0, 20):
if i % 2 != 0:

print(“i is an odd number”, i)

The next “for loop” iterates or moves through items in a data structure.
When this program runs, each time the program loops through the code, the next
item in the list is displayed.

To see a for loop in action, type this code in your Editor window, then click
run.

fruits = [‘Apple’,’Orange’, ‘Watermelon’]
for fruit in fruits:

print(‘my fruit is:’, fruit)

The output of this code is shown below.

my fruit is: Apple

my fruit is: Orange

my fruit is: Watermelon

Python Basics 117

Continue Until Break

In another example, the statement below is always True, so the program
runs until you break out of the loop.

while True:

Iterables

An iteration variable can also be used to iterate through elements in a
container. A container could be a list, tuple, or dictionary, As an example of
an iterator, in the code that follows the variable “i” is a number with the default
starting value of “0.” The first time the loop runs, list[i] refers to list[0]. As the
program loops, the next time the list runs, list[i] refers to list[1].

fruits = [‘Apple’, ‘Orange’, ‘Watermelon’]
for i in range(3):

print(‘my fruit is:’, fruits[i])

The output of this code is shown below.

my fruit is: Apple

my fruit is: Orange

my fruit is: Watermelon

A StopIteration error is raised to indicate the end of an iterator, as
shown in Example 7.35. In Chapter 7, Example 7.20 demonstrates a “for”
control statement. Example 6 demonstrates a “while” control statement.

iter()

The iter() function from the itertools library has two very different
behaviors. If the function call iter(mylist) includes one argument, like a list,
the function iterates over the list. When you pass only one argument, iter()
expects a collection object that supports the iterator protocol or sequence
protocol. If a second argument, sentinel, is given, the object must be a callable
object, like a function. Later in this chapter, in the “Function” topic, we’ll look at
iter(myfunction, sentinel).

 Chapter 3 118

The itertools library has some other interesting functions, like chain() that
iterates over two containers in one function call.

3.23 Indented Code (a Suite)
In Python, the first line of a control statement, and all the indented lines that

follow, are called a “Suite” of code. In the next figure, there is a red box around the
code from line 28 to 48. I added a red vertical dotted line to highlight where the
code is indented.

Let’s look at the code on lines 29, 30, 31, 32, and 48. These lines are all
indented to the same vertical level. This code Suite, or block of code, begins on line
28. The last line in this code Suite is line 48.

Indentation in Python scripts defines a “Suite” or code block. 

In this example, the shaded Suite (block of code) is a second “while loop”
(lines 32 to 46.) This second Suite is “nested” because it is inside the first Suite.
Within the nested Suite, line 38 only runs when the if statement on line 37
evaluates to “True.” A nested “if statement” means there is a second “if statement”
within the first “if statement.”

In this example, the “bfr” counter on line 48 is the last line in this Suite and,
in effect, moves forward in the loop to the next item.

Python Basics 119

Figure 3.8  An Indented “Suite” or Block of Code

The Chapter 4 topic, “My Program Loops and Never Ends” is an example of
incorrect indentation levels. In Python, an empty Suite (indented block of code)
is illegal. For example, an “if statement” that does nothing is illegal. Instead, use

 Chapter 3 120

the “pass” function when your code should take no action, as shown in Chapter 7,
Example 7.7. The Chapter 7 examples 7.1 and 7.2 illustrate a few list errors.

The Outline pane is a great way to see nested control statements. In
Spyder, select “Outline” from the View, Panes menu. In Chapter 7,
Example 7.5 has an indentation error. 

3.24 Functions and Methods
Functions are a sequence of statements. Python functions are

first-class objects, which means functions are treated like any other type of object,
such as integers or tuples. Functions are an example of decomposition, where you
break a program into smaller, self-contained pieces.

First, you define a function. Once a function is defined, you can use it as
many times as you like by calling or invoking the function. The term “Abstraction”
refers to the fact you don’t need to know how something works, you just need to
know what it does. When considering a function, look for these features.

1.	 What are the function inputs?

2.	 What does the function do?

3.	 What are the function outputs (the return object?)

1
2

def menu(meal, special=False):
<some code>

When you define a function within a class, it is called a method. 

Depending on whether you are defining or calling a function, you call the
items in parentheses either “parameters” or “arguments.” When defining a function,
the items in parenthesis are parameters. When calling a function, the items are
arguments.

Python Basics 121

Defining a Function
When defining a function in the Editor, the parameters in parentheses

specify what types of arguments (objects) the function can accept. In this example,
the parameter “special” assigned a default boolean value of “False.”

1 def menu(meal, special=False):

2 msg = “”

3 if special is True:

4 msg = ‘The specials today are Mimosas. ’

5 if meal == ‘breakfast’:

6 msg = ‘Breakfast is eggs and toast. ’

8 else:

9 msg = ‘Sorry, we ran out of food. ’

10 return msg

The parameter “meal” has no default value. Because of Python’s dynamic
typing, when calling the function, I can pass any type of data for “meal.”

The Python style guide recommends function names begin with a
lowercase letter. Class names should begin with an uppercase letter. 

The Chapter 6 topic, “The Function Call Signature,” explains how to use the
signature()function to see what parameters another function expects, what that
function does, and the function’s return object. In Chapter 7, example 20 uses the
signature() function to retrieve parameter information. In Chapter 6, the topic,
“What are the Function Arguments,” explores function definitions.

Calling or Invoking a Function or Method
When calling or invoking a function, you pass arguments with values to the

function inside the parenthesis. If there are no arguments, the parenthesis are
empty but are still required to indicate the function call, as shown in Examples
7.30 and 7.47 in Chapter 7. In the example below, the last line calls the function
“menu.”

1 def menu(meal, special=False):

2 msg = “”

3 if special is True:

 Chapter 3 122

4 msg = ‘The specials today are Mimosas. ’

5 if meal == ‘breakfast’:

6 msg = ‘Breakfast is eggs and toast. ’

8 else:

9 msg = ‘Sorry, we ran out of food. ’

10 return msg

11 print(menu(‘breakfast’))

The two statements below call the “menu” function and produce the same
result. In the second example, I omit the optional keyword argument. When calling
the function, the parameter “meal” is referred to as a positional argument that has
a value of “breakfast.”

menu(‘breakfast’, special = False)
menu(‘breakfast’)

Parameters
In the previous example, there are two parameters in the function definition,

“meal” and “special.”

Parameter Name Default Value Required/Optional

Positional meal Required

Keyword special False Optional

Table 3.27  Parameters

Arguments
Arguments are the values you pass to a function when calling the function.

Not all functions have arguments. In this example, the function call has two
arguments.

menu(‘breakfast’, special=True)

Order Parameter Name Argument Value

1 meal breakfast

2 special True

Table 3.28  Arguments

Python Basics 123

When I call this function, the parameters are now referred to as “arguments”
because I am calling the function. Example 7.21 in Chapter 7 demonstrates an
argument that is the wrong type for a particular function.

Keyword (Optional) Arguments

PEP 3102 defines keyword arguments which are optional because there
is a default value in the function definition. When calling a function, a name or
“keyword” precedes the keyword argument. The second parameter in my earlier
function definition includes the keyword “special” with a default value of “False.”

In Chapter 7, Example 7.6 illustrates an AttributeError caused by missing
keyword names when calling a method.

Positional Arguments

The “meal” argument is a positional argument because it does not have
a keyword and default value. Positional arguments are mandatory or required
since there is no default value. You must list positional arguments before
any keyword arguments. The example below is invalid because a positional
argument is after a keyword argument.

def menu(special=False, meal):

Example 7.36 in Chapter 7 raises an error because it is missing one
positional argument.

In the previous example of the menu() function, the “special” argument
has a default value. When calling the menu() function, “special” is an
optional argument. If you don’t provide the argument when calling this function,
Python uses the default value “False” specified in this function’s definition.

If a function has optional keyword arguments with default values, the values
are assigned using the “scope” that exists at the time of the function definition. The
global scope is used in the previous example where the menu() function definition
is on line 1. In the case of nested functions, the function definition might be in the
enclosing scope, as shown at the end of this Chapter in the namespace topic.

An optional argument with a default value is another way to
implement the concept of a “global variable.” Let’s say you want a
running “total” value. The first time you call the function, you set the
optional argument “total=0”. Within the function, you update the
total value. As you make recursive function calls, you pass the latest
“total” value as an argument to the recursive function call statement. 

 Chapter 3 124

Unpacking Operator Arguments

Occasionally, you may need to set an arbitrary number of arguments for a
function. In the function definition, an asterisk * prefaces arguments to indicate the
function can use an arbitrary number of objects. A variable number of positional
arguments is often shown as myfunction(*args) and a variable number of keyword
arguments is shown as myfunction(*kwargs).

Let’s say you have a function that prints personalized movie tickets for each
patron. The patron names vary from day-to-day. In the next code example, on line
1, there are two parameters enclosed in parenthesis:

1 def print_tickets(number_of_tickets, *name):

2 i = 0

3 while i < number_of_tickets:

4 print(name[i])

5 i += 1

6

7 print_tickets(2, ‘John’, ‘Alice’)

The function definition on line 1 includes an asterisk * or “unpacking
operator” to indicate there is an arbitrary number of name arguments passed to
the function. For more information on unpacking operators, see the next sections.
There are two paramters in the function definition.

number_of_tickets

*name

When I call the function on line 7, I pass it three arguments. Two of the
arguments are names.

print_tickets(2, ‘John’, ‘Alice’)

Unpacking Operators

PEP 448 defines “Additional Unpacking Generalizations.” You can define
functions to take *x and **y arguments. Unpacking operators allow a function to
accept any number of arguments that aren’t specifically named in the declaration.

The asterisk * or ‘iterable unpacking operator’ unpacks the iterable into
positional arguments.

The double asterisk ** or ‘dictionary unpacking operator’ provides the
same behavior for dictionaries. You can pass arguments stored in a dictionary to a

Python Basics 125

function using **, as shown below. This example is an arbitrary keyword argument
dictionary.

In [1]: kwargs = {color: ‘blue’, height: 4}
In [2]: myfunction(**kwargs)

To pass arguments stored in an iterable to a function, use the * unpacking
operator. An iterable might be a list or tuple. This example uses the “names” list to
provide the arbitrary positional arguments.

In [1]: names = [‘John’, ‘Alice’]
In [2]: print_tickets(2, *names)

If you leave off the * unpacking operator in the function call on line 2, an
error is raised, as shown in Example 7.52 in Chapter 7. Example 7.41 demonstrates
an error when there are too many values to unpack.

The PEP 3132 “Extended Iterable Unpacking” specifies a “catch-all” name
which is assigned to a list of all items not assigned to a “regular” name. In the next
example, an asterisk * indicates “b” is assigned all remaining values.

a, *b = (1, 2, 3, 4)

a = 1
b = (2, 3, 4)

How to View the Function Argument Definition

To view arguments accepted by a function or method, you can use the
help() function or inspect the function’s call signature. For example, to see the
arguments of the meal() function, run the program to create the function. In the
Console, import the inspect library, and type the print statement shown below. The
Python Interpreter returns the parameters for the menu function.

In [4]: from inspect import signature
In [5]: print(str(signature(menu)))
(meal, special=False)

In Chapter 6, the topic, “What are the Function Arguments,” explores
function definitions. In Chapter 7, Example 7.6 illustrates an AttributeError
caused by missing keyword names when calling a method.

The devguide.python.org has details of the style guide for Python’s
documentation, and PEP 257 is specific to docstrings.

 Chapter 3 126

Function Return or Yield Objects

A function “returns” or “yields” one object; however, that object might be a
container like a tuple with several items. When a function doesn’t specify a return
value, it returns the special value “NoneType” discussed earlier. As the Python
Interpreter moves through the code in a function, when it encounters the keyword
“return,” it stops execution and returns the value in the return expression. Nothing
after the return statement is executed.

When a function uses the ‘yield’ statement instead of the ‘return’
statement, the function is a generator, as discussed previously. 

In Chapter 6, the topic, “What Type of Object Does a Function Return?” has
additional information on return objects. For debugging purposes, let’s look at the
function return object in terms of:

• What type of return object does the function return?

• Does the function return a value of “None?”

• Does the function return a tuple with several items?

This function returns a tuple with three strings and an int. When I call the
function on line 6, I pass the return tuple elements to my variables “mystr1”,
“mystr2”, “myint”, and “mystr3”.

1 def myfunction():

2 print(‘hi’)

3 return ‘str1’, ‘str2’, 5, ‘str3’

4

5

6 mystr1, mystr2, myint, mystr3 = myfunction()

Once I run the code, and the function definition is created, I can use the
“type()” function in the Console to find what type of object the function returns.

In [3]: type(myfunction())

Out [3]: tuple

Python Basics 127

We looked at a return tuple object earlier in the topic, “Tuples and Function
Return Objects.”

The absence of a function return object may cause an error, if
the original function call expects a function return object. When
debugging you might comment all code in a function, and an
error still occurs because of a discrepancy in the return object.

Boolean Return Object
The next two functions both return “True.” Because the second function,

“myfunction2” is simpler, it is considered more “Pythonic.”

def myfunction():
if 2 == 2:

return True

def myfunction2():
return 2 == 2

Return the Statement that is True
The next example of a return statement would return the value of “y” or

‘hello’ because Python returns the True statement. It is “True” that y is a string;
and “False” that x is an integer. In this case, whichever expression is “True” would
be returned.

x = ‘john’

y = ‘hello’

return isinstance(x, int) or isinstance (y, str)

All Paths Do Not Have a Return Value
Previously, the “menu” function returned a value on line 10. A return value

must exist for all paths through the function. In the next example, I modified the
program to have different return values for several paths. The “if” suites of code on
lines 3-5 and 6-10 both have return values.

1 def menu(meal, special=False):

2 msg = “”

 Chapter 3 128

3 if special is True:

4 msg = ‘The specials today are Mimosas. ‘

5 return msg

6 if meal == ‘breakfast’:

7 msg = ‘Breakfast is eggs and toast. ’

8 return msg

9 else:

10 msg = ‘Sorry, we ran out of food. ‘

11 print(menu(‘lunch’))

Do you see the problem with this code? The “else” suite of code beginning
on line 9 does not have a return value. When there is no return value, the Python
Interpreter returns the value “None,” which may not be what you wanted. The
topic “Does the Object have a Value of None” in Chapter 6 explains the pitfalls of
the value “None.” Example 7.17 in Chapter 7 illustrates how to identify the value
“None.”

Index Example for a Tuple Return Object
In the next example, on line 14 I pass the function’s return values to mytxt.

Because the function returns two values on line 10, “mytxt” is now a tuple. When I
try to print mytxt on line 17, the Console displays an error. Example 7.33 and 7.53
in Chapter 7 demonstrates this behavior.

1 def menu(meal, special=False):

2 msg, msg2 = “”, “Thank you.”

3 if special is True:

4 msg = ‘The specials today are Mimosas. ‘

5 if meal == ‘breakfast’:

7 msg = ‘Breakfast is eggs and toast. ’

9 else:

10 msg = ‘Sorry, we ran out of food.’

11 return msg, msg2

12

13

14 mytxt = menu(‘lunch’)

15 if mytxt is None:

16 pass

17 else:

18 print(mytxt)

Python Basics 129

To fix my program, I need to change line 18 to print each element in the
“mytxt” tuple, as shown below. The variable “mytxt” is now a tuple, so I may want
to rename the variable.

print(mytxt[0], mytxt[1])

The Type of Return Value

The type of return value is important if you’re using it as the argument for
another function. In the earlier example, the “print” function expects a string, and
my “menu” function returns a tuple. In this new example, the Python Interpreter
raises an error. Using the previous function as an example, in the Console, I could
use the function “type” to identify the type of object the “menu” function returns.

In [1]: myTuple = (msg, msg2)
In [2]: type(myTuple)
Out [2]: tuple

Recursive Functions

A recursive function calls itself until a statement, or base case, terminates
the function. Typically a recursive call solves problems at a high level, reducing
the problem’s size at each recursive call, until finally, you reach your base case,
which is the simplest form of the problem. The recursive call terminates at your
base case. The solution to the “Towers of Hanoi” is a famous example of a recursive
problem.

In the next example, the function calls itself recursively on line 5 until
bookcnt is more than the length of “books” on line 2. If you omit the termination
expression on line 2, the program runs continuously until a RecursiveError is
eventually raised.

1 def printbooks(books, bookcnt=0):

2 while bookcnt < len(books):

3 print(books[bookcnt])

4 bookcnt += 1

5 bookcnt = printbooks(books, bookcnt)

6 return bookcnt

7

8

9 books = [‘bk1’, ‘bk2’, ‘bk3’]

10 cnt = int(printbooks(books))

 Chapter 3 130

11 print(‘There are %d books in %s’ % (cnt, books))

Recursive Memory Stacks

This topic looks at what happens with memory stacks as you make recursive
calls. The code below includes a function “c” and a recursive call within the function
on line 10.

1 def c(b, bc=0):

2 i = ‘\nStack’

3 j = ‘ - bc value is’

4 k = “‘bc’ identifier is ”

5 while bc < len(b):

6 bc += 1

7 i = i + str(bc + 1) + j + str(bc)

8 print(i)

9 print(k, id(bc))

10 bc = c(b, bc)

11 return bc

12

13

14 books = [‘bk1’, ‘bk2’, ‘bk3’]

15 print(‘\nStack 1 (global namespace)’)

16 cnt = c(books)

17 print(‘\nThere are %d books in %s’ % (cnt, books))

When I run the program, the Console outputs the following.

Stack 1 (global namespace)

Stack2 - bc value is 1
‘bc’ identifier is 4485190800

Stack3 - bc value is 2
‘bc’ identifier is 4485190832

Stack4 - bc value is 3
‘bc’ identifier is 4485190864

There are 3 books in [‘bk1’, ‘bk2’, ‘bk3’]

Python Basics 131

Let’s look at a visual picture of how the Python Interpreter moves up and
down the stacks.

When the program initially runs, it creates the global namespace or
Stack 1. Line 16 calls the function c() and creates memory Stack 2. In memory
Stack 2, after the program runs line 6, my counter “bc” has a value of 1, and
the identifier for “bc” is 4485190800. On line 10, the program makes a recursive
call to function c() and creates memory Stack 3.

In memory Stack 3, after the program runs line 6 again, “bc” has a value
of 2, and the identifier for “bc” is 4485190832. While “bc” has the same name,
the identifiers are different, indicating these are two different variables. On line
10, the program makes a recursive call to function c() and creates memory
Stack 4.

 Chapter 3 132

In memory Stack 4, the program again runs line 6. Now “bc” has a value
of 3, and the identifier is 4485190864. On line 10, the program makes a recursive
call to function c() and creates memory Stack 5.

Python Basics 133

 Chapter 3 134

In memory Stack 5, when line 5 compares the value of bc to the length of
“b,” the Python Interpreter returns False. At this point, “bc” has a value of 3, and
the length of “b” is 3.

line 5: 3 < 3 is False

Python Basics 135

In Stack 5, the Python Interpreter runs line 11 and returns the value
of “bc” to the calling function in Stack 4, as shown in the next diagram. In
Stack 4, the Python Interpreter runs line 11 and returns the value of “bc” to
the calling function in Stack 3. Next, the Python Interpreter returns “bc” to the
calling function in Stack 2. Finally, “bc” is returned to Stack 1 to line 16, the
initial function call.

 Chapter 3 136

The Zip Function
Now let’s look at several interesting functions. The zip() function takes two

or more iterables as arguments and returns a “zip” object that behaves like tuples.
For example, when you pass two lists with three elements each, zip() returns three
pairs in a “zip” object.

The first example uses the zip() function with two lists, and returns a zip
object that is unpacked to the “order” and “color” variables.

1
2

for order, color in zip([1, 2, 3], [‘green’, ‘red’, ‘blue’]):
print(order, color, ‘\n’)

When I run the code, the Console prints the following text.

In [1]:
1 green
2 red
3 blue

In the next example, I want to create a range of scores for a plot chart with
the matplotlib library. To view more information on the matplotlib library, in Chapter
7 see examples 7.19 and 7.22.

I’m going to use ‘school_Dict’ as my iterable for the zip() function, and
convert “zip” objects into a tuple, dictionary, and a list. The expression is a list
comprehension that combines two zip objects to create ‘newList.’ The next figure
shows the objects in “school_Dict.” There are three keys with list values. The keys
are:

Herman

John

Mary

Python Basics 137

Figure 3.9  The school_Dict

In the first half of the expression I use the zip() function to combine objects
together into a zip object. In the second half of the expression, I “unzip” the
dictionary objects using an unpacking * operator. Now, we’ll experiment in the
Console and gradually work up to the final list comprehension.

newList = [dict(zip(school_Dict, x)) for x in zip(*school_Dict.values())]

1.	 The first half of the expression creates a zip object using “x” from
the second half of the expression. As a demonstration, I’m going to
temporarily provide “x” values in a tuple. In Step 4, we’ll replace “x” when
we use zip() to unpack the iterable from “school_Dict.values().”

	 x=((‘Physics’, ‘Civics’, ‘English’),

(‘C’, ‘A’, ‘B’),
(70, 94, 82),
(‘Prof. Stanley’, ‘Dr. Brown’, ‘Dr. Smith’))

	 This “x” tuple contains the four tuples shown below. If you look back at
the original school_Dict you can see that here I’ve grouped the three list
items differently.

(‘Physics’, ‘Civics’, ‘English’)
(‘C’, ‘A’, ‘B’)
(70, 94, 82)
(‘Prof. Stanley’, ‘Dr. Brown’, ‘Dr. Smith’)

2.	 Let’s continue looking at the first half of the list comprehension, which
returns a zip object. In the Console, I’m going to use the tuple() function
to temporarily convert this zip object to a tuple.

In [1]:tuple(zip(school_Dict, x))

 Chapter 3 138

Out[1]:

((‘Herman’, (‘Physics’, ‘Civics’, ‘English’)),
 (‘John’, (‘C’, ‘A’, ‘B’)),
 (‘Mary’, (70, 94, 82)))	

3.	 The “x” tuple in Step 1 has the same values as the last half of the list
comprehension statement.

tuple(zip(*school_Dict.values()))

	 When I remove the tuple() function, this is now the same expression as
the second half of the list comprehension.

zip(*school_Dict.values())

4.	 Now that we’ve looked at different zip statements, I’m going to
repeat Step 1. This time I am using the dict() function instead of the
tuple() function.

dict(zip(school_Dict, x))

5.	 Earlier, when we looked at list comprehensions, I said a list comprehension
follows this format:

newlist = [expression(variable) - for item in iterable- if]

In Step 4 we created the “expression.” In Step 3 we created the iterable
statement.

expression dict(zip(school_Dict, x))

for item in for x in

iterable zip(*school_Dict.values())

The two zip statements are combined into the list comprehension that
follows.

newList = [dict(zip(school_Dict, x)) for x in zip(*school_Dict.values())]

Finally, to create my graph, I create a “graphNums” object using the objects
in newList[2].

Python Basics 139

Figure 3.10  newList

graphNums = list(newList[2].values())

Then, I assign “graphNums” to the third element in newList[2].

Figure 3.11  graphNums

In the next example, I create a tuple for the grades using the unpacking
asterisk symbol, as shown below. The asterisk * unpacks the sequence into
positional arguments and behaves like an “unzip.” The “grades” are the third
element in the “s” tuple.

school_Dict = {‘John’: [‘Civics’, ‘A’, 94, ‘Dr. Brown’],

‘Mary’: [‘English’, ‘B’, 82, ‘Dr. Smith’],

‘Herman’: [‘Physics’, ‘C’, 70, ‘Prof. Stanley’]}

c, g, s, t = list(zip(*myDict.values()))

 Chapter 3 140

Figure 3.12  The Tuple ‘s’

The Map() Function
The map() function takes a unary function and a data structure or

“iterable” as arguments and returns an iterator of type “map” that applies the
function to all items in the data structure. Map() is a higher-order function
because it acts on or returns another function.

map(<function>, <iterator>)

In this example, the map() function applies the function str() to all elements
in “mylist.”

map(str, mylist)

The map() function arguments can also be a function with several
arguments. In the code below, the function “max” takes two list arguments and
returns a “map” object.

1
2

list1, list2 = [2, 4, 6], [1, 3, 5]
map(max, list1, list2)

In the next example, I convert the “map” object type to a “list,” so you can
see the values returned. The max() function is applied to each list item, so the
statements are 2 > 1, 4 > 3, and 6 >5.

In [1]: list1, list2 = [2, 4, 6], [1, 3, 5]
In [2]: list(map(max, list1, list2))
Out [2]: tuple [2, 4, 6]

Python Basics 141

This next example uses map to invoke the gbp_to_usd function for each
element in the gbp list and return a new usd list.

1 def gbp_to_usd(temp)

2 return round(temp * .8, 2)

3

4

5 usd = []

6 gbp = [6.70, 32.51]

7 for m in map(gbp_to_usd, gbp):

8 usd.append(m)

9 print(usd)

The Console prints the following.

In [1]:
[5.36, 26.01]

Earlier, when we looked at list comprehensions, I compared them to the
map() function. Lines 7 and 8 in the previous example could be rewritten as a list
comprehension, as shown below on line 7.

1 def gbp_to_usd(temp)

2 return round(temp * .8, 2)

3

4

5 usd = []

6 gbp = [6.70, 32.51]

7 usd = [gbp_to_usd(temp) for temp in gbp]

8 print(usd)

Lambda Functions
Lambda expressions are used to create anonymous functions. These

functions are not bound to a name and typically are simple expressions, often used
with the map() or filter() functions. The format of a lambda expression is shown

 Chapter 3 142

below. The <parameters> are variable names.

lambda parameters: expression

In the next lambda expression, on line 2 I am passing the sort() function the
second element [1] in the list “pairs.” The parameter is “m.”

1
2

pairs = [(1, ‘Jan’), (2, ‘Feb’), (3, ‘April’)]
pairs.sort(key=lambda m: m[1])

Now the Console prints out “pairs” with the values sorted by the second
element.

In [2]: pairs
Out[2]: [(3, ‘April’), (2, ‘Feb’), (1, ‘Jan’)]

In this next example, a lambda expression is combined with the map()
function. The lambda parameter is “x” and the expression is x * 4.

1
2

for i in map(lambda x: x * 4, [1, 3, 6, 7]):
print(i)

The Console prints out the value shown below.

In [1]:
4
12
24
28

The Filter() Function
The filter() function takes a function and a data structure (iterable) as

arguments. Filter() returns items in an iterable (of “filter” object type) for each
<iterator> where the <function> returns True for that <iterator>.

filter(<function>, <iterator>)

Python Basics 143

In this example, filter() returns matched items from myvar as a “filter”
object type, which I convert to a “list” on line 8.

1 def myfunc(mystr):

2 if mystr in ‘Hello’:

3 return True

4 else:

5 return False

6

7 myvar = (‘H’, ‘i’)

8 print(list(filter(myfunc, myvar))

The Console prints out the value shown below, because “H” is in the string
“Hello.”

[‘H’]

Lambda with Filter

You can also use a “lambda” expression as your function. Line 1 returns an
object of type “filter” and assigns the values to “myvar.” I convert the “filter” type
to a “tuple” on line 2.

1
2

myvar = filter(lambda x: x > 4, [1, 3, 6, 7])
print(tuple(myvar))

The Console prints out the value shown below, because 6 and 7 are > 4.

(6, 7)

Let’s look at this expression in detail. First, we’ll look at the lambda function,
keeping in mind the format of a lambda expression.

lambda variable names: expression

lambda expression: lambda x: x > 4

parameter
(variable names) expression

x x > 4

 Chapter 3 144

Now, let’s focus on the filter part of the expression, given this format of a
filter expression.

filter(<function>, <iterator>)

filter expression: filter(<function>, [1, 3, 6, 7]

function iterator

<the lambda function> [1, 3, 6, 7]

Finally, let’s put all the pieces back together.

expression: filter(lambda x: x > 4, [1, 3, 6, 7]

function iterator

lambda x: x > 4 [1, 3, 6, 7]

The iter() Function
The iter() function has two very different behaviors. If a second argument,

sentinel, is given, the object must be a callable object, like a function. If the
function call iter(mylist) includes one argument, like a list, the function iterates
over the list.

iter(myfunction, sentinel)

The Print() Function
Throughout this chapter, you’ve seen many examples of the print() function.

The print() function prints out to the Console and is a handy debugging tool.

The default behavior is to print a line return, but if you provide the “end”
keyword argument as shown below, there is no line return. In this example, the
\n adds a line feed before ‘Hello World.’

print(‘\nHello World’, end=‘’)

We’ve seen several examples already where I changed an integer to a string
before using the print() function. You can also print integers or floats. This example
demonstrates how to print the result of an arithmetic expression.

print(2*3)

The console output is “6.”

Python Basics 145

When we looked at recursive functions, you may have noticed the last line
printed an integer and strings.

print(‘There are %d books in %s’ % (cnt, books))

3.25 Classes
This topic provides a brief overview of classes. The docs.python.org

website has a tutorial on classes and explains the concept of “self” in great detail. 

• Create a Class
• The DocString
• Variables - Attributes
• Create an Instance of the Class
• Methods
• Dotted Notation for Attributes
• Calling a Method

When working with classes, first you define or create a “class,” then you
create an “instance” of the class. In the examples that follow, my class name is
“Car,” and my instance of “Car” is “my_car.” I can reuse the class “Car,” creating
many instances of “Car.”

Classes implement data abstractions. To work with a class, you don’t need
to know the details inside the class or how it gets the job done. You only need to
understand the data attributes and methods of the class.

You can define a class based on another class. So, for example, I could
define a class Convertible(Car). When you create a class, the superclass is
in parenthesis. The class Convertible(Car) is using “Car” as the superclass.
“Convertible” is the subclass of “Car.”

The variable “self” refers to any object you create of type “Car.” Continuing
the earlier example, “self” refers to the instance “my_car.” The variable “self” is
implicitly passed as the first parameter to class attributes and methods.

Special Methods and Override Behavior
Earlier, we looked at special method names that refer to system-defined or

“dunder” names that begin with two underline characters. PEP 8 covers Module
Level Dunder Names. Classes inherit these special methods from parent classes but
can override that behavior.

 Chapter 3 146

For example, in Python, you see < in comparisons, but you could override
the __lt__ (less than) behavior to do something entirely different. “Data
attributes” associated with a class definition are called “class variables.” When
associated with an instance of a class, they are called instance variables.
Sometimes you’ll see a class variable used instead of a global variable, for example
to increment a counter.

A class definition begins with def __init__(self), as shown below on line 4.

1 class Car():

2 “““This class represents a car.”””

3 yr = 2020

4 def __init__(self, model, make, year):

5 “““Initialize model, make, and year variables.”””

6 self.model = model

7 self.make = make

8 self.year = year

9 def drive(self):

10 “““Move the car.”””

11 print(self.model.title() + “ is now moving.”)

12 def parallelpark(self):

13 “““Parallel park the car.”””

14 print(self.model.title() + “ is now parking.”)

15

16

17 my_car = Car(‘Subaru’, ‘Crosstrek’, 2019)

18 print(my_car.model, my_car.make, my_car.year)

19 my_car.parallelpark()

Create a Class
In the previous class example, line 1 creates a class named “Car.” Class

names begin with a capital letter to differentiate them from function names, which
should be lowercase.

The DocString
Lines 2, 5, 10, and 13 look like comments but are actually examples of a

“DocString.” The Chapter 6 topic, “The Function Call Signature,” explains how to

Python Basics 147

work with the “inspect” module and view a DocString signature.

The function help() reads the docstring when gathering information about an
object.

Class Variables - Attributes
Continuing with the car class example, beginning with the function definition

on line 4, you can see the four parameters in the class.

def __init__(self, model, make, year):
self
model
make
year

When working with the “my_car” instance of the Car class, I can use dotted
notation to reference the variables.

my_car.model

my_car.make

my_car.year

When referring to the state of an object, you are referring to variables or
data attributes. The variables model, make, and year on lines 6, 7, and 8,
respectively, are accessible through instances.

self.model = model
self.make = make
self.year = year

The statement below is invalid because there is no attribute named “color.”
When I run this program, the Python Interpreter raises an AttributeError in the
Console.

my_car.color

In Chapter 7, Example 7.6 illustrates an error with an incorrect call for a
class method, which causes an AttributeError.

Instance Variables and Class Variables
Instance variables are unique to each instance of the class. For example,

my_car.model is different than my_car2.model. However, all instances of a class
share class variables and methods. All instances of the Car class share the class
variable “yr” I created on line 3.

 Chapter 3 148

Create an Instance of the Class
Instantiation is when you create an instance of an object from a class. On

line 17, I create an instance of the Car class named “my_car.”

my_car = Car(‘Subaru’, ‘Crosstrek’, 2019)

Instance objects have attribute references. Valid attribute names include
“data attributes” and “methods.”

Methods
Functions that are part of a class are referred to as a “methods” or

“method attributes.” When referring to the behavior of an object, you are
discussing the function or method. The “Car” class has two methods, defined in
lines 9 and 12. The “drive” method is shown below.

def drive(self):
“””Move the car.”””
print(self.model.title() + “ is now moving.”)

Dotted Notation for Attributes
The normal dotted notation “object.variable” is used to access the

instance of the class (the object) and the attribute. In this example, the syntax
is “my_car.model.” The primary object instance is “my_car,” and the attribute
identifier name is “model.” To refer to the model, make, or year attributes, follow
the syntax on line 18, as shown below.

print(my_car.model, my_car.make, my_car.year)

Calling a Method
To call a method in a class instance, use the syntax shown in line 19.

my_car.parallelpark()

These two statements call a method. The statement syntax varies, but the
statements do the same thing.

Car.drive(my_car)
my_car.drive()

Python Basics 149

Superclass and Subclass
In this example the subclass “Family(Person)” is reusing the

Person.__ init__(self, name). This makes the superclass attributes “name” and
“alive” available to the class “Family.”

class Person(object):
def __init__(self, name):

self.name = name
self.alive = True

class Family(Person):
def __init__(self, name, relationshiop):

Person.__init__(self, name)
self.relationship = relationship

At the end of this book, the Appendix - Reference has links for more
information on Classes, Functions, Methods, Attributes, and Instances.

3.26 Modules and Libraries

Variables in Imported Modules
Often modules are broken into separate files or libraries, and you add these

to your code with the import statement. This idea of breaking code into smaller
chunks of code that are easy to debug and reuse independently is known as
modularity. Typically you don’t need to know anything about the internal code in
a function or module. All you really care about is the function inputs (arguments),
what the function does, and what the function outputs (the return object.) This
concept is known as abstraction.

To reference a variable inside another module, use dotted notation. In this
example, I import a module “mymodule2” that has the variable “mystr2.” The
expression mymodule2.mystr2 returns the value of mystr2.

import mymodule2

print(mymodule2.mystr2)

To avoid name conflicts, you can also provide a function “alias” with your
import statement. In Chapter 7, Example 7.19 demonstrates a ModuleNotFound
error caused by an incorrect alias. The syntax to assign an alias “plot” is shown

 Chapter 3 150

below.

import matplotlib pyplot as plot

3.27 Attributes
The Chapter 4 topic, “Variables and Objects in Memory,” discusses the

current namespace and the concept of attributes. The Python glossary entry for
“attributes” is “a value associated with an object which is referenced by name using
dotted expressions.”

In the Chapter 2 example, we looked at a line of code with a number
variable.

myint = 57
print(myint.upper)

When this program runs, it causes an unhandled exception, and the
Console Traceback message is “AttributeError,” because there is no attribute
“upper” for a variable of type “int.”

When looking at Classes in this chapter, we saw that attributes could be
variables or methods within a class instance. In our earlier Class example, we
saw that instance objects have attribute references. Valid attribute names include
“data attributes” and “methods.” In the example below of attributes, “yr” is a
class variable, and “drive” is a method in the my_car instance of the “Car” Class.

my_car.yr

my_car.drive()

3.28 Scope, Namespace & Memory
Each time a program runs and creates variables, the Python Interpreter adds

the variables to the “global namespace” or “Stack 1.” This top-level code executes
at the ‘__main__’ scope, as outlined at docs.python.org. The global namespace is
the first memory “stack.”

Variable Explorer displays objects in the current “scope.” Variable Explorer
is empty until you run the program to create the program’s memory
“namespace.”

Python Basics 151

The variable “name” combined with the memory “space” (or namespace)
uniquely identifies a variable. When you step through your code, the “local scope”
or local namespace reflects the objects in memory at that point in time. Scope
changes when your code moves into a method or function, and a new “local scope”
is created while you’re inside that function. Lexical scoping or “static scoping” refers
to the line of code that created a variable and limits the variable to that local scope
or namespace.

In Chapter 7, Example 7.10 demonstrates how to reset namespace to
insure your variables are current.

The LEGB rule refers to the Local -> Enclosing -> Global -> Built-in
namespaces. Nested functions consist of a “local” namespace located within the
“enclosing” function. All functions are stacked onto the “global” namespace, which
in turn is stacked on top of Python’s built-in namespace. We’ll look at several
examples of local and global scope at the end of this chapter.

In Python, you can read, but not change, the value of a global variable
at any point in your program and from within functions, as long as everything is
within the same *.py file. It is possible to have two variables with the same name
and different values because they are in two different “scopes.” You’ll notice this
behavior as you step through the code and watch the list of variables in Variable
Explorer. When you step into a function, the variable names reflect the “local
scope.”

If you want to change a variable in different “scopes,” you can use the
“global” keyword to change the variable into a “global variable” so that you can
change the variable within that paritcular local scope. We looked at global variables
earlier with an example of how object values change as “scope” changes. In
Chapter 7, Example 7.50 demonstrates a scope issue.

There are several functions to view scope, and we’ll look at a few in the
following pages. For example, the keyword “nonlocal” refers to a variable
in the “enclosing” namespace. As you work with these functions, you’ll see that
namespaces in Python are stored in the form of a dictionary.

dir(__builtins__)

locals()

 Chapter 3 152

globals()

id()

We looked at memory stacks for recursive functions earlier.  

A Function that Accesses a Global Variable
We’ll begin looking at namespaces and scope in the example below. The

function definition for blockParty() begins on line 1, and the function has no
arguments. The indented lines that follow through line 3 make up the body of the
blockParty() function. Lines 1 to 3 are a “suite of code.” The main body of the
program begins on line 6.

•	 The “food” variable is defined on line 6 in the main body of the program,
which means “food” is in the global namespace. Any function in this *.py
file can access the global “food.” In this example, within the blockParty()
function, the global variable “food” is accessed on line 3.

•	 The blockParty() function is not allowed to change the value in the
global “food” variable.

1 def blockParty()

2 name = ‘John’

3 print(name, ‘has’, food)

4

5

6 food = ‘chips’

7 blockParty()

Variables in the main program are in the Global Namespace of the program.
The main program begins on line 6. In the diagram that follows this is memory
“Stack 1.” In order to see the scope changing “live” in Variable Explorer, we’re going
to debug the file.

1.	 Type the sample code into the Editor. If it’s not already open, open
Variable Explorer from the View menu by clicking on Panes. At this point,

Python Basics 153

there are no variables displayed because we haven’t run the program to
initialize the variables and assign values. That’s about to change!

	 On the Spyder toolbar, click on Debug file (Ctrl+F5).

2.	 In the Editor pane, line 1 is highlighted. Because line 1 is a function
definition, when I click Run current line (Ctrl+F10), the Python
Interpreter analyzes the function definition and then moves to line 6.

	 In the iPython Console, to the left of line 6 is an arrow ----> indicating
the Python Interpreter is about to run line 6.

	 In the Spyder toolbar, click Run current line. Line 6 runs. Now, in the
Editor pane, the cursor moves down and highlights line 7. In the iPython
Console, the arrow ----> now points to line 7.

	 Variable Explorer displays the variable “food” with a value of “chips.”
Notice the variable is a “str” type.

3.	 Line 7 invokes the function blockParty(). We want to step through
the code inside the function. In the Spyder toolbar, click on Step into
function or method of current line (Ctrl+F11). Line 7 runs invoking the
blockParty() function.

	 If you click Run current line instead of “Step into function or method of
current line,” the program runs all lines in the blockParty() function and
exits debug mode.

	 In the iPython Console, debug moves the cursor to the function
blockParty() on line 1. An arrow ----> points to line 1.

 Chapter 3 154

	 The Editor highlights line 1.

1 def blockParty()

2 name = ‘John’

3 print(name, ‘has’, food)

4

5

6 food = ‘chips’

7 blockParty()

	 In the Spyder toolbar, click Run current line to run line 1. The local
scope changes to the blockParty() function and a new “stack” of memory
is created. In the next diagram, this is “Stack 2.” Variable Explorer still
shows the “food” variable because “food” is in the global namespace. The
global scope variables can be accessed or “read,” but not changed,
within the blockParty() function.

4.	 The previous diagram outlines the global namespace in Stack 1, and the
local namespace of the function blockParty() in Stack 2.

	 In the iPython Console, let’s look at the global namespace with the built-in
function globals(). Below, I’ve abbreviated the output text to show
the last line, which is my global variable “food.” The interpreter actually
prints out a large dictionary for the namespace, as indicated by the curly
braces {}.

Python Basics 155

	 ipdb> globals()

	 { ‘food’: ‘chips’}

5.	 Continue stepping through the code. In the function blockParty() after
line 2 runs, Variable Explorer also shows the “name” variable. This variable
is in Stack 2 or the local namespace.

	 When you run line 3, the iPython Console output is “John has chips.”

6.	 The locals() function shows all variables in the current or local namespace
Stack 2. In the iPython Console, type “locals().” Because “food” is in the
global namespace, it is not shown.

	 ipdb> locals()

	 {‘name’: ‘John’}

7.	 Continue stepping through the code. In the function blockParty(), after
line 3 runs, the Python Interpreter moves down to line 7. When line 7
is highlighted, you are back in the main program or global namespace.
The global namespace, or Stack 1, has the “food” variable with a value of
‘chips.’

	 Variable Explorer no longer shows the “name” variable because Stack 2 is
discarded when you exit the blockParty() function.

 Chapter 3 156

A Function Variable with the Same Name as a Global
Variable

The previous example is pretty straightforward. Now we are going to
repeat the same steps with a small variation. This time we add a “food” variable
assignment on line 3 within the function “blockParty().”

As we step through the code, you’ll see two variables named “food,” but with
different values and identifiers.

1 def blockParty()

2 name = ‘John’

3 food = ‘salsa’

4 print(name, ‘has’, food)

5

6

7 food = ‘chips’

8 blockParty()

The main program begins on line 7. The “food” variable from line 7 is in the
Global Namespace or main scope of the program. The diagram in Step 4 that follows
shows this as memory “Stack 1.”

Now we’ll debug the file.

1.	 Type the sample code into the Editor. On the Spyder toolbar, click on
Debug file (Ctrl+F5).

	 If it’s not already open, open Variable Explorer from the View menu by
clicking on Panes.

2.	 In the Editor pane, line 1 is highlighted. Because line 1 is a function
definition, when you click Run current line (Ctrl+F10) the Python
Interpreter evaluates the function definition and moves on to line 7.

	 In the iPython Console, to the left of line 7 is an arrow ----> indicating
the Python Interpreter is about to run line 7.

	 In the Spyder toolbar, click Run current line. Line 7 runs. The program is
still in the “global namespace” or “Stack 1.”

	 In the Editor pane, debug moves down and highlights line 8. The
iPython Console displays an arrow next to line 8, as shown in the next
diagram. 	

Python Basics 157

3.	 Line 8 invokes the function blockParty(). We want to step through
the code inside the function. In the Spyder toolbar, click on Step into
function or method of current line (Ctrl+F11). Line 8 runs invoking the
blockParty() function.

	 In the iPython Console, debug moves the cursor to the function
blockParty() on line 1. In the Console, an arrow ----> points to line
1. In the Editor, line 1 is also highlighted. In the Spyder toolbar, click
Run current line to run line 1.

	 The local scope changes to the blockParty() function, and a new “stack”
of memory is created. This is “Stack 2” and is now the “local scope.”
Variable Explorer still shows the “food” variable with a value of “chips”
from the global namespace.

4.	 Continue stepping through the code. In the function blockParty(), after
line 2 runs, Variable Explorer shows the “name” and “food” variables. The
“food” variable is from the global namespace.

	 Stack 2 now has two variables: the local variable “name” and the global
variable “food.”

 Chapter 3 158

5.	 When you run line 3, a new variable called “food” is created in “Stack 2”
with a different value of “salsa,” as shown below in Variable Explorer.

	 This local variable “food” in Stack 2 has the same name as the global
variable but points to a different location in memory - in this case,
Stack 2’s “food” with the value “salsa.”

6.	 This time, the locals() function shows two variables in the current or local
namespace, which is Stack 2. In the iPython Console, type “locals().”

	 ipdb> locals()

	 {‘name’: ‘John’, ‘food’: ‘salsa’}

	 Looking at the printout in the iPython Console, you can tell the
namespace variables are stored in a dictionary because of the curly

Python Basics 159

braces {}. The program is within the Stack 2 local namespace of
blockParty(). If I were to update the local variable “food,” the other
“food” variable in the outer scope or global namespace would not change.

	 To see the identifier of the objects, let’s use the id() function to get the ID
for the Stack 2 “food” variable. Because line 4 is highlighted in the Editor,
I know I am still in the local namespace of the blockParty() function. Your
computer output for ID will be different than what is shown below.

	 ipdb> id(food)

	 140309822725104

7.	 Continue stepping through the code. After line 4 runs, the code moves
down to line 7. When line 7 is highlighted, you are back in the global
namespace or Stack 1.

	 Variable Explorer no longer shows the “name” variable because Stack 2 is
discarded when you exit the “blockParty()” function. Also, you’ll notice the
value of the “food” variable changed back to “chips.” The program is back
in the global namespace or “Stack 1.

8.	 In the iPython Console, use the id() function to view the identifier for this
“food” variable in the global namespace. This output will show a different ID
number.

	 ipdb> id(food)

	 140309822723824

Scope in Nested Functions
Earlier we looked at the LEGB rule for Local -> Enclosing -> Global ->

Built-in namespaces. Nested functions consist of a function’s “local” namespace
located within the “enclosing” function. To illustrate the “enclosing namespace,” the
next example has a nested function, “games().”

1 def blockParty()

2 def games()

3 game = ‘darts’

4 print(game, ‘starts at noon’)

5 name = ‘John’

6 food = ‘salsa’

7 print(name, ‘has’, food)

8

 Chapter 3 160

9

10 food = ‘chips’

11 blockParty()

The scope of the function blockParty() is the “enclosing namespace” of
the games() function, and is Stack 2. The function games() is nested inside
blockParty() and will be Stack 3.

Earlier I said the “global” keyword is used when you want to update a global
variable from within a function. Similarly, the nested function games() can update
“name” in blockparty()’s “enclosing” namespace if you add a statement on line 3
with the keyword “nonlocal.”

Python Basics 161

1 def blockParty()

2 def games()

3 nonlocal name

4 game = ‘darts’

5 print(game, ‘starts at noon’)

6 name = ‘John’

7 food = ‘salsa’

8 print(name, ‘has’, food)

9 games()

10

11

12 food = ‘chips’

13 blockParty()

Let’s add another function to the code and review scope. In this example, the
events() function definition is on line 11 in the main body of the program.

1 def blockParty()

2 def games()

3 game = ‘darts’

4 print(game, ‘starts at noon’)

5 name = ‘John’

6 food = ‘salsa’

7 print(name, ‘has’, food)

8 games()

9

10

11 def events()

12 type = ‘party’

13 print(type)

14

15 food = ‘chips’

16 blockParty()

18 events()

In this case, the main program has two paths. The functions blockParty() and
games() have no access to the variables in the events() function, and vice versa.

 Chapter 3 162

When you’re analyzing scopes, diagram the path through the program to
determine namespaces.

Debugging Tools 163

4. Debugging Tools

In this Chapter, we discuss

Debugging Overview

Print Statements

Overview of the Editor

The Help Pane

Debug Mode

Variable Explorer

Example: Program Loops & Never Ends

Debug Commands

Console Interactive Mode

Variables & Objects in Memory

Introspection

Logging

The timeit() Function

Logging Time and Loop Counters

Focused Testing

Create Test Data

164 Chapter 4

This Chapter outlines a few ways to use the Spyder IDE to debug your
program. With a few simple commands, there is a wealth of information available
about your variables, functions, data structures, and more. We’ll look at:

•	 Adding Print Statements to code in the Editor, and viewing the results in
the Console (the Python Shell.)

•	 Using Debug Mode in Spyder.

•	 Using Interactive Mode in the Console.

4.1 Debugging Overview
When debugging code, I inspect values, types, function arguments, and

function return objects. “Introspection” functions like help() and dir() also provide
information on methods, functions, and objects. In the topic “Introspection” that
follows, we’ll touch on the Inspect library. There are also libraries for “logging” and
functions to identify bottlenecks and timing issues. Finally, I’ll demonstrate how to
focus on a specific area of code for testing and how to create test data.

	 1. Inspect Objects and Variables

	 2. Add Print Statements to a Script

	 3. Debug Mode

	 4. Variable Explorer

	 5. Interactive Mode

1. When you’re working in the Editor, if you place your cursor over an object
name and pause a few seconds, the Editor highlights all instances of that variable
or object name. This is a quick way to spot inconsistencies with variable names,
and to locate where a variable is used or changed.

2. In the Editor, add print statements to your script, and run the program.
The Console, also known as the Python Shell, displays the results of print
statements.

In the Run menu select “Run selection or
current line” to run only the selected lines of code.  

3. Run your program in Debug mode, stepping through the lines of code.
The Console prompt changes to ipdb in Debug mode. In Debug Mode, you step
through the lines of code, pausing to look at the Variable Explorer pane or type
commands at the Console prompt. You can also set a “breakpoint” to move to a

Debugging Tools 165

particular location in your program when using Debug mode. The Outline pane is
a great way to see nested control statements. In Spyder, select “Outline” from the
View, Panes menu.

4. The Editor pane highlights the next line to execute when you click “run
current line” on the debug toolbar. Variable Explorer displays the values of each
variable in the local scope.

5. Interactive Mode in the Console allows you to type commands that
display object values. In the Console type the name, or identifier, of the object. The
Python Interpreter returns the value of the identifier. The object can be an integer
variable, a list item, tuple, or another type of object.

In the Console, you can also type individual lines of code while developing
or testing your code. Interactive Mode is a great way to test code before adding it
to your script.

The topic “Variables and Objects in Memory” later in this chapter
outlines how Python creates variables and objects when you run
a program or script. If you type your object name in the Console
and the Traceback says “NameError,” insure that you already
ran the line of code that creates the object in the local scope. 

Backup Files
Keeping frequent backups and backing up before you start debugging can

save a lot of frustration and time. On my Mac, I run a Python script to backup my
files every five minutes. The script runs every five minutes until I break out of the
program, usually when I’m done for the day. This particular script backs up my
Indesign files for this book, and is an example of how Python can help with every
day tasks.

When I double click this b.command file in Finder, it opens a
Terminal window on my Mac and runs my Python script, “backup_files.py.”

b.command

cd /Users/rlz/Python_Coding/Bkups

python backup_files.py

This Python script imports three libraries. Every five minutes, the script gets
the current date and time for the name of a new directory. After copying files to the
new directory, the script “sleeps” for five minutes.

166 Chapter 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

import os
import shutil
import time
def savework():

while True:
t = time.strftime(‘%m-%d-%Y %H_%M’, time.localtime())
p2 = os.path.join(os.path.join(p1, “Bkups”), t)
if not os.path.exists(p2):

os.makedirs(p2)
for f in os.listdir(p1):

if f[-5:] == ‘.indd’ and f[0] != ‘~’:
shutil.copyfile(p1 + ‘/’ + f, p2 + ‘/’ + f)

time.sleep(300) # sleep 300 seconds
p1 = os.path.join(os.environ[‘HOME’], ‘Python_Coding’)
savework()

4.2 Print Statements
A popular debugging choice is to add print statements to your code.

A print statement is a quick and easy way to inspect an object’s type, value, or
length, while your code is running. Add a print statement to your script in the
Editor window, and on the Run menu execute your program.

While it’s not exactly elegant, I frequently add a print statement to my
code that simply says something like, “about to have a problem.” Then I add a
debug “breakpoint” at that location. The Console displays output from the print
statement. The Console is the Python Shell.

In the next example, I added two print statements to help me follow my
running code.

1
2
3
4
5
6
7
8
9
10
11

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
while i < 4:

j = 0
print(“my meal is: ”, meals[i])
while j < 4:

print(“My choice of fruit is: ”, fruits[j])
print (“j is: ”, j)
j = j + 1

i = i + 1

In [1]: my meal is: breakfast
my meal is: breakfast
my meal is: breakfast
my meal is: breakfast
my meal is: breakfast
my meal is: breakfast
my meal is: breakfast

Try This 4.1  Print Statements

Debugging Tools 167

While helpful, in this example the print statements in the Console window
quickly scroll by, because this program is in an infinite loop. Scrolling output is
where Debug mode, text output to file, or logging comes into play. We’ll look at all
three options in the next sections. In the next example, I create a file, write some
data, and close the file.

1
2
3
4

fh = open(‘myfile.txt’, ‘w’)
notes = ‘Sample text’
fh.write(notes)
fh.close()

Chapter 6 has several examples of print statements. In Chapter 7, Example
7.15 uses print statements with exception handling logic. Example 7.35 uses print
statements to debug a generator script. Chapter 6 explores the syntax to view an
object’s type, length, and value.

Indenting Loop Print Statements
Another print option is “indenting” the print statements each time the

program loops through a Suite of code. In Python, a “Suite” of code is a block of
indented code, as discussed in Chapter 3. These print statements provide a visual
representation of how many times the loop has run.

1
2
3
4
5
6
7
8

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
level = “”
while i < 4:

level = level + “.... ”
print(“my meal is: ”, fmeals[i])
i = i + 1

In this example, the Console shows the print output with a series of dots
representing the depth of the loops. I use the “level” string variable to create the
effect.

168 Chapter 4

Figure 4.1  Indenting Loop Print Statements

4.3 Overview of the Editor
The Editor automatically suggests relevant code completion, based on the

particular object you are working with. For example, if you create and assign a date
to the variable “thedate,” the Editor will display a pop-up window after you type
“thedate” followed by a dot. In the next figure, I am scrolling through the pop-up
items to select “year.” You can turn off code-completion in Preferences, Editor, Code
Introspection/Analysis.

Figure 4.2  Code Completion

Debugging Tools 169

In the previous example, when I scroll down an orange icon indicates “year”
is an attribute of the datetime.datetime object “thedate”, and is referenced using
dotted notation, as shown below.

print(thedate.year)

If you want more information on “year” you can use introspection functions,
which we’ll look at in the topic “Introspection” that follows. In the Console pane,
type dir(thedate) to see attributes and methods for “thedate” object.

dir(thedate)

In the Console pane, when you type help(thedate) the object attributes are
displayed, as shown below. The syntax for help with objects is help(object).

help(thedate)

Figure 4.3  Console Display of Object Attributes

To open Python’s interactive help system type help() with no argument. The
prompt changes to help>. Type “q” to exit the help system.

In [1]: help()

help> False

To see a list of Python’s reserved keywords, you can also type
help(“keywords”). 

170 Chapter 4

• 	 In the Editor, position your cursor over “thedate” variable and wait a few
seconds. All instances of “thedate” variable are highlighted in yellow. This
is a great way to find when a variable is used.

•	 The Editor has a red circle with an “x” to indicate an error, and a
yellow triangle to the left of a line number to indicate a warning.
When I hover over the yellow triangle, a pop-up message is displayed,
“unexpected indentation.”

•	 When you hover your mouse over a parenthesis, the paired parenthesis is
highlighted in green. If a parentheses is missing, the starting parenthesis
is highlighted in orange. 

•	 On my computer, the Editor highlights functions and methods in purple,
and variables are black. Numbers are a brownish-red color, and strings
are green. Keywords like “def,” “import,” “for,” and “while” are blue. Your
settings may vary, but I wanted to point out that color coding is another
indicator that syntax is correct. In Chapter 7, Example 7.12 illustrates how
to “debug” using color coding.

Code Completion Pop-up
The purple icon in the pop-up window indicates methods or functions. The

max(thedates) class atrribute in the example below displays the oldest date in the
list “thedates.”

Figure 4.4  The max() Function

Debugging Tools 171

In the Editor, if you type your object name “datetime.” with a period at the
end, the code completion pop-up includes the “date” method.

dob = datetime.date(1972, 12, 3)

A function created in a class is called a method. 

4.4 The Help Pane
The Help pane can display details about functions and methods. In the next

example, information for the object “datetime.date” is displayed in the Help pane.
This datetime.date() method takes 3 arguments: year, month, day.

Figure 4.5  Help for datetime.date Function

4.5 Debug Mode
Use the Debug menu commands to step through the lines of code, or press

Cntrl + F12 on a Windows computer to move to the next breakpoint. The Variable
Explorer displays object values, changing over time as you step through the
program code and the local scope changes.

In the Editor, double click on a line of code to set a breakpoint or press
F12 on a Windows computer. When running a program in Debug Mode, a breakpoint
pauses the program at that point, so that you can inspect the variable and object
values in Variable Explorer or the Console. In the Editor, a red dot appears to the
left of the line number with the breakpoint.

On the Debug menu, select ‘debug’ to launch the iPython debugger, or press
Cntrl + F5 on a Windows computer. The prompt in the Console changes to ipdb>,

172 Chapter 4

indicating the iPython debugger is active.

If a program halts and displays a Traceback error, you can
type %debug to start “Debug Mode,” as demonstrated in
Examples 7.2, 7.20 and 7.52. Later in this chapter, we’ll
look at “magic functions” that begin with a percent symbol.  

In the next example, there is a breakpoint • on line 3. The figure shows the
Editor pane, as well as the Console pane, after I pressed Cntrl + F5 on a Windows
computer to start debugging. Notice the Console prompt changed to ipdb>.

In [1]: debugfile(‘C:/SampleScript.py’, wdir=’C:’)
>C:\SampleScript.py(1)<module>()
---->1 mystring = “purple peanuts”

2 print (mystring)

ipdb>

Table 4.1  Setting a Breakpoint

In the Console pane, an arrow indicates the current line number, in this
case, line 1. If Variable Explorer is not already open, on the View menu select
“Panes,” and then click on Variable Explorer. As I “step-through” the code, I want
to watch the “mystring” object in Variable Explorer. At this point, Variable Explorer
is empty because we have yet to run the first line of code to create the program’s
“namespace” in memory.

As you step through the code, the Editor highlights the current line.

Click the icon to Run the current line of code or press Cntrl + F10
on a Windows computer. The Python interpreter creates the object “mystring” and
assigns the value “purple peanuts.” This example of dynamic typing is one of the

Debugging Tools 173

reasons I love Python. With one line of code, Python figures out the type of object
to create and assigns a value.

In Chapter 7, Example 7.2 illustrates Debug Mode. Chapter 6 has several
examples that use Debug mode.

End Debug Mode
To exit the debugger, type q or quit at the Console prompt and press enter,

as shown below. If you are in an iPython Session in the Console, you may have to
press Esc + Enter. You can also restart the kernel when you select “Restart Kernel”
from the Consoles menu.

ipdb>C:\SampleScript.py(1)<module>()
 1 mystring = “purple peanuts”
 2
---->3 print (mystring)

ipdb>
ipdb>quit

In [2]:

Table 4.2  Quit Debug Mode

4.6 Variable Explorer
As variables are created in your main program they are added to the “global

scope” or namespace, as discussed in Chapter 3, “Scope, Namespace & Memory.”
The global scope is the first memory “stack.” Variable Explorer displays objects in
the current “scope” and is empty until you run the code to create the program’s
memory “namespace.” In Chapter 7, Example 7.50 explores scope.

At this point in our example, Variable Explorer displays a row with the type
of the “mystring” object, and the value I assigned in line 1.

Figure 4.6  The Variable Explorer Pane

Variable Explorer shows variables and objects in memory. If you don’t

174 Chapter 4

see your object displayed in Variable Explorer, you need to execute that part of
the program. If you’re unsure if the variables are in scope, you could use the
locals() function in the Console to see local variables.

To start fresh and clear program memory, in the Console use the magic
function %Reset. See the topic “Variables and Objects in Memory” later in
this Chapter for information on namespaces. In Chapter 7, examples 7.1-7.3
demonstrate using Variable Explorer.

4.7 Example: My Program Loops &
Never Ends

Let’s briefly look at an example of Debug Mode in action. When I run this
test program, it never ends. In other words, it loops continuously. My hypothesis
is the while loop that begins on line 8 needs adjusted. First, I’ll stop the running
program. Next, I’ll use Debug Mode to step through the code and identify what is
happening.

1.	 On the Consoles menu, select “Restart Kernel” to interrupt the running
program.

2.	 Double click to the left of line 9 to add a breakpoint. A red dot appears to
the left of the line number.

3.	 On the Debug menu, select “Debug” or click on the Debug control.

Figure 4.7  Add a Breakpoint

Debugging Tools 175

4.	 The Console prompt changes to ipdb> to indicate the iPython Debugger
is active, and Variable explorer displays values for variables in the
current active local scope. At this point in the code, the variable cnt has a
value of 1.

	 The Console displays a few lines of the code, with an arrow indicating the
current line 9. Line 9 runs when I click on “Continue Execution.”

The Debug Mode commands “u” or “up” move backward
in your program. These commands are useful to
find where the value was assigned to a variable. The
Console prompt changes to ipdb> when in Debug Mode. 

5.	 When I click on “Continue Execution” again, line 9 runs and moves
back to line 8. The variable cnt still has a value of 1. At this point in the
program, I expected the value of cnt to be 2.

	 If I use the command “Run Current Line,” in the Console pane, I can see
the program moving continuously from line 8 to line 9 and then moving
back to line 8. This program is in an infinite loop.

Figure 4.8  Continue Execution

176 Chapter 4

6.	 To resolve the issue, I need to indent line 10, so this statement that
increments the cnt variable is part of the while loop. The concept of a
“Suite” of Indented Code was discussed in Chapter 3.

In the next figure, the output is correct in the Console. In the Editor pane,
you can see line 10 is now indented.

Figure 4.9  The Finished Program

To complete the program, I could add a print statement with the answer
to the riddle - the number one. In Chapter 7, Example 7.1 also demonstrates an
infinite loop.

4.8 Debug Commands
In Debug Mode, type ? in the Console and press enter to see a list of Debug

Commands. A brief list of popular commands is shown below.

ipdb> ?

For specific details on a particular command, type help, and the command
name. For example, type “help next.”

?	 Help with Debug commands
b or break	 Add a break

Debugging Tools 177

c	 Continue

cl or clear	 Clear breaks

d or down	 Move down in the stack trace

exit	 Exit Debug Mode

h or help	 Help on Debug Mode

j or jump	 Jumps to line number with a block of code

n or next	 Move to next line

u or up	 Move up in the stack trace

q or quit	 Exit Debug Mode

4.9 Console Interactive Mode
Another option to view object values involves typing in the Console

in Interactive Mode, which is similar to typing in the Console while in Debug
Mode. In the Console, type the identifier (the name) of the object. The Python
interactive interpreter displays the value in the Console, as shown below.

In [1]: mystring
Out[1]: ‘purple peanuts’

You must run the program statement that creates or sets the
object value in the current namespace or local scope before the
Python Interpreter, or Variable Explorer, can display a value.

At any time, you can type the name of an object in the Console, and the
Python Interpreter displays the value. This “Interactive Mode” also allows you to
perform calculations or use functions and methods, as shown in the next example.  

ipdb> mystring
‘purple peanuts’

ipdb> 2+3
5

ipdb> import math

ipdb> math.sqrt(16)
4.0

ipdb>

Table 4.3  Type in Console

178 Chapter 4

The special identifier _ underscore is used in the interactive interpreter
(or Console) to store the result of the last evaluation.

Chapter 6 has several examples that use Interactive Mode.

The iPython kernel also has several “magic commands” that begin with the
percent % character.

%debug

%reset

Click in the Console window and press Ctrl C to cancel
program execution. Ctrl L clears the namespace memory. 

In Chapter 7, examples 7.1, 7.2, and 7.6 demonstrate Interactive Mode.

Increment Counters
One of my favorite debugging shortcuts is to change a counter so that I

can move forward when I’m looping through the code. For example, I can change
a “while loop” to move from the 2nd iteration to the 1200th iteration. Let’s say I’m
debugging, and my program normally starts with a “bfr” counter = 2. In the Editor,
I increment the “bfr” counter to bfr = 1200.

Watch Out for Changing Values
While most functions or methods provide useful results when typed in the

Console, you can get unexpected results. In Chapter 7, Example 7.14 reads a
TXT file with the OS library. The function readline() moves to the next line of the
TXT file every time you type it in the Console, which may not be what you were
expecting.  

iPython Session
The Console prompt changes to three dots and a colon ...: to indicate you

are in an iPython Session. Press enter twice, or press Esc + Enter, to exit the
iPython session.

In [1]: def myfunction(str)

Debugging Tools 179

...: print(str)

When the newline prompt ...: is displayed,
press Shift Enter to execute the commands.  

4.10 Variables and Objects in Memory
The Python Interpreter creates variables and objects when you run a

program or script. The collection of these objects is the “Namespace.” If you’re
debugging a line of code and a function uses an object, you want to ensure the
object exists in memory before trying to view the object in Variable Explorer. The
Variable Explorer shows active variables in memory for the current scope. Take, for
example, this line of code that uses a variable “myint” of type “int.”

myint = 57
print(myint.upper)

If the program ran and created “myint” already, the Console Traceback
message is “AttributeError,” because there is no attribute “upper” for a variable
of type “int.” If the program hasn’t run and created the variable “myint,” the
Console Traceback message is “NameError.” In this example, a misleading
Traceback message “NameError” is hiding the Traceback message you want to see,
“AttributeError.”

In Chapter 3, we looked at an example of a “global variable,” and how object
values change as scope changes. For more information on scope, refer to the topic,
“Scope, Namespace & Memory.” In Chapter 7, Example 7.50 also demonstrates
scope.

When you change a function definition and want to use the new version of
the function, you can run just that part of your code. In the Run menu select
“Run selection or current line” to run only the selected lines of code.

Use the %reset magic command in
the Console to reset the namespace. 

4.11 Introspection
Introspection is the ability to determine information about live objects

such as modules, classes, methods, and functions. You can easily tell the type of
the object at runtime. Several functions help with introspection, as well as the

180 Chapter 4

“inspect” library.

objectname?

dir()

help()

id()

repr()

type()

locals()

globals()

To inspect objects, we’ll execute statements in the Editor and Console,
including statements with “Instrospection” functions that provide details about
objects. The syntax varies depending on whether you are typing in the Editor
or Console pane. The syntax is also specific to the type of object. We’ll look at
those differences in depth in Chapter 6. In the case of data structures like lists,
tuples, or dictionaries, you may want to see values for the entire list or the value of
only a particular list item.

 Editor

 Console (Python Shell)

Using ? in the Console
For details on any object, in the Console type the object name followed by a

question mark. There is no space between the object name and the question mark.
For details on the object “myfunction,” in the Console type the function name
followed by a question mark, as shown below. The output includes the Signature,
DocString, and the type of object.

Debugging Tools 181

In [2]: myfunction?

Signature: myfunction(str)
Docstring: <no docstring>
File: ~//Ch 3 code/Functions/<ipython-input-8-df3069fd62ae>
Type: function

This next example returns help for the max() function. You may want to
compare this output to the __doc__ attribute in the “docstring” topic that follows.

In [5]: max?

Docstring:
max(iterable, *[, default=obj, key=func]) -> value
max(arg1, arg2, *args, *[, key=func]) -> value

With a single iterable argument, returns its biggest item. The default keyword-
only argument specifies an object to return if the provided iterable is empty. With
two or more arguments, return the largest argument.

Type: builtin_function_or_method

dir()
The function dir() displays all objects in the current local namespace, as

shown in the next figure. After running the sample “Project1.1.py” script, the local
scope changes. This script uses the “openpyxl” library to create the ws4 object. For
example, after running the “Project1.1.py script, the dir() function displays relevant
information about the program objects in the Console. Type the dir() command in
the Console window.

In [2]: dir()

In Chapter 7, Example 7.38 uses “dir()” to debug an AttributeError.

182 Chapter 4

Figure 4.10  Objects in Current Local Scope

In Chapter 7, Example 7.38 uses “dir()” to debug an AttributeError.

dir(object)
While the dir() function looks at all objects, the statement dir(ws4)

takes the argument “ws4” and retrieves information on that particular object. In
the Console window attributes specific to the ws4 object are displayed, as shown
below. The dir(<object>) function displays different attributes depending on the type
of object you use for the argument.

There is quite a long list of valid attributes for the ws4 object, and the next
example only shows a few of the attributes. In particular, I’m interested in what
functions I can use with the ws4 object, and I’ve highlighted the “delete_cols”
method.

Note, if you’re using an older version of openpyxl, “delete_rows” might
not be available. The dir() function is an easy way to check if a particular function
or method should work with your code.

Debugging Tools 183

Figure 4.11  Valid Attributes for the ws4 Object

help()

The help() function invokes the help system for help with a module,
function, class, method, or keyword; for objects in the current namespace. For
example, when I type help(load_workbook) in the Console window, Python
displays information specific to the method “load_workbook” from the “openpyxl”
library.

In [2]: help(load_workbook)

We looked at help() earlier in the topic, “Overview of the Editor.” We also
looked at a datetime.date method in the “Help” pane.

184 Chapter 4

Figure 4.12  Help for load_workbook Method

The help() function reads the docstring if available and inspects objects to
gather the output. Example 7.19 in Chapter 7 uses the help() function. Example
7.23 invokes help with the shortcut Cntrl + I.

The Inspect Library
Use the “inspect” library for additional information on an object, including

the Docstring or call signature of a function or method. There are many functions
available in the inspect library. Details are available on the docs.python.org website.
The next example uses the signature() function in the Console.

In [2]: from inspect import signature
In [3]: from openpyxl import load_workbook
In [4]: str(signature(load_workbook))

(filename, read_only=False, keep_vba=False, data_only=False, keep_links=True)

What Version of Python?
The version_info attribute displays the current version of Python, as shown

below.

Debugging Tools 185

In [5]: import sys
In [6]: sys.version_info

Out[7]: sys.version_info(major=3, minor=7, micro=4, releaselevel=’final’,
serial=0)

The type() Function
In the Chapter 3 topic, “What is the Data Type?,” we used the

type() function to examine the type of an object. Chapter 6 also includes
numerous examples using the type() function.

print(type(my_var))

The id() Function
When dealing with immutable objects or scope issues, the id() function is

useful in isolating which object you are referencing. The id() function displays the
identity of the object. Scope has to do with global vs. local variables.

print(id(bfr))
bfr = bfr + 1
print(id(bfr))

The repr() Function

The repr() function returns a string representation of an object, and is
useful in finding “whitespace,” special characters like new line \n, or float rounding
errors. Example 7.45 in Chapter 7 demonstrates a float comparison error.

The len() Function

The len() function shows the length of the string or the number of items
in a data structure. For example, len(mydictionary) would return the number of
dictionary key:pairs. You can find the number of items in a list with len(mylist).

The locals() Function
You may recall from Chapter 3, the locals() function shows all objects in the

current or local namespace. In the iPython Console, type “locals().”

	 In [5]: locals()

186 Chapter 4

The globals() Function
The globals() function shows all objects in the current or global namespace.

In the iPython Console, type “globals().”

	 In [5]: globals()

The docstring
The __doc__ attribute prints a function’s docstring if it exists. A

docstring might cover these topics.

• What the function does.

• What type of arguments the function takes.

• What the function returns, if anything.

PEP 257 suggests triple double quotes around your docstring, and if the
docstring contains backslashes use raw r‘‘‘<docstring c:\>’’’ triple double quotes.

This next example is the docstring for the max() function. Earlier we used
? to see information on the max() function.

In [5]: max.__doc__

Out[5]: ‘max(iterable, *[, default=obj, key=func]) -> value\nmax(arg1, arg2,
*args, *[, key=func]) -> value\n\nWith a single iterable argument, return its
biggest item. The\ndefault keyword-only argument specifies an object to return if\
nthe provided iterable is empty.\nWith two or more arguments, return the largest
argument.’

4.12 Logging
Logging is a simple way to capture debugging data. Use logging when the

output in the Console pane scrolls and is lost because there is too much data.
Logging is also useful when you’re working out code logic, or have a live program
with user reports of erratic behavior.

Debugging Tools 187

The python.org website has a “Logging HOWTO” and a “Logging
Cookbook” topic in the documentation section.

This script has a logging level set to ERROR, which means it logs errors and
critical events. For a thorough look at logging, please refer to the docs.python.org.

logging.basicConfig(format=’%(asctime)s - %(message)s’,
datefmt=’%d-%b-%y %H:%M:%S’,
filename=’test.log’,
level=logging.ERROR)

When there is an exception on line 9 in the statement 10/my_int, the
Python Interpreter logs a critical error to the test.log file.

1
2
3
4
5
6
7
8
9
10
11

import logging
logging.basicConfig(format = ‘%(asctime)s - %(message)s’,

datefmt = ‘%d-%b-%y %H:%M:%S’,
filename = ‘test.log’,
level = logging.ERROR)

logging.error(‘The logging level is ERROR and above.’)
my_int = 0
try:

10/my_int
except Exception:

logging.critical(“my_int is %s”, my_int, exc_info = True)

The first time you run the program the logfile test.log is created. The default
mode is “append.” If the log file is not created, try restarting Spyder. This is the
output in the log file:

29-Jan-19 10:29:33 - Logging level is ERROR and above.
29-Jan-19 10:29:33 - my_int value is 0
Traceback (most recent call last):

File “/Ch 4 code/Logging/logging.py”, line 13, in <module>
10/my_int

ZeroDivisionError: division by zero

To disable logging, use the “disable” method with the appropriate argument,
as shown below.

logging.disable(logging.CRITICAL)

4.13 The timeit() Function
The timeit() function can identify bottlenecks in your code. Let’s say we want

188 Chapter 4

to time this block of code.

colors = (‘blue’, ‘red’, ‘green’)
for color in colors:

print(color)

Import the timeit module. Create a string “mycode” that encloses the
code statements in triple quotes. In the example below, the last line invokes the
timeit method to run the code 100 times.

1
2
3
4
5
6
7

from timeit import timeit
mycode = ‘’’
colors = (‘blue’, ‘red’, ‘green’)
for color in colors:

print(color)
‘‘‘
print(timeit(stmt=mycode, number=100))

4.14 Logging Time and Loop Counters
When writing new code, sometimes I add print statements to display the

time, as well as loop counters. This is similar to the topic “Indenting Loop Print
Statements” we looked at earlier. I have to admit, watching a Python program take
30 seconds to complete 75 million comparisons makes me very happy I use Python!

This is an example showing process time, the current local time, and a
counter.

import time
i = 1
j = 50
start = time.process_time()
start1 = time.localtime()
thestarttime = time.asctime(start1)
print(‘Start time is: ‘, thestarttime,

 ‘and start process time is’, start, ‘\n’)
while i < 10000:

if i == j:
end = time.process_time()
print(‘Time so far is:’, start - end)
print(“i is”, i)
j += 1000

i += 1
end = time.process_time()
print(‘Time to complete is: ‘, start - end)
start2 = time.localtime()
theendtime = time.asctime(start2)
print(“\nStarted at:”, thestarttime)
print(“Ended at:”, theendtime

Debugging Tools 189

The Console output is shown below:

Start time is: Sun Jun 14 19:25:05 2025 and start process time is 11.184358

Time so far is: -0.0003019999999995804
i is 50
Time so far is: -0.0014359999999999928
i is 2050
Time so far is: -0.0018299999999999983
i is 3050
Time so far is: -0.0022180000000009414
i is 4050
Time so far is: -0.002792000000001238
i is 5050
Time so far is: -0.0032180000000003872
i is 6050
Time so far is: -0.0036020000000007713
i is 7050
Time so far is: -0.003984000000000876
i is 8050
Time so far is: -0.00436800000000126
i is 9050
Time to complete is: -0.005131999999999692

Started at: Sun Jun 14 19:25:05 2020
Ended at: Sun Jun 14 19:25:06 2020

4.15 Focused Testing
Sometimes I need to focus on one part of my code, or cell, to the exclusion

of other areas. In the Editor, use a hashtag and two percent signs to indicate the
start of a cell. I also might make a very simple “function” that I can test and debug,
and later merge it into a library. By providing test data for the steps I’m excluding,
I can focus on the defect. Let’s look at my program that has five tasks.

1.	 Get KDP royalites.

2.	 Get the GBP exchange rate.

3.	 Calculate total sales for the month.

4.	 Calculate the average daily sales for the month.

5.	 Calculate the expected monthly sales.

Actual Result
When I run the code, the program halts. The Traceback shows a

ZeroDivisionError on line 65. I haven’t changed anything in the program in several
weeks. Until today the program ran successfully. This is the code on line 65.

dailysales = (total/myday)

190 Chapter 4

Incorrect Code
The value of “myday” is set on line 64, as shown below. As it happens, on

the first day of the month, the statement on line 64 evaluates to zero.

myday = (datetime.datetime.today().day-1)
dailysales = (total/myday)

While this particular example is easy to troubleshoot, when you have
a program with external connections, it can be a challenge to isolate the defect.
With a slight modification, I can use a variable “testmode” as a switch to use
test values. When I want to test ‘datecalculations,’ I set all the other conditional
statements to use test data. In effect, I remove all the other code from the
equation and only run lines 62-68.

For example, the “else” statement on line 55 sets gbp to a value of 999.99
when testmode is “tst_datecalculations.”

Debugging Tools 191

Figure 4.13  test_mode.py

4.16 Create Test Data
 Use the smallest subset of data possible for testing. After removing a chunk

of data, ensure you still have enough data for your program to function. If you’re
debugging an error, be careful to keep the data that recreates the error.

In this example, I changed the code on line 13 and created an HTML data
file. Rather than connecting to a live website, I copied the “HTML” data to a file. I
also removed unnecessary headings and tables from the HTML file.

192 Chapter 4

Figure 4.14  Test Data.py File

Below is a small excerpt of the html data, with the data I need for my
program.

Debugging Tools 193

Figure 4.15  Test HTML Data File

Test Objects
In Chapter 2 we talked about focused testing, and a simple way to create

test objects. I wanted to recap that information again because it’s such a time
saver.

For testing purposes, I only need mydictionary with a few elements.
To create a dictionary for testing purposes let’s look at two ways to create a test
dictionary. The first example is best suited to dictionaries with only a few elements.

1.	 Run the main program to create mydictionary.

2.	 In the Console, type mydictionary.

194 Chapter 4

3.	 The Console prints out all the values. Copy the data to create a test
version of mydictionary.

4.	 In the main program or test script, I use the data in an assignment
statement for a new “test” dictionary.

To simply output an object’s value to a file, you could create a file and write
the object values. In this example I output “myList” values to “myfile.txt.”

1
2
3

fh = open(‘myfile.txt’, ‘w’)
fh.write(myList)
fh.close()

Create a Test Dictionary
When my dictionary has a lot of data, I prefer to output the data to a file

instead of the Console. The process is the same, but I use a helper program
“createTestDataFromDict()” to create the output file. The output file is a
complete assignment statement to create a new dictionary.

The main body of the original program “ePub_index.py” is shown on lines
15-20. I want to make a copy of the “index” dictionary.

1.	 On line 21, I invoke the “createTestDataFromDict()” function to make the
output file “testDictionary.txt.”

2.	 In case the dictionary has data I can’t convert to a string, I use “try and
except” syntax on lines 4-7.

3.	 On line 5, I add each key:value pair to “myStr.” The key is str(k) and the
value is str(d[k]). I also add a line return “\n” character at the end of
each key:value pair.

4.	 On line 9, I remove whitespace from the end of “myStr.” The last line of
data in “mystr” has an extra “\n” that I don’t need.

5.	 On line 10, I use slicing to remove the comma from the end of “myStr.”
The statement below is similar but uses the rstrip() method to remove
the comma.

	 myStr = myStr.rstrip(‘,’)

Debugging Tools 195

6.	 On line 8, I create a new file “testDictionary.txt” using the open()
function.

7.	 On line 11, I write “myStr” data to the file.

8.	 Finally, on line 12, I save the file with the close() function.

1 def createTestDataFromDict(d):

2 myStr = “testDict = {”

3 for k in d:

4 try:

5 myStr += “’” + str(k) + “’: “ + str(d[k]) + “,\n”

6 except Exception:

7 print(‘exception converting key:’, k)

8 myFile = open(‘testDictionary.txt’, ‘w’)

9 myStr = myStr.rstrip() # remove whitespace on right

10 myStr = myStr[:-1] + ‘}’ # remove last comma from string

11 myFile.write(myStr)

12 myFile.close()

13

14

15 index = {‘1’: 1.0,

16 ‘49’: [‘3.9’, ‘Strings’],

17 ‘59’: [‘3.10’, ‘Lists’],

18 ‘60’: [‘3.11’, ‘Methods for Lists’],

19 '73': ['3.12', 'Tuple'],

20 ‘74’: [‘3.13’, ‘Dictionary’]}

21 createTestDataFromDict(index)

The new “testDictionary.txt” file is shown below.

testDict = {‘1’: 1.0,
‘49’: [‘3.9’, ‘Strings’],
‘59’: [‘3.10’, ‘Lists’],
‘60’: [‘3.11’, ‘Methods for Lists’],
‘73’: [‘3.12’, ‘Tuple’],
‘74’: [‘3.13’, ‘Dictionary’]}

196 Chapter 4

5. Exceptions

In this Chapter, we discuss

Kinds of Errors

The Stack Trace or Traceback Message

Try and Except

Raise

Assert

Built-in Error Types

To begin our discussion of exceptions, we’ll look at the basic kinds of
programming errors. When I say “kind” of error, this is just a general classification
to characterize programming errors. When an event happens that the Python
Interpreter can’t process successfully, it stops the program with an exception.

After an unhandled exception occurs, the Python Interpreter displays the
stack trace in a “Traceback” message in the Console pane with details about
the exception. In the topic, “Traceback Message,” you’ll see there is a wealth of
information in a Traceback message. Often the Traceback message immediately
points to the cause of the error.

To handle exceptions, you can add “try and except” statements to deal
with exceptions gracefully. For critical events, we’ll look at the “raise” command
where you raise your own exception. When an object must be a certain value,
adding an “assert” statement to trigger an exception when a value is outside your
parameters alerts you to the problem.

 Chapter 5 198

Finally, we’ll briefly look at the Python built-in exceptions you’re likely to
encounter when programming in Python.

5.1 Kinds of Errors
Generally, when things go wrong in a program, they fall into one of three

categories.

• Syntax Errors

• Logic or Semantic Errors

• Runtime Errors

Syntax Errors are usually obvious, and the Spyder Editor points out Syntax
errors with a yellow triangle. Runtime errors occur when the Python Interpreter
halts and displays an exception. I find my “Logic” errors the most difficult to
identify, because the program does what I told it to do, but my initial design or logic
is flawed.

Syntax Errors
A syntax error is raised by the parser when the parser encounters a syntax

error. The Spyder Editor makes it virtually impossible to have Syntax errors. A
yellow triangle appears to the left of the line number if there is a Syntax error in
the code.

Chapter 7 demonstrates syntax errors in Examples 7.8, 7.9, 7.11 and 7.12.

Logic or Semantic Errors
With a logic error, the flaw is in the design on my script. In Chapter

7, Example 7.25 demonstrates a logic error where I told the program to do
something, but the outcome isn’t what I wanted. To identify logic errors, I find it
helpful to go back to the drawing board and look at my initial “Intended Outcome”
or pseudocode. Pseudocode is an outline of your program design in simple terms,
often written in plain English.

Runtime Errors
The challenge with debugging runtime errors is a line (or suite) of code runs

as expected several times, and then suddenly halts with an error. As a program
runs, variable values change. Another example of a RunTime error is when a
program takes too long to run.

Exceptions 199

While general RunTime errors are flagged as a “RunTimeError” by the Python
Interpreter, what I am referring to as “Runtime” is the overall kind of error. The
actual Traceback message displayed in the Console may vary, as shown in Chapter
7 in Examples 7.5 and 7.12.

To research a runtime error, we need to look at the values at the moment the
error occurred. When looking at values, you may have a critical variable that must
be a certain value for your code to function. Assert statements halt the program
and warn you when values are outside the parameters you require.

Another example of a Runtime error is a block of code that takes too long
to run. In this case, the function “timeit” calculates program execution and can
identify timing issues. Chapter 7 looks at these kinds of errors in Examples 7.1,
7.4, 7.6, 7.14, 7.15, and 7.17.

5.2 The Stack Trace or Traceback
The Traceback includes this basic information.

• File

• Line Number

• Module

• Exception

• Exception Description

The next example demonstrates a sample Console Traceback message. I
abbreviated the file path for readability.

In [1]: File “workbook.py”, line 289, in __getitem__
raise KeyError(“Worksheet {0} does not exist.”.format(key))

KeyError: ‘Worksheet Sheet1 does not exist.’

The Traceback details are as follows:

File: “workbook.py”
Line Number: 289
Module: __getitem__
Exception: KeyError
Exception Description: Worksheet Sheet1 does not exist.

Traceback information provides the clues needed to research many issues.
In Chapters 6 and 7, I’ll often refer back to the “Exception” in the Traceback. In
Chapter 7, Examples 7.1, 7.2, 7.3, and 7.6 demonstrate traceback screens.

 Chapter 5 200

Don’t Be Fooled
A misleading Traceback message “NameError” could be hiding the

Traceback message you want to see. In the Chapter 4 topic, “Variables and Objects
in Memory,” we looked at how the Python Interpreter creates variables and objects
when you run a program or script. In this example, there is a variable “myint” of
type “int.”

1
2

myint = 57
print(myint.upper)

If the program ran and created “myint” already, the Console Traceback
message is “AttributeError” because there is no attribute “upper” for a variable
“myint.” If the program hasn’t run and created the variable “myint,” the
Console Traceback message is “NameError.”

When the program encounters an Out of Memory error, the Traceback
exception is rarely the actual cause of the defect.

5.3 Try and Except
Unhandled exceptions halt the program and display a Traceback message

with an exception error. When you add “try” and “except” statements to your code,
you add handlers to control how exceptions are handled, and prevent your program
from unexpectedly halting. There are four blocks to a try:except statement. The
“else” block of code runs only if there isn’t an exception. The “finally” block always
runs, and is often used to close files and cleanup memory.

try:

except Exception:

else:

finally:

In this next example with “except,” you can see where I added custom
messages.

Exceptions 201

1
2
3
4
5
6
7
8
9
10
11
12

try:
gbpex = float(tables2[3].string[:6])
gbp = gbp/gbpex
print(“gbp converted to USD is:”, gbp)

except TypeError:
print(“Type error when converting exchange rate”)

except ZeroDivisionError:
print(‘ZeroDivisionError where gbpex is:’, gbpex)

except Exception as exceptdetails:
print(exceptdetails, ‘gbpex is:’, gbpex)

finally:
print(“Done calculating the gbp exchange rate.”)

The finally block of code on line 11 runs whether the try clause has an
exception or not. You can also raise your own type of error, as shown on line 6.

1 try:
2 <some code>
3 except Exception:
4 raise ValueError(mymsg)

Examples 7.15, 7.21, and 7.24 in Chapter 7 demonstrate the try and except
syntax.

5.4 Raise
At any point in your program, you can add your own “raise” statements to

raise an exception, as shown below.

raise Exception(“I broke my program.”)

5.5 Assert
With an “assert” statement, program execution stops or halts when an

expected condition is not met. When your program depends on a statement to be
true, consider adding an “assert” statement to alert you if the statement does not
evaluate to “True.” Some interesting assertions are:

• A number is > 0

• A variable is a particular type (datetime)

 Chapter 5 202

• There are no duplicates

• A string or value is not None

In debugging when your program stops at an assert
statement, you know the “bug” must be somewhere before
the assertion. There are several ways to disable all assertions
at runtime, so use care with asserting confidential values. 

When I was calculating KDP royalties earlier, I found the GBP exchange rate
on a web site. In order for my program to calculate GBP royalties in USD currency,
“gbpex” must be greater than zero.

assert gbpex > 0, ‘gbpex must be > ‘ + str(gbpex)

Now when my program runs and “gbpex” is not greater than zero, an
exception is raised. The Console displays a Traceback message, as shown below.

AssertionError: gbpex must be > 0

In the example below, I check that the variable “thedate” is a datetime type.
This time “thedate” is valid and no exception is raised.

1
2
3
4
5

import datetime
thedate = datetime.datetime.now()
assert type(thedate) == datetime.datetime, “this isn’t a date”
if thedate is not None and type(thedate) == datetime.datetime

print(‘everything is ok’)

With a small modification on line 2 “thedate” becomes an “int.” Now
“thedate” is not a datetime type, and the assertion fails.

1
2
3
4
5

import datetime
thedate = datetime.datetime.today().day - 1
assert type(thedate) == datetime.datetime, “this isn’t a date”
if thedate is not None and type(thedate) == datetime.datetime

print(‘everything is ok’)

Exceptions 203

5.6 Built-in Error Types
The following list of built-in exceptions is a reference for the examples that

follow. For a complete list of exceptions, visit https://docs.python.org/3/library/
exceptions.html.

ArithmeticError
ArithmeticError is the base class for built-in exceptions for various arithmetic

errors.

AssertionError
An AssertionError is raised when the assert statement fails.

AttributeError
An AttributeError is raised on attribute assignment or when the reference

fails. When an object does not support attribute references or attribute assignments
at all, a TypeError is raised. For example, an “int” object has no attribute “upper.”
The code below would cause an AttributeError:

myint = 57
print(myint.upper)

Because a “string” object does have an attribute “upper,” this code for a
string is valid.

mystr = ‘age’
print(mystr.upper())

To view attributes of an object named “mystr,” first run the
program, then type “dir(mystr)” in the Python Console. You must run
the program for the Python Interpreter to create the variable “mystr.”
If you haven’t run the program, the Python Interpreter displays a
NameError exception. See Chapter 7, Example 7.6, for a description of debugging
an AttributeError.

Earlier in Chapter 3 we looked at strings in dictionaries. Examples 7.6, 7.38
and 7.39 demonstrate an AttributeError. The “AttributeError ‘list’ object ‘extend’ is
read only” means you forgot the parentheses at the end of a function call.

 Chapter 5 204

mylist.extend()

In Python, objects have attributes. So, for example, the object “ws1” has
an attribute named “.cell.” In this example, the dotted notation would be
ws1.cell(). 

EOFError
An EOFError is raised when the input() function hits the end-of-file condition

without reading any data. This is common if you forget the closing quote or
apostrophe in a string assignment.

FloatingPointError
The FloatingPointError is raised when a floating-point operation fails.

ImportError
When the Python Interpreter has trouble loading a module, the Interpreter

raises an ImportError.

Indentation Error
An IndentationError is raised when there is incorrect indentation in the code.

In Chapter 7, Examples 7.5 and 7.7 demonstrate an IndentationError. For more
information, see the topic “Indented Code” in Chapter 3. 

IndexError
An IndexError is raised when the index of a sequence is out of range as

discussed in Chapter 3. If the index is not an integer, a TypeError is raised. The
base class of an IndexError is a LookupError. See Examples 7.1-7.2 in Chapter 7.

As an example, if the code moves beyond the limits of the list an
IndexError is raised. If I have four objects in the list and use index “5” or
mylist[4], and IndexError occurs. Python starts counting at 0, so this example is
beyond the bounds of the list.

If you try to assign a value to an index that doesn’t exist, it causes an error.

Exceptions 205

IndexError list assignment index out of range.

Instead, to add add items to a list, use .insert(), .extend(), or .append().

IOError
Starting from Python 3.3, an IOError is an OSError.

KeyError
A KeyError is raised when a key is not found in a dictionary, and is a subclass

of LookupError. In Chapter 7, see Examples 7.20 and 7.31 that demonstrate this
type of error.

KeyboardInterrupt
A KeyboardInterrupt is raised when the user hits the interrupt key (Ctrl + C

or delete).

LookupError
A LookupError is the base class for KeyError and IndexError.

MemoryError
A MemoryError is raised when an operation runs out of memory.

ModuleNotFoundError
The ModuleNotFound error indicates a module could not be located

and is a subclass of ImportError. In Chapter 7, Example 7.19 demonstrates a
ModuleNotFoundError.

NameError
You’ve probably noticed I often say, “run the program to create variables,

then...” If an object doesn’t exist in the namespace it means the variable hasn’t
been created in memory. The NameError is raised when a variable is not found in
the local or global scope. This exception occurs when an identifier is invalid or is an
unknown name.

For example, a misspelled identifier can cause a NameError. The

 Chapter 5 206

Spyder IDE highlights a NameError. In Chapter 7, Examples 7.3, 7.10,
7.13, and 7.22 demonstrate NameErrors. We also looked at the related
UnboundLocalError exception in the Chapter 3 topic, “Global Variables.”

The Chapter 4 topic, “Variables and Objects in Memory,” outlined
how the Python Interpreter creates variables and objects when
you run a program or script. If you type your object name in the
Console and the Traceback says “NameError,” ensure that you
ran the line of code that creates the object in the local scope.  

OSError
An OSError is raised when a system operation causes a system-related error,

such as failing to find a local file on disk.

OverflowError
The OverflowError is raised when the result of an arithmetic operation is too

large to be represented. The OverflowError is a subclass of an ArithmeticError.

RecursionError
A RecursionError is derived from the base class RuntimeError. A

RecursionError is similar to an IndexError where the index is out of bounds. A
recursive loop counts down to the end of the loop as shown in the Chapter 3 topic,
“Recursive Functions.” A RecursionError is raised when the maximum recursion
depth is exceeded.

RuntimeError
A “RuntimeError” is raised when an error is detected that does not fall under

any other category.

StopIteration
A StopIteration exception is raised by the next() function to indicate that

there is no further item to be returned by the iterator. In Chapter 7, Example 7.35
raises a StopIteration error.

Exceptions 207

SyntaxError
A SyntaxError is raised by the parser when it can’t parse the program. The

Spyder Editor makes it virtually impossible to have Syntax errors. A yellow triangle
appears to the left of the line number if there is a Syntax error in the code.

SystemError
A SystemError occurs when the interpreter detects an internal error.

SystemExit
The sys.exit() function raises a SystemExit exception.

TabError
A TabError occurs when code inconsistently uses tabs and spaces. The

TabError is a subclass of IndentationError.

TypeError
A TypeError is raised when a function or operation is applied to an object

of an incorrect type. A TypeError occurs when you are attempting to perform an
operation on an incorrect object type. Examples of TypeErrors you might see are:

• tuple object does not support item assignment

• string indices must be integers

• divide int by a string (3/’a’)

• mixing types

• missing a function argument

Tuple Object does not Support Item Assignment

As an example, if you try to assign a new value to an item in a tuple, a
TypeError is raised.

 Chapter 5 208

In [3]: mytuple[1] = ‘three’

Traceback (most recent call last):
File “<ipython-input-3-db66c3391d15>”, line 1, in <module>
 mytuple[1] = ‘three’

TypeError: ‘tuple’ object does not support item assignment

String Indices Must be Integers

In Chapter 3, we saw a TypeError when iterating over a string. The “print”
statement shown below would cause an error because the values ‘abc’ are not
integers.

mystr = ‘abc’
for i in mystr:

print(‘mystr char is:’, mystr[i])

The Console would display a traceback message with a “TypeError.” I’ve
abbreviated the Traceback message below for readability.

In [2]:

Traceback (most recent call last):
TypeError: string indices must be integers

A slight modification in the code would prevent the error. In the example
below, I am using the “range()” function combined with the length function
“len()” to find the length of the list. We looked at the “range” function in Chapter
3.

mystr = ‘abc’
for i in range(len(mystr)):

print(‘mystr char is:’, mystr[i])

UnboundLocalError
An UnboundLocalError is raised when you assign a value to a variable that

doesn’t exist in the program scope. In Chapter 3, in the topic “global variables”
we looked at an example of this type of error. In Chapter 7, Example 7.50
demonstrates an UnboundLocalError.

Exceptions 209

ValueError
A ValueError is raised when a function gets an argument of correct type but

improper value. For example, a datetime object considers a time value for seconds
< 60 or a month between 1 and 12 to be valid. A datetime month value of 13
creates an exception, and the Python Interpreter displays a ValueError. The syntax
below is invalid for a datetime object:

d1 = datetime(1999, 13, 31)

ZeroDivisionError
A ZeroDivisionError is raised when the second argument of a division or

modulo operation is zero. The ZeroDivisionError is a subclass of ArithmeticError.
Example 7.24 in Chapter 7 shows a divide by zero error.

 Chapter 5 210

6. Try This

In this Chapter, we discuss
What is the Object Value?
String and Number Variable Values
True & False Vlues
Tuple Objects and Values
List Objects and Values
Dictionary Objects and Values
Does the Object Have a Value of None?
What is the Object Type?
What is the Length of the Object?
What are the Function/Method Arguments?
What Type of Object Does a Function Return?

While the examples in Chapter 7 do have several suggestions on how to
identify a particular bug, they are only helpful if you’re experiencing the same
problem; in the real world, that’s not likely to happen. My concern with only using
“Examples,” is you’ll rarely encounter the same issue when working with your code.
Your situation is unique, and probably won’t match one of the examples.

To provide the missing piece of the debugging puzzle, I’m going to take
some time in this chapter to break down the debugging process into a reusable
format. I’ll cover some common issues. Unfortunately, my issue list isn’t going to be
all-inclusive, but I hope it kickstarts your debugging experience.

While an odd chapter title, “Try This” is a fitting name. When I was learning
to program, I would share my dilemmas with a good friend. He would say, “Try
this...” and offer a few suggestions. That little nudge in the right direction was a

 Chapter 6 212

godsend that helped me find my way. I’m not sure if I can create that experience
for you, but I’m going to try.

As we work through the next sections, you’ll notice a common theme, where
we look at these topics in different contexts.

•	 Object Values

•	 Types of Objects

•	 Length of Objects

•	 Passing Arguments to Functions or Methods

•	 The Return Object of a Function

We’ll look at the common objects outlined below. This list of objects isn’t
every possible Python object, but I think these are enough to get you started.

•	 Strings and Numbers

•	 Tuples

•	 Lists

•	 Dictionaries

It can be exasperating when you have a runtime or logic error and have no
idea where to start debugging. The suggestions in this chapter may help you get
started debugging your program.

6.1 What is the Object Value?
When I am debugging, often, the first thing I check is the object value. If

you decide to take the hands-on approach and add print statements to your code
or use Interactive Mode in the Console, the next few topics show you examples
for strings, tuples, lists, and dictionaries. In the case of data structures like lists,
tuples, and dictionaries, I’ll also include the syntax to inspect all items or a single
item. This content may be a bit repetitive, but on the plus side, this is a handy
reference.

6.2 String and Number Variable Values
In this topic, I’ll look at several ways to find the value of string and number

variables.

Try This... 213

Print the Value of a String Variable

Add a print statement to your script in the Editor window, and run your
program.

mystring = “Purple Peanuts”

In the example the follows, I add a print statement in the Editor window
to see the value of a string. When I run the program, the output of the print
statement is shown in the Console pane. The Console is the Python Shell.

A String Identifier: mystring
Value: purple peanuts
Reference: Chapter 4 - Add Print Statements

1
2

mystring = “purple peanuts”
print(mystring)

In [1]: runfile(‘C:/SampleScript.py’, wdir=’C:’)
purple peanuts

Variables in Imported Modules

To reference a variable inside another library, module or class, use dotted
notation. In this example, I import a module “mymodule2” that has the variable
“mystr2.” The expression module2.mystr2 returns the value of mystr2.

import mymodule2
print(mymodule2.mystr2)

Inspect a Number Variable in Debug Mode

Debug Mode with Variable Explorer is a simple way to see object values as
you step through your code. In this example, in one line the Editor creates a string
variable named “mynumber” and assigns a value.

mynumber = 57

 Chapter 6 214

1.	 Run the program in Debug Mode to create the variable in memory.

2.	 Next, I type ”mynumber” in the Console. Because I am in Debug Mode,
the Console prompt is ipdb>.

	 Variable Explorer also shows the value of the “mynumber” variable.

Inspect a String Value with Interactive Mode

To see the value of the string in Interactive Mode, type the string name
“mystring” in the Console. The assignment statement that creates the variable is
shown below.

mystring = “purple peanuts”

A String Identifier: mystring
Value: purple peanuts
Reference: Chapter 4 - Interactive Mode

1.	 Run the program to create the string variable in memory.

2.	 Type “mystring” in the Console.

3.	 The Python Interpreter displays the value of
“mystring” on the next line in the Console.
Because you are using the Console, quotes around the value indicate this is a string.

In [2]: mystring
Out[2]: ‘purple peanuts’

6.3 True & False Values
Rather than just looking at a boolean variable in this topic, I also wanted to

recap some of the boolean objects we looked at in Chapter 3.

•	 Logic tests

•	 Compound boolean statements (“is” and “is not”)

Try This... 215

•	 Function return values

•	 Conditional statements

Recall from Chapter 3, a boolean value is either “True” or “False” and
behaves like the integers 0 and 1, respectively. Let’s experiment with some
statements in the Console that return True or False.

In [1]: not 0
Out[1]: True

In [2]: 3 is 0
Out[2]: False

The next example uses the “modulo” operator “%” that returns the
remainder when dividing two numbers. This expression returns “0,” indicating there
is no remainder. The statement is “False.” In simple terms, I am asking, “does x %
7 have a remainder?” and the answer is “no” or “0.”

In [1]: x = 21
In [2]: x % 7
Out[2]: 0

When combined with the boolean “not” operator, the same expression
is “True.” In this example, I am asking, “is it true that x % 7 does not have a
remainder?” and the answer is “yes, that is true.”

In [3]: x = 21
In [4]: not x % 7
Out[4]: True

While True

The “while” statement that follows is always True, so the program runs until
you break out of the loop.

while True:

 Chapter 6 216

Boolean Return Object

The next two functions both return “True.” Because the second function,
“myfunction2,” is simpler, it is considered more “Pythonic.”

def myfunction():
if 2 == 2:

return True

def myfunction2():
return 2 == 2

Conditional Statements

In Chapter 3, we looked at Conditional Statements. The Python Interpreter
evaluates the statement and continues executing that block of code if the
statement is True. If the statement is False, the loop ends.

for i in range(0, 20):
if i % 2 != 0:

print(“i is an odd number”, i)

Return the True Statement

The next example of a return statement returns the value of “y” or ‘hello’
because Python returns the True statement. It is “True” that y is a string; and False
that x is an integer. In this case, whichever expression is True would be returned.

x = ‘john’

y = ‘hello’

return isinstance(x, int) or isinstance (y, str)

Print the Value of a Boolean Variable

Add a print statement to your script in the Editor window, and run your
program.

myBool = False

In the example that follows, I add a print statement in the Editor window to
see the value of a bool. When I run the program, the output of the print statement

Try This... 217

is shown in the Console pane.

A Boolean Identifier: myBool
Value: False
Reference: Chapter 4 - Add Print Statements

1
2

myBool = False
print(myBool)

In [1]: runfile(‘C:/SampleScript.py’, wdir=’C:’)
False

Inspect a Boolean Variable in Debug Mode

Debug Mode with Variable Explorer is a simple way to see object values as
you step through your code. In this example, in one line, the Editor creates a
boolean variable named “myBool” and assigns a value.

myBool = True

1.	 Run the program in Debug Mode to create the variable in memory.

2.	 Next, I type ”myBool” in the Console. Because I am in Debug Mode, the
Console prompt is ipdb>.

ipdb> myBool
False

	 Variable Explorer also shows the value of the “myBool” variable.

Inspect a Boolean Value with Interactive Mode

To see the value of the boolean variable in Interactive Mode, type the
variable name “myBool” in the Console. The assignment statement that creates
the variable is shown below.

 Chapter 6 218

myBool = True

A Boolea Identifier: myBool
Value: True
Reference: Chapter 4 - Interactive Mode

1.	 In the Editor, type the assignment statement to create the variable in
memory and run your program.

myBool = True

2.	 Type “myBool” in the Console.

In [2]: myBool
Out[2]: True

3.	 The Python Interpreter displays the value of “myBool” in the Console.

Boolean Operations

In Chapter 3 we looked at the boolean operators “and,” “or,” and “not.” These
operators are sometimes referred to as short-circuit operators. The evaluation of a
compound boolean expression stops when an outcome is reached. In this example,
the Python Interpreter stops evaluating the expression after “5 == 4” because the
statement evaluates to “False.”

if 5 == 4 and 2 != 6:

6.4 Tuple Objects and Values
In this topic, I’ll look at several ways to inspect tuple objects and tuple

element values. To create a tuple, use this syntax in the Editor:

mytuple = (‘Apple’, ‘Orange’, ‘Watermelon’)

Try This... 219

Print All Tuple Item Values

Add a print statement to your script in the Editor window and run your
program. The output of the print statement is shown in the Console pane.

All Items in the Tuple
Identifier: mytuple
Values: Apple, Orange, Watermelon
Reference: Chapter 4 - Add Print Statements

2
3
4

print(mytuple)

In [1]: runfile(‘C:/SampleScript.py’, wdir=’C:’)
(‘Apple’, ‘Orange’, ‘Watermelon’)

The parentheses around the value indicate this is a tuple.

Print a Tuple Item Value

To see the value of a tuple item, type mytuple[0]. The first item in the tuple
has an index value of 0.

A Tuple Item
Identifier: mytuple[0]
Value: Apple
Reference: Chapter 4 - Add Print Statements

1.	 Add a print statement to your script in the Editor window.

2.	 Run your program. The output of the print statement is shown in the
Console pane.

 Chapter 6 220

1
2
3

print(mytuple[0])

In [1]: runfile(‘C:/SampleScript.py’, wdir=’C:’)
Apple

Inspect All Tuple Items in Interactive Mode

Continuing on using the previous example, to see all the values of a tuple
named “mytuple,” type the tuple name “mytuple” in the Console.

All Items of the Tuple
Identifier: mytuple
Value: Apple, Orange, Watermelon
Reference: Chapter 4 - Interactive Mode

1.	 Run the program to create the tuple variable in memory.

2.	 Type “mytuple” in the Console in Interactive Mode. The Python
Interpreter displays the value of “mytuple” on the next line in the
Console. The parentheses around the value indicate this is a tuple.

Object Type Identifier Value

A Tuple mytuple purple peanuts

In [2]: mytuple
Out[2]: (‘Apple’, ‘Orange’, ‘Watermelon’)

Inspect A Tuple Item in Interactive Mode

To see the value of a tuple object “mytuple,” type “mytuple” in the Console.
The first element in the tuple has an index value of 0.

Try This... 221

A Tuple Item
Identifier: mytuple[0]
Value: Apple
Reference: Chapter 4 - Interactive Mode

1.	 Run the program to create the tuple variable in memory.

2.	 Type “mytuple[0]” in the Console in Interactive Mode. The Python
Interpreter displays the value of the “mytuple[0]” object on the next line
in the Console. The parentheses around the value indicate this is a tuple.

In [2]: mytuple[0]
Out[2]:(‘Apple’)

6.5 List Objects and Values

In this topic, I’ll look at several ways to inspect list objects and list item
values. To create a list, use this syntax:

mylist = [‘soda’, ‘water’, ‘coffee’]

Print All List Item Values

In this example, I print out the three strings in “mylist” to the Console pane.

All Items of the List
Identifier: mylist
Value: soda, water, coffee
Reference: Chapter 4 - Add Print Statements

 Chapter 6 222

1.	 Add a print statement to your script in the Editor window.

2.	 Run your program. The output of the print statement is shown in the
Console pane. The brackets around the value indicate this is a list.

1
2
3

mylist = [‘soda’, ‘water’, ‘coffee’]
print(mylist)

In [1]: runfile(‘C:/SampleScript.py’, dir=’C:’)
[‘soda’, ‘water’, ‘coffee’]

Print the Value of a List Item

To print the value of a list item, add a print statement to your script in the
Editor window, and run your program. The second item in the list has an index
value of 1.

A List Item
Identifier: mylist[1]
Value: soda, water, coffee
Reference: Chapter 4 - Add Print Statements

1.	 Add a print statement to your script in the Editor window.

2.	 Run your program. The output of the print statement is shown in the
Console pane. In the example below, the output is “water.”

	 The quotes or apostrophes around the value idicate the list item is a string.

1
2
3

mylist = [‘soda’, ‘water’, ‘coffee’]
print(mylist[1])

Try This... 223

In [1]: runfile(‘C:/SampleScript.py’, wdir=‘C:’)
‘water’

Inspect a List Item in Debug Mode

Debug Mode with Variable Explorer is a simple way to see object values as
you step through your code. In this example, I run the program in Debug Mode.
Because I am in Debug Mode, the prompt is ipdb>.

Notice Variable Explorer shows the values in the “drinks” list. The third
item is “coffee” and has an index value of 2.

A List Item
Identifier: drinks[2]
Value: coffee
Reference: Chapter 4 - Debug Mode

1.	 Run the program in Debug Mode to create the variable in memory.

2.	 Type drinks[2] in the Console, as shown below.

Figure 6.1 

 Chapter 6 224

Inspect All Items of a List in the Console

To see all values of a list, type the list name in the Console.

All Items in the List
Identifier: mylist
Value: soda, water, coffee
Reference: Chapter 4 - Interactive Mode

1.	 Run the program.

2.	 Type “mylist” in the Console. The Python Interpreter displays
the value of “mylist” on the next line in the Console.
Because this is a list, the value is enclosed in brackets.

	 The list elements are strings as idicated by the apostrophes.

In [2]: mylist
Out[2]: [‘soda’, ‘water’, ‘coffee’]

Inspect a List Item in the Console

In this example, I run the program and type “mylist[1]” in the Console. The
second element in the list has an index value of 1.

A List Item
Identifier: mylist[1]
Value: water
Reference: Chapter 4 - Interactive Mode

1.	 Run the program.

2.	 Type “mylist[1]” in the Console. The Python Interpreter displays the value
of mylist[1] in the Console.

	 Because this list element is a string, the value is inside quotes.

Try This... 225

In [2]: mylist[1]
Out[2]: ‘water’

6.6 Dictionary Objects and Values
In this topic, I’ll look at several ways to inspect Dictionary objects and

dictionary key:value pairs. To create a dictionary, use this syntax:

mydictionary = {‘Name’: ‘Zimmerman’,
‘Grade’: ‘A’,
‘Course’: ‘Python Programming’}

Print the Value of a Dictionary Key:Value Pair

To print the value of a dictionary key, add a print statement to your script in
the Editor window, and run your program.

A Dictionary Key:Value
Identifier: mydictionary[‘Name’]
Value: Zimmerman
Reference: Chapter 4 - Add Print Statements

1.	 Add a print statement to your script in the Editor window.

2.	 Run your program. The output of the print statement is shown in the
Console pane. In the example below, the output is “Zimmerman.”

1
2
3
4

mydictionary = {‘Name’: ‘Zimmerman’,
‘Grade’: ‘A’,
‘Course’: ‘Python Programming’}

print(mydictionary[‘Name’])

In [1]: runfile(‘C:/SampleScript.py’, wdir=’C:’)
Zimmerman

 Chapter 6 226

Inspect All Dictionary Items in the Console

To see all the key-pairs of a dictionary named “mydictionary,” type
“mydictionary” in the Console. In this example, I run the program, and the Python
Interpreter displays the key:value pairs of “mydictionary” on the next line in the
Console.

All Dictionary Items
Identifier: mydictionary
Key-Pair Values: Name: Zimmerman, Grade: ‘A’, ‘Course’: ‘Python Programming’
Reference: Chapter 4 - Interactive Mode

1.	 Run the program.

2.	 Type “mydictionary” in the Console. The Python Interpreter displays the
value of “mydictionary on the next line in the Console.

	 Because this value is a dictionary curly braces surround the elements.

In [2]: mydictionary
Out[2]: {‘Name’: ‘Zimmerman’, ‘Grade’: ‘A’. ‘Course’: ‘Python
Programming’}

Inspect a Dictionary Item Value in the Console

Once you know a key name in a dictionary, you can find the value of
the dictionary key:value pair. In this example, I run the program and type
mydictionary[‘Grade’] in the Console. The key name is “Grade.”

A Dictionary Item
Identifier: mydictionary[‘Grade’]
Value: A
Reference: Chapter 4 - Interactive Mode , Chapter 3 - Find the Value of a
Dictionary Item.

1.	 Run the program.

2.	 Type “mydictionary[‘grade’]” in the Console. The Python Interpreter
displays the value of “mydictionary[‘Grade’]” on the next line in the
Console.

Try This... 227

	 If you don’t know the key name, the next example shows how to iterate
through key names.

In [2]: mydictionary[‘Grade’]
Out[2]: ‘A’

Inspect a Dictionary Item in Variable Explorer

Debug Mode with Variable Explorer is a simple way to see object values as
you step through your code. In this example, I create a variable “schoolinfo” in
a “for statement” on line 5. This variable “schoolinfo” is used to access the keys
in mydictionary. When I step through the “for loop” twice in Debug Mode, the
“schoolinfo” variable has the value of the second key in “mydictionary.” Keys are
in no particular order, which is why you have to iterate through the keys, or know
the key name. After running the code, the Console shows the keys: “Name, Grade,
Course.”

A Dictionary Item
Identifier: mydictionary[‘Grade’]
Variable: schoolinfo
Values: Name, Grade, Course
Reference: Chapter 4 - Debug Mode Variable Explorer

mydictionary = {‘Name’: ‘Zimmerman’, ‘Grade’: ‘A’,
‘Course’: ‘Python Programming’}

for schoolinfo in mydictionary:
print(schoolinfo)

When you double click on the name of a dictionary in Variable Explorer, a
pop-up window opens .

 Chapter 6 228

Figure 6.2  Pop-up in Variable Explorer

6.7 Does the Object have a Value of
None or Whitespace?

When importing external data into Python data structures, it’s not
uncommon to have items with a value of “None” or unexpected whitespace. For
example, if you import an Excel worksheet with empty cells, those items have a
value of “None.” Also, sometimes strings are equal to “”.

Functions with no specified return value also return “None.” The value “None”
is returned when you don’t have a return value for all paths in the function, as
explained in the Chapter 3 topic, “Function Return Values.” Example 7.17 in Chapter
7 also illustrates a function that returns “None.”

The “None” value causes problems when passing arguments to functions that
expect a particular type or value for an object. For example, the DateTime library
function “.strftime()” expects an argument of type “datetime”, “time”, or “date.”
If you pass an object that has a value of “None” to the “.strftime()” function, the
Python interpreter displays an error, as shown in Chapter 7, Example 7.20.

Sadly, this is also one way Divide by Zero errors happen in a program. When
you convert an item in a data structure from a string to an “int,” an item with a
value of “None” becomes a zero. The Divide by Zero error is shown in the Chapter
7 Examples 7.24 and 7.17, and includes a sample “if statement” to test for a
“None” value or “NoneType.”

Whitepsace Characters

Another cause of unexpected consequences is whitespace. There may
be a tab, line return, or some other character in your data that impacts a search
or comparison. These string functions are useful for removing those unseen
characters.

lstrip() Remove left whitepspace characters.
rstrip() Remove right whitespace characters.
strip() Remove whitespace characters from both sides.

To identify whitespace characters you can use the repr() function as outlined
in the Chapter 3 topic, “Whitespace Characters.” In Chapter 7, Example 7.29
demonstrates whitespace errors.

Try This... 229

6.8 What is the Object Type?
In Debug Mode, Variable Explorer shows the type of the object. Another

option to view whitespace is to add a print statement, or type commands in the
Console, as outlined earlier. The second example below prints the type of the
function’s return object.

print(type(mystring))
print(type(myfunction())

Object Syntax

number, string or data
structure

type(mystring)
type(mytuple)
type(mylist)
type(mydictionary)

a tuple item type(mytuple[0])

a list item type(mylist[0])

a dictionary item type(mydictionary(‘Name’])

6.9 What is the Length of the Object?
The len() function shows the length of a string or the number of items in

a data structure. For example, len(mydictionary) would return the number of
dictionary key:value pairs, and len(mylist) would return the number of items in
the list.:

Object Syntax

number, string or data
structure

len(mystring)
len(mytuple)
len(mylist)
len(mydictionary)

a tuple item len(mytuple[0])

a list item len(mylist[0])

a dictionary item len(mydictionary(‘Name’]

6.10 What are the Function Arguments?
Before using a function, identify what type of arguments the Function

 Chapter 6 230

expects. Then, check your arguments to be sure they are the correct type and
value, as outlined previously. The Help pane and searching the Internet are a
great way to review the definition of the function to ensure both the arguments
and return objects are what you expect. In the Console, you can also use these
introspection functions for more information about your object, as outlined in
Chapter 4 in the topic “Interactive Mode.”

In [1]: myfunction?
In [2]: dir(myfunction)
In [3]: help(myfunction)

The reference for built-in functions can be found on docs.python.org.
Example 26 in Chapter 7 also looks at these options.

The Function Call Signature

Ideally every function has a “function call signature.” The “inspect” module
includes signature(myfunction) that returns a function’s docstring. The
getfullargspec() function displays the names and default values of a function.
Chapter 7, Example 20 uses the signature() function to retrieve parameter
information.

For additional information on the “openpyxl” method “load_workbook,” I
can look at the “call signature” for that callable object. In Python v3.x, PEP 362
specifies the function signature object and lists each parameter accepted by a
function. In the Console, import the module and print the signature for the object,
as shown below. In Chapter 7, Example 7.20 also illustrates this syntax from PEP
362. The inspect library displays the DocString, and is mentioned in the topic
“Classes” in Chapter 3.

1
2

from inspect import signature
print(str(signature(load_workbook)))

Inspect the Docstring

Hopefully, functions include a “docstring” explaining the purpose of the
function and what the function returns, if anything. In this next example, I’m
inspecting the arguments, signature, and docstring of “myfunction.” The last line
retrieves the “docstring” using the dotted notation “myfunction.__doc__.”

Try This... 231

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

from inspect import *
#
#
def myfunction(a = myint, b = myfloat):
	 ‘’’
	 this function takes an int and a float
	 and doesn’t do anything
	 ‘’’
	 pass
#
#
from inspect import *
print(getfullargspec(myfunction))
print(signature(myfunction))
print(myfunction.__doc__)

6.11 What Type of Object Does a
Function Return?

In Chapter 3, we looked at “functions that return a tuple” and “function
return or yield objects.” The “Interactive Mode” of the Console is a great way to
check what a function returns. You may want to check the value, type, or length of
the object.

print(myfunction())

type(myfunction())

len(myfunction())

The Help pane is another way to review the definition of the function and
docstring, to ensure both the arguments and return object are what you expect. A
function returns one object, but that object might be a tuple with several items as
outlined in Chapter 3. Example 26 in Chapter 7 looks at these options.

 Chapter 6 232

7. Examples

In this Chapter, we take “debugging” for a spin. These examples build on
everything we’ve looked at so far. It doesn’t matter if you landed here first, or read
everything to this point. Either way, I provide references to those previous topics,
in case you want to take a brief sojourn to review them.

Chapter 7234

Ex Description Built-in Error Type

1 List index out of range IndexError

2 List index out of range (Example 1 continued) IndexError

3 Wrong Variable Name NameError

4 Invalid assignment Runtime

5 While statement not indented IndentationError

6 Method arguments incorrect AttributeError

7 Empty block is illegal IndentationError

8 Parentheses not matched SyntaxError

9 Colon misssing SyntaxError

10 Case sensitive NameError

11 Keyword missing SyntaxError

12 Illegal characters or keyword SyntaxError

13 Misspelled identifier NameError

14 File doesn’t exist FileNotFoundError

15 Adding incorrect types TypeError

16 Misspelled keyword SyntaxError

17 Value is none TypeError

18 Method attribute not found AttributeError

19 Module not found NameError

20 Key not in dictionary KeyError

21 Arugment is incorrect type ValueError

22 Object not found - NameError NameError

23 Invalid data passed to method ValueError

24 Calculation causes a ZeroDivisionError ZeroDivision Error

25 There is a mistake in a math calculation

26 Assigning datetime value causes ValueError ValueError

27 Matching strings NoneType error NoneTypeError

28 Matching strings fails TypeError

29 Whitespace or special characters

30 Debug: Step through your function

31 Key not in dictionary KeyError

32 ‘2’ + 2 Concatenate fails TypeError

33 Function returns 2 values TypeError

34 Unsupported operand

35 Generator object not subsciptable StopIteration

36 Missing 1 required positional argument TypeError

37 Reserved keyword TypeError

38 Invoking a class method raises an error AttributeError

Examples 235

Ex Description Built-in Error Type

39 Key error creating a dictionary key:pair. AttributeError

40 Illegal target for annotation

41 Too many values to unpack ValueError

42 Tuple object does not support item assignment TypeError

43 An object is not callable TypeError

44 Can only concatenate tuple not ‘str’ TypeError

45 Float comparison fails

46 Unhashable type: ‘dict’ TypeError

47 ‘builtin_function_or_method’ object is not subscriptable TypeError

48 String comparison error TypeError

49 Invalid literal for int() with base 10 ValueError

50 A variable is referenced before assignment UnboundLocalError

51 Plot - shape mismatch ValueError

52 Unpacking operator IndexError

53 Unpack non-iterable bool TypeError

For each example that follows, I use a systematic approach to examine the program.

Intended Outcome: What I want the program to do is the Intended
Outcome.

Actual Result: What the program did is the Actual Result.

Incorrect Code: The Incorrect Code is the actual code that is not working
properly.

Debugging Experiment: The steps I use to “debug” what the program is
actually doing comprise the Debugging Experiment.

How to Resolve the Issue: This section is a brief description of the change
to the code to resolve the issue.

Correct Code: The Correct Code that works as I intended.

References: The References list previous topics related to this example.

Chapter 7236

7.1 List Index Out of Range
Description: The list index is out of range.

Intended Outcome
There are two lists in this program, “meals” and “fruits.” I want the program

to loop through each list and print the items in order.

Actual Result
The Console output shows the print statement on line 6 repeats with the

first item in the List.

Incorrect Code
This is the Example 7.1 code before any changes. Can you spot the areas we

need to fix? We’ll look at each error in Examples 7.1 and 7.2.

1
2
3
4
5
6
7
8
9
10

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
while i < 4:

j = 0
print(“my meal is: ”, meals[i])
while j < 4:

print(“My choice of fruit is: ”, fruits[i])
j = j + 1

i = i + 1

Debugging Experiment
In this example, when I run the program, it loops continuously. First, I use

Debug Mode to research what is happening. This is a good time to backup your
files before making any changes.

1.	 Run the program. The program runs endlessly. The program is in an
infinite loop. In the Console, the Python Interpreter repeatedly outputs
the print statement from line 6.

2.	 To stop the program, in the Consoles menu, I select “Restart kernel.”

	 Double click twice on line 6 to add a breakpoint. Select “Debug File” on the
menu, as shown below.

Examples 237

3.	 The Console prompt changes to ipdb> to indicate you are in
Debug Mode. In the Console, type “s” to step through the program. The
Python Interpreter moves to the next line.

	 Type “s” a few times, and you’ll notice the program loops back to line 4.
Variable Explorer shows the value of “i” is 0 and is not changing as the
program runs.

4.	 In the earlier figure, the print statement on line 6 was repeatedly output
to the Console, indicating that the “while loop” on line 4 is looping
continuously. I suspect that my counter “i” is not incremented properly on
line 10.

	 In the Console pane, type “q” to quit Debug Mode. The next topic
outlines the change to resolve this issue.

Press Control + C to stop a program, or choose
“Restart kernel” from the Consoles menu. 

5.	 On the View, Panes menu, select “Outline” to see your code grouped in
“suites.” Line 10 is not part of the suite of code that begins on line 4.

How to Resolve the Issue
In the Editor I indent line 10. Now line 10 is part of the suite of code that

Chapter 7238

begins on line 4, with the “while” control statement. One error is fixed, but there is
another error we’ll look at in Example 7.2.

Good Code

1
2
3
4
5
6
7
8
9
10

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
while i < 4:

j = 0
print(“my meal is: “, meals[i])
while j < 4:

print(“My choice of fruit is: ”, fruits[i])
j = j + 1

i = i + 1

Reference
These topics from previous chapters are a good reference for this example.

Chapter 2 - Debugging Steps
Chapter 3 - Control Statements
Chapter 3 - Iterate through Items in a List
Chapter 3 - Indexing
Chapter 3 - Suite of Code
Chapter 4 - Add Print Statements
Chapter 4 - Backups
Chapter 4 - Interactive Mode
Chapter 4 - Debug Mode Variable Explorer
Chapter 4 - Infinite Loop
Chapter 5 - Traceback
Chapter 5 - IndentationError
Chapter 5 - IndexError
Chapter 6 - Check Object Type

7.2 Index Error
Description: The list index is out of range. This kind of runtime error

appears when you run the program.

Intended Outcome
There are two lists in this program, “meals” and “fruits.” I want the program

to loop through each list and print the items.

Examples 239

Actual Result
The print statement on line 8 “fruits[i]” causes an IndexError because the

index is out of range.

Incorrect Code
Example 7.2 code before any changes follows.

1
2
3
4
5
6
7
8
9
10

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
while i < 4:

j = 0
print(“my meal is: “, meals[i])
while j < 4:

print(“My choice of fruit is: ”, fruits[i])
j = j + 1

i = i + 1

Debugging Steps
In this example the program halts. I use Debug Mode to research what is

happening.

1.	 Run the program. The Python Interpreter halts because of an exception
and displays an IndexError in the Console.

	 In the Console, the Python Interpreter displays a Traceback message
“list index out of range.” The error is in Line 8. If I click on “line 8” in the
Console, it is a hyperlink to that location in my code in the Editor pane.

Chapter 7240

2.	 Type %debug in the Console pane to start Debug Mode. The
Console prompt changes to ipdb>.

3.	 Type fruits[3] in the Console pane. Variable Explorer shows “i” has a
value of 3, so fruits[i] evaluates to fruits[3]. The message “IndexError: list
index out of range” is displayed.

Examples 241

4.	 Now type fruits[2] In the Console, pane. The value ‘grape’ is displayed.
Grape is the last item in the “fruits” list. The range of the fruits list is 0 to
2.

	 If this had been a long list, I could have typed len(fruits) in the Console,
to see how many items were in the list.

	 In the Console pane type “q” to quit Debug Mode. The next topic outlines
the change to resolve this issue.

How to Resolve the Issue
While the error occurred on line 8, the problem is actually on line 7. In the

Editor, I update line 7 to use the variable “j.”

	 while j < 3:

Chapter 7242

Good Code

1
2
3
4
5
6
7
8
9
10

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
while i < 4:

j = 0
print(“my meal is: ”, meals[i])
while j < 3:

print(“My choice of fruit is: ”, fruits[j])
j = j + 1

i = i + 1

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Indexing
Chapter 3 - Iterate through Items in a List
Chapter 4 - Debug Mode
Chapter 4 - Interactive Mode
Chapter 4 - Debug Mode Variable Explorer
Chapter 5 - Traceback
Chapter 5 - IndexError
Chapter 6 - Check Object Type
Chapter 6 - Check Length of Object

7.3 Wrong Variable
Description: The code references the wrong variable name.

In this example, there is a flaw in the overall design or logic of my program.
The program does what I coded, but the outcome is not what I intended. In the
Console, my print statement does not iterate through my list of fruits. This program
is slightly different from the previous examples.

Intended Outcome
The program should print a list of fruits for each meal.

Actual Result
The program halts with an IndexError: list index out of range.

Examples 243

Incorrect Code
Example 7.3 code before any changes follows.

1
2
3
4
5
6
7
8
9
10
11

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
while i < 4:

j = 0
print(“my meal is: ”, meals[i])
while j < 3:

print(“My choice of fruit is: ” fruits[i])
print(“j is: ”, j)
j = j + 1

i = i + 1

Debugging Steps
1.	 When I run the program, the Python Interpreter halts with an error. The

Traceback shows the IndexError was caused by line 8.

2.	 In the Console, I type fruits[i], which returns the same IndexError.

	 Variable Explorer shows “i” has a value of 3. The fruits list has three
items, and the indices are 0-2. Now I realize I should have used the “j”
variable as a counter for the fruits list.

Chapter 7244

	 At this point, I just typed a statement in the Console, and I didn’t
use Debug Mode. Instead, I’ll update my script in the Editor pane to
resolve the issue.

How to Resolve the Issue
In the print statement I change the variable to “j” on line 8.

print(“My choice of fruit is:”, fruits[j])

Examples 245

Good Code

1
2
3
4
5
6
7
8
9
10
11

meals = [‘breakfast’, ‘lunch’, ‘snack’, ‘dinner’]
fruits = [‘apple’, ‘orange’, ‘grape’]
i = 0
while i < 4:

j = 0
print(“my meal is: ”, meals[i])
while j < 3:

print(“My choice of fruit is: ”, fruits[j])
print(“j is: ”, j)
j = j + 1

i = i + 1

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Indexing
Chapter 3 - IndentationError
Chapter 3 - Iterate through Items in a List
Chapter 4 - Debug Mode
Chapter 4 - Debug Mode Variable Explorer
Chapter 6 - Check Object Type

7.4 Invalid Assignment
Description: The assignment statement is invalid. This kind of runtime error

is uncovered when you run the program.

Intended Outcome
This program should print “mylist” items to the Console.

Actual Result
The Console output shows the print statement on line 4 repeats with the

first item in the List.

Incorrect Code
This is the Example 7.4 code before any changes.

Chapter 7246

1
2
3
4
5

mylist = [‘soda’, ‘water’, ‘coffee’]
i = 0
while i < 3:

print(mylist[i])
i =+ 1

Debugging Steps

1.	 Run the program. The program runs endlessly. The program is caught in
an infinite loop. In the Console, the Python Interpreter repeatedly outputs
the print statement from line 4.

2.	 To stop the program, in the Consoles menu, I select “Restart kernel.”

	 Double click twice on line 4 to add a breakpoint. Select “Debug File” on the
menu.

3.	 The Console prompt changes to ipdb> to indicate you are in
Debug Mode. In the Console, type “s” to step through the program. The
Python Interpreter moves to the next line.

	 Type “s” a few times, and you’ll notice the program loops back to line 3.
Variable Explorer shows the value of “i” is 0 and is not changing as the
program runs.

How to Resolve the Issue
The counter is not incremented on line 5 because I reversed the syntax. The

statements “i = i + 1” and “i += 1” both increment the “i” counter. I update line 5
with the correct syntax.

Good Code

1
2
3
4
5

mylist = [‘soda’, ‘water’, ‘coffee’]
i = 0
while i < 3:

print(mylist[i])
i += 1

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Arithmetic Operators

Examples 247

Chapter 4 - Debug Mode
Chapter 4 - Debug Mode - Variable Explorer
Chapter 4 - Infinite Loop

7.5 While Indentation Error
Description: The “while” statement is not indented properly. The

Console displays an IndentationError.

Intended Outcome

Print a list of numbers.

Actual Result
When I run the program, it halts with an error. In the Console, there is an

arrow pointing to “t” in the word “print” on line 5.

IndentationError: expected an indented block

Incorrect Code
This is the Example 7.5 code before any changes.

1
2
3
4
5
6

wadofcash = [111, 222, 333, 444]
i = 0
x = 3
while i <= x:
print(wadofcash[i])

i = i + 1

Debugging Steps
Spyder displays a yellow warning triangle next to the print statement on line

5. When I hover my mouse over the triangle, a pop-up message is displayed, as
shown below.

Chapter 7248

Figure 7.1  Indentation Warning

On the View, Panes menu, select “Outline” to see your code grouped
in “suites.” Because line 5 is not indented, it is not part of the suite of code that
begins with the control statment on line 4. The Chapter 3 topic, “Indented Code,”
looks at suites.

How to Resolve the Issue
Indent the print statement on line 5.

Good Code

1
2
3
4
5
6

wadofcash = [111, 222, 333, 444]
i = 0
x = 3
while i <= x:

print(wadofcash[i])
i = i + 1

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Indented Code (a Suite)

Examples 249

Chapter 3 - Control Statements
Chapter 4 - Help()
Chapter 5 - Traceback
Chapter 5 - IndentationError

7.6 Incorrect Method Arguments
Description: The openpyxl “cell” method has incorrect attributes. The

Console displays an AttributeError.

Intended Outcome
My intention was for the code to open an Excel file and print each column 2

value as the program iterates through the rows.

Actual Result
The program halted with an “AttributeError” exception when run with

the Python 2.7 Interpreter. The program runs fine on my Python 3 environment.
This AttributeError indicates the Python Interpreter doesn’t recognize the line 8
syntax.  

AttributeError: ‘int’ object has no attribute ‘upper’

Line 8 is calling the “.cell()” method. In the discussion of Classes in Chapter
3, we created an instance of a class. Valid attribute names of a class include
both “data attributes” and “methods.” Python objects have attributes that are
referenced with the dot notation.

Incorrect Code
This is the Example 7.6 code before any changes.

1
2
3
4
5
6
7
8
9
10

Ex_6_WRONG.py
#
from openpyxl import load_workbook
wb1 = load_workbook(‘Before.xlsx’, data_only=True)
ws1 = wb1[“ExportedData”]
bfr = 2
while bfr <= ws1.max_row:

bfritem = ws1.cell(bfr, 2).value
print(bfritem)
bfr = bfr + 1

Chapter 7250

Debugging Experiment
In this example, when I run the program, the Python Interpreter prints an

“AttributeError” to the Console. I use Help to research what is happening.

1.	 Run the program. The Python Interpreter halts because of an exception
and displays an AttrbuteError in the Console.

	 In the Console, the Python Interpreter displays a Traceback message
telling me the error is in Line 8. If I click on “line 8” in the Console, it is
a hyperlink to that location in my code Ex_6_WRONG.py in the Editor
pane.

2.	 The issue seems related to the object on line 8, and I suspect there is
something wrong with the syntax for the atttributes “cell” or “value.”
I’m curious about what syntax I should use with the cell method. In the
Console, I can type help(ws1.cell()) or dir(ws1.cell()) for more
information on the “.cell()” method.

3.	 Help indicates the Python Interpreter could not use the values for row
and column when calling the function “cell.” In line 8, I need to add the
argument keywords.

How to Resolve the Issue
In the Editor pane, I update line 8 of Ex_6_WRONG.py to use the

keywords, as shown below. This change ensures the program runs with Python 2.7
or 3.7.

Examples 251

bfritem = ws1.cell(row=bfr, column=2).value

Good Code

1
2
3
4
5
6
7
8
9
10

Ex_6_WRONG.py
#
from openpyxl import load_workbook
wb1 = load_workbook(‘Before.xlsx’, data_only=True)
ws1 = wb1[“ExportedData”]
bfr = 2
while bfr <= ws1.max_row:

bfritem = ws1.cell(row=bfr, column=2).value
print(bfritem)
bfr = bfr + 1

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Attributes
Chapter 3 - keyword arguments
Chapter 3 - Iterate through Items in a List
Chapter 3 - Class Variables and Attributes
Chapter 3 - Methods
Chapter 4 - Help()
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 5 - AttributeError
Chapter 6 - Check Arguments

7.7 Empty Block of Code
Description: An empty block of code is illegal. When you have an empty

block of code the Console displays an IndentationError. 

Intended Outcome
While writing a program, I want a block of code that does nothing. At some

point, I intend to add logic.

Actual Result
The Python Interpreter raises an IndentationError exception.

Chapter 7252

IndentationError: expected an indented block

Incorrect Code
This is the Example 7.7 code before any changes.

1
2
3
4

for mynum in [157, 19, 56]:
if mynum == 157:
else:

print(‘Happy birthday, you are’, mynum)

Debugging Steps
The Console shows an IndentationError on line 3. As is often the case, the

actual error is the line above.

How to Resolve the Issue
In keeping with my design goal, I want the code to do nothing. On line 3 I

add a pass() statement.

Good Code

1
2
3
4
5

for mynum in [157, 19, 56]:
if mynum == 157:

pass
else:

print(‘Happy birthday, you are’, mynum)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Suite
Chapter 4 - Help()
Chapter 5 - Traceback
Chapter 5 - RuntimeError
Chapter 5 - SyntaxError

Examples 253

7.8 Parentheses Not Matched
Description: Parentheses are not matched. The Console displays a

SyntaxError.

Intended Outcome
On line 3, I want to calculate projected sales.

Actual Result
When I run the program, the Console displays a SyntaxError in line 3. There

is an arrow highlighting the location where the parentheses is missing.

SyntaxError: invalid syntax

Incorrect Code
This is the Example 7.8 code before any changes.

1
2
3

sales = 150.00
days = 31
projectedsales = (sales/days)*31)

Debugging Steps
The Editor displays a red circle with an “x” to the right of line 3, indicating

the parser identified invalid syntax. When I hover my mouse over the parentheses
on that line, the paired parentheses are highlighted in green. 

When I move my mouse to the end of the line, the last parenthesis is
highlighted in orange, indicating there is no corresponding parenthesis.

Chapter 7254

How to Resolve the Issue
On line 3, I add an open parenthesis in front of “sales,” as shown below.

Good Code

1
2
3

sales = 150.00
days = 31
projectedsales = ((sales/days)*31)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 4 - Help()
Chapter 4 - The Editor
Chapter 5 - SyntaxError

7.9 Missing Colon
Description: The colon is missing. The Console displays a SyntaxError.

Intended Outcome
This code should print “mylist” items to the Console.

Actual Result
When I run the program, there is a SyntaxError. An arrow points to the

location of the error on line 2.

SyntaxError: invalid syntax

Incorrect Code
This is the Example 7.9 code before any changes.

1
2
3

mylist = [‘soda’, ‘water’, ‘coffee’]
for i in range(3)
print(mylist[i])

Examples 255

Debugging Steps

The Editor has a red circle with an “x” by line 2 and a yellow triangle to
the left of line 3. When I hover over the yellow triangle, a pop-up message is
displayed, “unexpected indentation.”

How to Resolve the Issue
Line 2 is a “for” control statement, so I must add a colon at the end of the

line.

Good Code

1
2
3

mylist = [‘soda’, ‘water’, ‘coffee’]
for i in range(3):

print(mylist[i])

Reference

These topics from previous chapters are a good reference for this example.

Chapter 3 - Control Statements
Chapter 4 - The Editor
Chapter 4 - Help()
Chapter 5 - SyntaxError

7.10 Case Sensitive
Description: Python is case sensitive. Variables with the wrong case are

Chapter 7256

interpreted as misspelled by the Python Interpreter and cause a NameError.

Intended Outcome

This code should print “mylist” items to the Console.

Actual Result

When I run the program, the Console displays a NameError on line 3.

NameError: name ‘mylist’ is not defined

Incorrect Code

In this example, I changed the case of the variable “myList” on line 1, to
demonstrate a NameError.

If you previously ran Example 7.9, “mylist” is still in memory, and you
won’t see a NameError. I wanted to demonstrate that sometimes you
need to update the “namespace” to be certain you’re looking at values
from this program.

This is the Example 7.10 code before any changes.

1
2
3

myList = [‘soda’, ‘water’, ‘coffee’]
for i in range(3):

print(mylist[i])

Debugging Steps

1.	 To clear memory (the namespace), in the Consoles menu select “Restart
kernel.” You could also type %reset in the Console.

2.	 When I run the program, the Console raises a NameError from line 3.

Examples 257

How to Resolve the Issue
On the first line, I change “mylist” to all lowercase.

Good Code

1
2
3

mylist = [‘soda’, ‘water’, ‘coffee’]
for i in range(3):

print(mylist[i])

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Keyword Arguments
Chapter 4 - Help()
Chapter 5 - NameError

7.11 Missing Keyword
Description: A keyword is missing when defining a function causing a

SyntaxError.

Intended Outcome
This code creates a new function that adds two numbers together.

Actual Result
The Editor displays a red circle with an “x” to the left of line 1. When I run

the program, the Console traceback says there is a SyntaxError on line 1.

SyntaxError: invalid syntax

Chapter 7258

Figure 7.2  Function with Error

Incorrect Code
This is the Example 7.11 code before any changes.

1
2

myfunction(x, y):
return x+y

Debugging Steps
When looking at line 1, I see that I left off the keyword “def.” I could also

search online for the Python documentation on defining a function.

How to Resolve the Issue
Add “def” to the beginning of line 1.

Good Code

1
2

def myfunction(x, y):
return x+y

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Define Functions
Chapter 4 - The Editor
Chapter 5 - Traceback
Chapter 5 - SyntaxError

Examples 259

7.12 Illegal Character
Description: Illegal character in identifier name causes a SyntaxError.

Intended Outcome
This code creates a string variable.

Actual Result
The program halts with a SyntaxError. When I run the program, the Console

displays an arrow pointing to the invalid character in “my$str.”

Ex_12.py”, line 1
my$str = ‘hello’
 ^

SyntaxError: invalid syntax

In [2]:

Incorrect Code
This is the Example 7.12 code before any changes.

1
2

my$str = ‘hello’
print(my$str)

Debugging Steps
The Editor has a red circle with an “x” to the left of line 1, indicating there is

a syntax error in my assignment statement. On my computer, the Editor normally
displays functions and methods in purple, and variables are black. The color
formatting is different because the Editor is unable to interpret my code.

How to Resolve the Issue
Special characters like $, #, and @ are not allowed for variable names. I

rename my variable to “mystr” and the SyntaxError is resolved.

Chapter 7260

Good Code

1
2

mystr = ‘hello’
print(mystr)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Variables
Chapter 4 - The Editor
Chapter 4 - Help()
Chapter 4 - Debug Mode
Chapter 4 - Interactive Mode
Chapter 5 - NameError
Chapter 5 - SyntaxError

7.13 Undefined Name
Description: There is an undefined name when a variable name is

misspelled. The traceback shows a NameError.

Intended Outcome
Line 2 calculates profit using the “royalties” variable.

Actual Result
The Editor has a yellow triangle to the left of line 2 warning me there is an

error. When I run the program the Traceback shows a NameError.

NameError: name ‘royaltie’ is not defined

Incorrect Code
This is the Example 7.13 code before any changes.

1
2

royalties = 300
profit = royaltie - 25

Examples 261

Debugging Steps
In the Editor, if I click on the variable name “royaltie” on line 2, the Editor

highlights all instances of the variable throughout the code. I assign 300 to the
“royalties” variable in line 1. The variable name is misspelled on line 2.

Ex_13.py

x

royalties = 300
profit = royaltie - 25!

How to Resolve the Issue
On line 2 I correct the variable name. The Editor pane highlights all

instances of the variable name in yellow, so I know I am using the same variable
from line 2.

Good Code

1
2

royalties = 300
profit = royalties - 25

Reference
These topics from previous chapters are a good reference for this example.

Chapter 5 - Traceback
Chapter 4 - The Editor
Chapter 5 - NameError

7.14 FileNotFound
Description: While reading a file, the Console halts with an error

“FileNotFoundError.” In this example, factors outside my program impact my
program.

Chapter 7262

Intended Outcome
This program opens a text file and prints the contents in the Console.

Actual Result
The Console displays a “FileNotFoundError.”

FileNotFoundError: [Errno 2] No such file or directory: ‘file.txt’

Incorrect Code
This is the Example 7.14 code before any changes. Note that this syntax to

open a file would work for a .txt or .csv file.

1
2

file = open(‘file.txt’, ‘r’)
print(file.read())

Debugging Steps
The “FileNotFoundError” has a base class of “IOError.” I want to check the

filename in my OS directory.

1.	 Import the “os” library to work with the OS commands. In the Console,
type “import os” and then type the list command, as shown below.

Examples 263

2.	 Type os.system(‘ls -l’) to see a list of files in the current directory. The
filename has a space in the name. I can rename the file or update my
program.

How to Resolve the Issue
I decided to rename the file. I did not need to change my code. I could

also add “try” and “except” logic to handle this type of error as shown in the next
example.

Good Code

1
2

file = open(‘file.txt’, ‘r’)
print(file.read())

Reference
These topics from previous chapters are a good reference for this example.

Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 5 - RuntimeError
Chapter 5 - OSError (IOError)

7.15 Error Adding Numbers
Description: TypeError when adding numbers.

Intended Outcome
Print the total when adding two numbers.

Actual Result
When I run the program, the Console Traceback message is a TypeError.

The code uses “try” and “except” to provide exception details in the Traceback
message.

In this example, the code prints a custom message when there is a
TypeError. The last line prints my custom error message if there is another type
of Exception besides a TypeError. Chapter 4 has more information on “try” and

Chapter 7264

“except.”

 Type error when adding; eur euro ; usd 3.45

Incorrect Code
This is the Example 7.15 code before any changes.

1
2
3
4
5
6
7
8
9
10

eur = ‘euro’
gbp = 8
usd = 3.45
try:

mymoney = eur + usd
print(mymoney)

except TypeError:
print(‘Type error when adding’, eur, ‘; usd’, usd)

except Exception as strmsg:
print(strmsg)

Debugging Steps
This code has a print statement on line 8 to show the values.

print(‘Type error when adding’, eur, ‘; usd’, usd)

The Console Traceback shows the variable values. After reviewing my code,
I realize I used the “eur” variable which is a string, and I meant to use the “gbp”
variable.

Note: I could also have used the “type()” function to identify the type of
variable.

How to Resolve the Issue
On line 5, I update the assignment statement to use the variables

gbp + usd.

Examples 265

Good Code

1
2
3
4
5
6
7
8
9
10

eur = ‘euro’
gbp = 8
usd = 3.45
try:

mymoney = gbp + usd
print(mymoney)

except TypeError:
print(‘Type error when adding; gbp’, gbp, ‘; usd’, usd)

except Exception as strmsg:
print(strmsg)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 4 - Print Statements
Chapter 4 - Type()
Chapter 5 - Traceback
Chapter 5 - Try and Except
Chapter 5 - TypeError

7.16 Misspelled Keyword
Description: A misspelled keyword causes a SyntaxError. This is similar to

Example 7.13 where a variable name was misspelled causing a NameError.

Intended Outcome
An if-else statement prints a message to the Console.

Actual Result
The Editor has a red circle with an “x” next to line 3. When I run the

program it halts with a “SyntaxError.” There is an arrow pointing to the end of line
3.

SyntaxError: invalid syntax

Incorrect Code
This is the Example 7.16 code before any changes.

Chapter 7266

1
2
3
4

if 4 < 5:
pass

esle:
print(“Python rocks”)

Debugging Steps
There is a typographical error on line 3 where “else” is misspelled.

How to Resolve the Issue
Update line 3 with the correct spelling of the keyword.

Good Code

1
2
3
4

if 4 < 5:
pass

else:
print(“Python rocks”)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Reserved Keywords
Chapter 3 - Keyword Arguments
Chapter 4 - Help()
Chapter 4 - The Editor
Chapter 5 - Traceback
Chapter 5 - NameError
Chapter 5 - SyntaxError

7.17 Value is None
Description: The function return value is “None”.

Intended Outcome
My calculation using the “mymath” function’s return value prints the result

to the Console.

Examples 267

Actual Result
When “i” is 3, the Traceback in the Console displays a TypeError.

TypeError: unsupported operand type(s) for /: ‘NoneType’ and ‘int’

Incorrect Code
This is the Example 7.17 code before any changes.

1
2
3
4
5
6
7
8
9

def mymath(i=5, j=200):
if i > 3:

return i * j
if i < 3:

return j / i

result = mymath(3, 100)
print(result/10)

Debugging Steps

This program works as expected when “i” is any number except 3.

1.	 To identify what object type the function returns, I use the type() function
in the Console.

In [2]: type(mymath(3,100))
Out[2]: NoneType

	 The function returns “None” when “i” is 3.

2.	 In the Console, I call the “mymath” function again where “i” is 4. Now
the type is “int.” This means that there is a path through the “mymath()”
function without a return value.

	 In Chapter 3, we looked at a function that did not have a return value
for all paths. For this example, I’m not going to change the “mymath()”
function. Instead, I add logic to my program to handle a “None” value.

How to Resolve the Issue
Ideally, I would insure all paths through my code have a return statement.

For this demonstration I add an “if” statement to test for a “None” value.

Chapter 7268

Good Code

1
2
3
4
5
6
7
8
9
10
11
12

def mymath(i=5, j=200):
if i > 3:

return i j
if i < 3:

return j / i

result = mymath(3, 100)
if result is not None:

print(result/10)
else:

print(“result is None”)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Function Returns None
Chapter 3 - All Paths Do Not Have a Return Object
Chapter 3 - NoneType
Chapter 4 - Interactive Mode
Chapter 4 - The Editor
Chapter 5 - Traceback
Chapter 5 - Try and Except
Chapter 6 - Does the Object have a Value of NoneType or Whitespace?
Chapter 6 - Check Object Type
Chapter 6 - Value is None

7.18 Method Not Found
Description: This code has an AttributeError when a method is not found.

Intended Outcome
Using the math library, I would like to use a cube method.

Actual Result
When I run the code the Console displays this message.

AttributeError: module ‘math’ has no attribute ‘cube’.

Examples 269

Incorrect Code
This is the Example 7.18 code before any changes.

1
2
3
4
5

import math
mynum = (.3, .7)
mytotal = math.fsum(mynum)
mycube = math.cube(3)
print(mytotal)

Debugging Steps
I need to see what functions or methods are available for the “math” library.

In the Editor, after I type “math.” I pause for a moment, until a pop-up opens with
available functions, as shown below.

In the Console, I could also type dir(math) to see a list of functions/
methods in the math library.

How to Resolve the Issue
After scanning the list I see there is no “cube” method available. I update the

code to manually calculate the cube of “3” on f.

Chapter 7270

Good Code

1
2
3
4
5

import math
mynum = (.3, .7)
mytotal = math.fsum(mynum)
mycube = 3 * 3 * 3
print(mytotal)

Reference
These topics from previous chapters are a good reference for this example.
Chapter 3 - Tuple
Chapter 4 - Debug Mode
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 5 - NameError

7.19 Module Not Found
Description: This code has a ModuleNotFoundError because the Python

Interpreter can’t find a method.

Intended Outcome
Using the “matplotlib” library I want to plot a chart.

Actual Result
When I run the code, the Console displays:

NameError: name ‘plt’ is not defined

Incorrect Code
This is the Example 7.19 code before any changes.

1
2
3
4
5

import matplotlib pyplot as plot
plt.plot([1, 2, 3, 4], [25, 30, 29, 31])
plt.ylabel(‘age’)
plt.xlabel(‘participants’)
plt.show()

Examples 271

Debugging Steps
I am trying to use the “matplotlib” library’s “pyplot” function using the alias

“plot,” but am unsure how to import the library. When I search the Internet for
“import matplotlib” I find the correct syntax. In the Help pane, I could search for
“mathplotlib.pyplot” for additional details.

How to Resolve the Issue
The first line of my program needs updated to import the correct module.

There is a missing period. After I run the updated program, in the Console I can
type help(plot.figure(1)) to see additional information on my new object.

import matplotlib.pyplot as plot

Good Code

1
2
3
4
5

import matplotlib.pyplot as plot
plot.plot([1, 2, 3, 4], [25, 30, 29, 31])
plot.ylabel(‘age’)
plot.xlabel(‘participants’)
plot.show()

Reference
These topics from previous chapters are a good reference for this example.

Chapter 7272

Chapter 3 - Import Library
Chapter 4 - Help()
Chapter 5 - Traceback
Chapter 5 - ModuleNotFound

7.20 Key Not in Dictionary
Description: This code has a KeyError. The key is not in the “wb” Dictionary.

Intended Outcome
This program works with an Excel file and formats cells. Line 11 loops

through the rows, and line 12 loops through the cells of each row.

Actual Result
The program halts and the Traceback in the Console, displays this error:

KeyError: ‘Worksheet Sheet1 does not exist.’:

Incorrect Code
This is the Example 7.20 code before any changes.

1
2
3
4
5
6
7
8
9
10
11
12
13

20_KeyError.py
from openpyxl import load_workbook, styles
wb = load_workbook(‘before.xlsx’, data_only=True)
ws = wb[“Sheet1”]
#
ft = styles.Fontt(color=’4F81BD’, bold=True)
ws[‘A1’].font = ft
ws.cell(row=1, column=1).value = ‘Heading 1’
ws.column_dimensions[‘A’].width = 12
#
for row in ws.iter_rows():

for cell in row:
print(“Looping through data”)

Debugging Experiment
In this example, when I run the program the program halts with a KeyError,

which points to a dictionary. I use Debug Mode to research what is happening.

Examples 273

1.	 Run the program. The Python Interpreter halts because of an exception.

2.	 In the Console, pane the Traceback displays an error, as shown below.

	 KeyError: ‘Worksheet Sheet1 does not exist.’:

3.	 Type %debug in the Console pane to start Debug Mode. The
Console prompt changes to ipdb>.

4.	 While in Debug Mode, in the Console, type “u” to step backward through
the program. The Python Interpreter moves back to the previous call. Now
an arrow indicates the last line of code was line 4 in my 20_KeyError.py
script.

ipdb> u
1 20_KeyError.py(4)<module>()
2 from openpyxl import load_workbook, styles
3 wb = load_workbook(‘before.xlsx’, data_only=True)

----> 4 ws = wb[“Sheet1”]
5
6 ft = styles.Fontt(color=’4F81BD’, bold=True)

	 Line 4 references “Sheet1.” A KeyError indicates this is a dictionary key.
In the Console pane, type “q” to quit Debug Mode.

5.	 Now I need a method to find the sheetnames for the “wb” object. In the
Console, I use the help command, as shown below.

In [2]: myStr

Out [1]: ‘hello’

Figure 7.3  Help In the Console, Pane

	 When I scroll down in the Console pane, I see the methods for the “wb”
object. A small sample of the output is shown below. I am interested in
the “sheetnames” method.

Chapter 7274

Figure 7.4  Details on “wb” Object Methods and Functions

To see the sheetnames for the “wb” object type “ws.sheetnames” in the
Console pane, as shown below.

Figure 7.5  The sheetnames Method

	 The output indicates there is only one worksheet named “ExportedData”.

How to Resolve the Issue
When you create your own dictionary named “mydictionary,” it’s easier

to recognize a dictionary KeyError. Because the openpyxl library created the
“ws” object it’s not as obvious that this was a dictionary KeyError. For additional
information, search the Intranet for help on openpyxl worksheet objects.

To resolve the error, I update my code to the correct worksheet name, as
shown below.

Examples 275

Good Code
In the Editor, I updated line 4 with the sheetname “ExportedData,” as

shown below.

1
2
3
4
5
6
7
8
9
10
11
12
13

20_CORRECT_KeyError.py
from openpyxl import load_workbook, styles
wb = load_workbook(‘before.xlsx’, data_only=True)
ws = wb[“ExportedData”]
#
ft = styles.Fontt(color=’4F81BD’, bold=True)
ws[‘A1’].font = ft
ws.cell(row=1, column=1).value = ‘Heading 1’
ws.column_dimensions[‘A’].width = 12
#
for row in ws.iter_rows():

for cell in row:
print(“Looping through data”)

Additional Troubleshooting
In step 4, I wanted more information on “load_workbook.” The signature

function from the Chapter 6 topic, “The Function Call Signature” would be perfect
for this purpose. With Python v3.x the “signature” lists each parameter accepted
by a function. In the Console, import the module and print the signature for the
object, as shown below.

In [3]: from inspect import signature
In [4]: print(str(signature(load_workbook)))
(filename, read_only=False, keep_vba=False, data_only=False, keep_links=True)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Dictionary
Chapter 3 - Search for Key Name
Chapter 3 - Tuple
Chapter 4 - Debug Mode
Chapter 4 - Help()
Chapter 5 - Traceback
Chapter 5 - KeyError

7.21 Incorrect Argument Type
Description: A Function Argument is an incorrect type causing a ValueError.

Chapter 7276

Intended Outcome
The program asks for a month as user input. The int() function converts the

data to an integer so I can use it in a calculation. The print() function outputs the
value to the Console.

Actual Result
When the program runs, on line 1 it prompts for user input. If I enter the

string “July” for the input, a ValueError is displayed in the Console. A ValueError is
raised when a function gets an argument of correct type but improper value.

ValueError: invalid literal for int() with base 10: ‘July’

Incorrect Code
This is the Example 7.21 code before any changes.

1
2
3

birthmo = int(input(‘what month were you born?’))
monthstogo = 12 - birthmo
print(monthstogo, “months until your birthday”)

Debugging Steps
The Traceback shows the program fails on line 1, which means the variable

“birthmo” is not created in memory, and is not shown in Variable Explorer.

The Traceback message shows ValueError: invalid literal for int() with base
10: ‘June.’ The string input ‘June’ causes a ValueError when the int() function tries
to convert the string to an integer.

How to Resolve the Issue
I am going to add “try” and “except” logic to handle the ValueError

exception. On line 6 I print a message for the user to enter a number.

Good Code

1
2
3
4
5
6

try:
birthmo = int(input(‘what month were you born?’))
monthstogo = 12 - birthmo
print(monthstogo, “months until your birthday”)

except ValueError:
print(‘enter a number, no letters’)

Examples 277

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Function Arguments
Chapter 3 - Types of Data
Chapter 5 - Traceback
Chapter 5 - Try and Except
Chapter 5 - ValueError
Chapter 6 - Check Object Type

7.22 Name Error
Description: When I try to use “plot” there is a NameError.

Intended Outcome
Using the “matplotlib” library I want to plot a histogram chart.

Actual Result
When I run the code, the Console displays a NameError and highlights line 4.

In [3]: ..Ex_22_WRONG.py”, line 4, in <module>
plt.plot([1, 2, 3, 4], [25, 30, 29, 31])

NameError: name ‘plt’ is not defined

Incorrect Code
This is the Example 7.22 code before any changes.

1
2
3
4
5
6
7
8
9
10

import matplotlib.pyplot as plot
#
#
myL = [13.7, 4.1, 14.4, 23.3, 27, 22, 31.99, 36.2]
bins = [0, 11, 21, 31, 40]
plt.hist(myL, bins, rwidth=0.5) # histogram graph
plt.xticks([10, 20, 30, 40])
plt.xlabel(‘age’)
plt.ylabel(‘participants’)
plt.show()

Chapter 7278

Debugging Steps
The NameError indicates the object can’t be found. In the Editor, if I hover

over the word “plot” on line 1, and I see there are no other instances of “plot”
highlighted in my code. When I imported the library on line 1, I used the alias
“plot,” and on lines 6-10 I used “plt.”

How to Resolve the Issue
In the Editor, I update line 1 to use “plt.”

Good Code

1
2
3
4
5
6
7
8
9
10

import matplotlib.pyplot as plt
#
#
myL = [13.7, 4.1, 14.4, 23.3, 27, 22, 31.99, 36.2]
bins = [0, 11, 21, 31, 40]
plt.hist(myL, bins, rwidth=0.5) # histogram graph
plt.xticks([10, 20, 30, 40])
plt.xlabel(‘age’)
plt.ylabel(‘participants’)
plt.show()

Reference
These topics from previous chapters are a good reference for this example.

Chapter 5 - NameError

7.23 Value Error
Description: There is invalid data passed to a method that is causing a

ValueError.

Intended Outcome
I want to remove one item from my list.

Actual Result
When the program runs it halts with a ValueError on line 3. A ValueError is

raised when a function or method gets an argument of correct type but improper
value.

Examples 279

ValueError: list.remove(x): x not in list

Incorrect Code
This is the Example 7.23 code before any changes.

1
2
3

fruits = [‘apple’, ‘orange’, ‘grape’]
myfruit = 2
fruits.remove(myfruit)

Debugging Steps
Line 3 uses the “remove” method. I would like to inspect the list object to

see what methods are available.

1.	 In the Console, type help(fruits). The interpreter returns a list of
methods available, showing “remove” uses the value of a list item.

2.	 In the Editor, I could position my cursor in front of “remove” and press
Cntrl + I. The Help pane displays the same information on the remove
method.

How to Resolve the Issue
Instead of using the value “2”, I update the assignment statement on line

2 to assign the value “orange” to “myfruit.” When I rerun the program there is no
error, and Variable Explorer shows the value “orange” was removed from my list.

Chapter 7280

Good Code

1
2
3

fruits = [‘apple’, ‘orange’, ‘grape’]
myfruit = ‘orange’
fruits.remove(myfruit)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Lists
Chapter 3 - remove
Chapter 4 - Interactive Mode
Chapter 4 - Help()
Chapter 5 - ValueError
Chapter 5 - RuntimeError

7.24 Divide by Zero Error
Description: The calculation in this code causes a ZeroDivisionError.

Intended Outcome
The program retrieves the current GBP exchange rate, and then converts

“gbp” to the equivalent USD value.

Actual Result
When the program runs, a ZeroDivisionError from line 7 is displayed in the

Console.

ZeroDivisionError: float divison by zero

Incorrect Code
This is the Example 7.24 code before any changes.

Examples 281

1
2
3
4
5
6
7
8

from bs4 import BeautifulSoup
from urllib.request import urlopen
usd, gbp, gbpex = 10.0, 20.0, 0.00
html2 = urlopen(‘https://usd.fxexchangerate.com’)
soup2 = BeautifulSoup(html2, ‘lxml’)
tables2 = soup2.findChildren(‘td’)
gbp = gbp/gbpex
print(“gbp converted to USD is:”, gbp)

Debugging Steps
Variable Explorer shows the value of “gbpex” is zero. In this example, I

omitted the line to retrieve the GBP exchange rate.

How to Resolve the Issue
In addition to adding the line of code to retrieve the GBP exchange rate

from a web page, I added try and except code to handle when “gbpex” causes an
exception. In Chapter 4, I also added logging to handle this type of error.

Good Code

1
2
3
4
5
6
7
8
9
10
11
12

from bs4 import BeautifulSoup
from urllib.request import urlopen
usd, gbp, gbpex = 10.0, 20.0, 0.00
html2 = urlopen(‘https://usd.fxexchangerate.com’)
soup2 = BeautifulSoup(html2, ‘lxml’)
tables2 = soup2.findChildren(‘td’)
try:

gbpex = float(tables2[3].string[:6])
gbp = gbp/gbpex
print(“gbp converted to USD is:”, gbp)

except ZeroDivisionError:
print(‘ZeroDivisionError where gbpex is:’, gbpex)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 4 - Interactive Mode
Chapter 4 - Debug Mode - Variable Explorer
Chapter 4 - Logging
Chapter 5 - Traceback
Chapter 5 - Try and Except
Chapter 5 - ZeroDivisionError

Chapter 7282

7.25 Math Logic Error
Description: There is a logic error in the math calculation.

Intended Outcome
The math calculation should return 10.

Actual Result
The calculation returns 40 instead of 10.

Incorrect Code
This is the Example 7.25 code before any changes.

1
2

myval = 60.0/3.0 * 2
print(“myval is:”, myval)

Debugging Steps
To ensure multiplication occurs before the division, I add parentheses to my

code.

How to Resolve the Issue
Add parentheses to change the operator precedence.

Good Code

1
2

myval = 60.0/(3.0 * 2)
print(“myval is:”, myval)

7.26 ValueError Assigning Date
Description: This is an example of an operation on incompatible types.

There is a ValueError when assigning a datetime object.

Examples 283

Intended Outcome
After creating a datetime object with a date of 12/31/1999, I want to print

the value to the Console.

Actual Result
The program halts with a ValueError exception, as shown below. The

Traceback indicates the error is on line 3.

ValueError: month must be in 1..12

Incorrect Code
This is the Example 7.26 code before any changes.

1
2

from datetime import datetime
d1 = datetime.strftime(datetime(1999, 13, 31), ‘%Y-%m-%d’)

Debugging Steps
At a glance I can see that while my intentions were good, I made a mistake

on line 2. It’s obvious there is no month “13” and the statement on line 2 is invalid.

When the cause of the ValueError is not obvious, you could use the Help
pane, or search the Internet, to find correct arguments for a function or method.

How to Resolve the Issue
Line 2 needs updated to use “12” for the month instead of “13.”

Good Code

1
2

from datetime import datetime
d1 = datetime.strftime(datetime(1999, 12, 31), ‘%Y-%m-%d’)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 4 - Interactive Mode

Chapter 7284

Chapter 5 - Traceback
Chapter 5 - ValueError
Chapter 6 - Check Arguments
Chapter 6 - Check Function Return Objects

7.27 Matching Strings NoneType Error
Description: This is the first example looking at a comparison expression. I

am comparing two strings inside two list objects.

I have to account for object types and case.

Intended Outcome
The expression comparing two string objects should evaluate to “True” and

print the message on line 9 when there is a match.

Actual Result
When the program runs, it prints “no match” three times.

Incorrect Code
This is the Example 7.27 code before any changes.

1
2
3
4
5
6
7
8
9
10
11

s1 = [[‘history’], [‘math’], [‘social studies’]]
s2 = [‘Math’, None, ‘Social Studies’]
#
for c in range(0, 3):

course1, course2 = ‘’, ‘’
course1 = s1[c]
course2 = s2[c]
if course1 == course2:

print(‘Repeating class: ’ , course2)
else:

print(“no match”)

Examples 285

Debugging Steps

1.	 In the Console type the following comparison statement to see if the
Python Interpreter returns ‘True’ or ‘False.’

	 When you type s2[2] and s1[2] the Python Interpreter outputs a “string”
in quotes and a “list” in brackets, as shown below.

In [2]: s1[2] == s2[2]
Out[2]: False

In [3]: s2[2]
Out[3]: ‘Social Studies’

In [4]: s1[2]
Out[4]: [‘social studies’]

2.	 In Variable Explorer, notice the values for the third element in S1 and S2
are different. The type of object is also shown.

How to Resolve the Issue
On line 6 I added try and except logic. I convert the variable to a string, and

use the .upper() method to change the case. I use slicing [2:-2] to remove the
square brackets and apostrophes on line 6 after I convert the list to a string.

Chapter 7286

Good Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14

s1 = [[‘history’], [‘math’], [‘social studies’]]
s2 = [‘Math’, None, ‘Social Studies’]
for c in range(0, 3):

course1, course2 = ‘’, ‘’
try:

course1 = str(s1[c])[2:-2].upper()
except Exception:

course1 = ‘’
try:

course2 = s2[c].upper
except Exception:

course1 = ‘’
if course1 == course2:

print(‘Repeating class: ’, course2)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - NoneType
Chapter 3 - Slicing
Chapter 3 - Strings
Chapter 3 - Types of Data
Chapter 4 - Debug Mode - Variable Explorer
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 6 - Check Object Type
Chapter 6 - Value is None
Chapter 6 - Does the Object have a Value of NoneType or Whitespace?
Chapter 6 - Object Value

7.28 Matching Strings Fails
Description: Let’s continue with Example 7.27. While I have accounted for

object types and case, this code has another problem that may not be obvious.
When iterating through container objects, sometimes you are not sure what values
are stored in each item. Take for example a large XML file that contains a series of
nodes. If you write code to iterate through the XML nodes, you may encounter a
node without a value. Python assigns this type of object to ‘NoneType.’ NoneType is
the special Python type that indicates there is no value.

Examples 287

Intended Outcome
The expression comparing two string objects should evaluate to “true.”

Actual Result
When the program runs, now it halts with a traceback message.

AttributeError: ‘NoneType’ object has no attribute ‘upper’.

Incorrect Code
This is the Example 7.28 code before any changes.

1
2
3
4
5
6
7

s1 = [[‘history’], [‘math’], [‘social studies’]]
s2 = [‘Math’, None, ‘Social Studies’]
for c in range(0, 3):

course1 = str(s1[c])[2:-2].upper()
course2 = s2[c].upper
if course1 == course2:

print(‘Repeating class: ’, course2)

Debugging Steps
The Traceback shows and error on line 5 where I am converting the s2

element to uppercase.

1.	 In Variable Explorer, check the values of the second element are the same.
The second element in list “s2” has a value of “None.” In the Console, I
check the type of s2[1].

In [5]: type(s2[1])
Out[5]: NoneType

How to Resolve the Issue
Since “NoneType” isn’t a string, the .upper() method raises an error. I’ll add

try and except logic beginning on line 5. When an exception occurs, the variable is
assigned a value of ‘’ which is an empty string.

Chapter 7288

Good Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14

s1 = [[‘history’], [‘math’], [‘social studies’]]
s2 = [‘Math’, None, ‘Social Studies’]
for c in range(0, 3):

course1, course2 = ‘’, ‘’
try:

course1 = str(s1[c])[2:-2].upper()
except Exception:

course1 = ‘’
try:

course2 = s2[c].upper
except Exception:

course1 = ‘’
if course1 == course2:

print(‘Repeating class: ’, course2)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Iterate through Items in a List
Chapter 3 - NoneType
Chapter 3 - Strings
Chapter 3 - Types of Data
Chapter 4 - Debug Mode - Variable Explorer
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 6 - Check Object Type
Chapter 6 - Object Value

7.29 Whitespace or Special Characters
Description: This example demonstrates a whitespace line feed character.

When comparing strings, you may have to remove unseen whitespace characters.
This is not a real world example but does show the ‘repr’ function that prints hidden
whitespace characters.

Intended Outcome
This example should print ‘hello world’ in the Console.

Actual Result
When the program runs, the Python Interpreter prints ‘hello world\n.’

Examples 289

Incorrect Code
This is the Example 7.29 code before any changes.

In [4]: mystr = ‘hello world\n’
In [5]: print(repr(mystr))
Out[5]: ‘hello world\n’

Debugging Steps
It’s not obvious in Variable Explorer that there is a paragraph return at the

end of “mystr.” However, the Console displays “\n” at the end of the string in the
Incorrect Code example above.

How to Resolve the Issue
The .rstrip() function removes the whitespace character from the right side

of the string.

Good Code

In [4]: mystr = ‘hello world\n’
In [5]: mystr = mystr.rstrip()
In [6]: print(repr(mystr))
Out[6]: ‘hello world’

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - NoneType
Chapter 4 - Debug Mode - Variable Explorer
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 6 - Check Object Type
Chapter 6 - Object Value
Chapter 7 - Does the Object have a Value of NoneType or Whitespace?

7.30 Debug: Step Through Your Function
Description: The program halts and the exception is an AttributeError. I

want to step through the program in debug mode and look at variable values inside
my function. I start debug mode and click on “Run current line.” The program runs

Chapter 7290

and evaluates the function definition that starts on line 4 and runs through line 15.
Then the program runs line 18, followed by line 19, and finally line 20.

Intended Outcome
My function takes a birth date and name and prints out ‘Happy Birthday” if

today is the birthday.

Actual Result
When the program runs it halts with an exception, and the Traceback

message is an AttributeError.

AttributeError: ‘builtin_function_or_method’ object has no attribute ‘month’

Incorrect Code
This is the Example 7.30 code before any changes.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import datetime
#
#
def happybirthday(dob, name):

thetype = type(dob)
thedate = datetime.datetime.now
month = thedate.month
day = thedate.day
if thetype == datetime.datetime:

dobmonth = dob.month
dobday = dob.day
if dobmonth == month and dobday == day:

print(‘Happy Birthday’, name)
else:

print(‘Please enter a birthday’)
#
#
name = ‘Mary Lee’
dob = datetime.datetime(1976, 6, 15)
happybirthday(dob, name)

Debugging Steps
The Traceback shows and error on line 6. When I start debug mode, I choose

“Run current line” until line 20 is highlighted. At this point, I use “Step into current
function or method of current line” to step into my function code.

Now the debugger moves to the function on line 4, and I continue to click
on “run current line” until line 6 when the AttributeError occurs. In the Console

Examples 291

window I type “type(thedate)” to see the object type for “thedate.”

ipdb> type(thedate)

How to Resolve the Issue
Although I was expecting a datetime.datetime type, the Console returns

builtin_function_or_method. When I search the internet for help on this datetime
“now” method I find the statement should end in .now(), as shown below.

thedate = datetime.datetime.now()

Good Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

import datetime
#
#
def happybirthday(dob, name):

thetype = type(dob)
thedate = datetime.datetime.now()
month = thedate.month
day = thedate.day
if thetype == datetime.datetime:

dobmonth = dob.month
dobday = dob.day
if dobmonth == month and dobday == day:

print(‘Happy Birthday’, name)
else:

print(‘Please enter a birthday’)
#
#
name = ‘Mary Lee’
dob = datetime.datetime(1976, 6, 15)
happybirthday(dob, name)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - NoneType
Chapter 3 - Invoke a Function
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 6 - Check Object Type
Chapter 6 - Object Value

Chapter 7292

7.31 Key Not in Dictionary
Description: When I try to retrieve a key value there is a key error.

Intended Outcome
Line 3 prints the value of key ‘4.’

Actual Result

The program raises a KeyError, pointing to line 2. This error message means
there is no key ‘4’ in myDict.

KeyError: 4

Incorrect Code
This is the Example 7.31 code before any changes.

1
2
3

myDict = {1: ‘A’, 2: ‘B’, 3: ‘C’}
if myDict[4] == ‘D’:

print(‘4 is:’, myDict[4])

Debugging Steps
Open Variable Explorer and double click on “myDict.” The popup window

shows there is no key ‘4.’

Examples 293

How to Resolve the Issue
Instead of directly referencing the key in myDict, I change the code on line

2 to use the .get method. The get() method returns 0 by default and does not raise
an error.

Good Code

1
2
3

myDict = {1: ‘A’, 2: ‘B’, 3: ‘C’}
if myDict.get(4, 0) == 0:

print(‘4 is not in the dictionary’)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Dictionary
Chapter 3 - Search for Key Name
Chapter 4 - Debug Mode - Variable Explorer
Chapter 5 - Traceback

7.32 Error Combining Strings
Description: This code cocatenates two strings.

Chapter 7294

Intended Outcome
myvar3 should equal 23.

Actual Result
When the program runs, this error is raised pointing to line 3.

TypeError: can only concatenate str (not “int”) to str

Incorrect Code
This is the Example 7.32 code before any changes.

1
2
3

myvar1 = ‘2’
myvar2 = 3
myvar3 = myvar1 + myvar2

Debugging Steps
Variable Explorer shows the type for all variables. myvar1 is a ‘str’, but

myvar2 is an “int.”

How to Resolve the Issue
On line 3, I use the str() function to change the value of myvar2 to a “str.”

You can only concatenate a “str” value with another “str” value.

Good Code

1
2
3

myvar1 = ‘2’
myvar2 = 3
myvar3 = myvar1 + str(myvar2)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Types of Data
Chapter 3 - Concatenation
Chapter 3 - Strings
Chapter 5 - Traceback

Examples 295

Chapter 6 - Check Object Type

7.33 Function Returns 2 Values
Description: Example 7.33 prints the result from a function. The function

returns a tuple of two elements, and the code should use the first element.

Intended Outcome
The function should calculate and print the birth year.

Actual Result
The program prints two tuple values.

(33, ‘John’) was born in 1987

Incorrect Code
This is the Example 7.33 code before any changes.

1
2
3
4
5
6
7
8
9
10
11

from datetime import date
#
#
def myfunction():

return 33, ‘John’
#
#
year = date.today().year
name = myfunction()
birthyr = year - myfunction()[0]
print(name, ‘was born in’, birthyr)

Debugging Steps
The Console printout of “name” is a tuple as indicated by the parentheses,

which is also shown in Variable Explorer.

How to Resolve the Issue
On line 9, I add indexing to select the second element.

Chapter 7296

Good Code

1
2
3
4
5
6
7
8
9
10
11

from datetime import date
#
#
def myfunction():

return 33, ‘John’
#
#
year = date.today().year
name = myfunction() [1]
birthyr = year - myfunction()[1]
print(name, ‘was born in’, birthyr)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Indexing
Chapter 3 - Types of Data
Chapter 3 - Tuple and Function Return Objects
Chapter 4 - Debug Mode - Variable Explorer
Chapter 4 - Interactive Mode
Chapter 5 - Traceback

7.34 Unsupported Operand
Description: Trying to concatenate two strings raises an error. This is a

simple syntax error.

Intended Outcome
The variable “mystr” is assigned to “greenapples.”

Actual Result
When the program runs an error is raised.

TypeError: bad operand type for unary +: ‘str’

Incorrect Code
This is the Example 7.34 code before any changes.

Examples 297

1 mystr = ‘green’ ++ ‘apples’

Debugging Steps
There is no ++ operand in Python.

How to Resolve the Issue
Update the code to use “+.”

Good Code

1 mystr = ‘green’ + ‘apples’

7.35 Code Goes Beyond Last Yield
Statement

Description: Example 7.35 prints the results from a function. The code
halts and raises a StopIteration error because the code goes beyond the last yield
statement in a generator.

Intended Outcome
The code should print a series of numbers.

Actual Result
When the program runs, the Console shows a StopIteration error pointing to

line 9.

Incorrect Code
This is the Example 7.35 code before any changes.

Chapter 7298

1
2
3
4
5
6
7
8
9

def genTest():
yield 1
yield 2
print(‘inside genTest, i is’, i)

#
#
foo = genTest()
for i in range(3):

print(‘item’, foo.__next__())

Debugging Steps
The Traceback shows an error on line 9. Variable Explorer only shows the

value of i. The print statement on line 4 within the function shows where the error
is occurring. As I run the program in Debug Mode, when it prints line 4 “i” has a
value of 2. This means there are two elements, and valid indexes are [0] and [1].

How to Resolve the Issue
On line 8 update the range(2) function.

Good Code

1
2
3
4
5
6
7
8
9

def genTest():
yield 1
yield 2
print(‘inside genTest, i is’, i)

#
#
foo = genTest()
for i in range(2):

print(‘item’, foo.__next__())

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Iteration
Chapter 3 - Yield
Chapter 4 - Debug Mode - Variable Explorer
Chapter 4 - Interactive Mode
Chapter 5 - Traceback

Examples 299

7.36 Missing positional argument
Description: Instead of printing to the Console, the sing() function raises a

TypeError.

Intended Outcome
The sing() function should print, “Happy Birthday dear John.”

Actual Result
When the program runs, the Console shows:

TypeError: sing() missing 1 required positional argument: ‘person’

Incorrect Code
This is the Example 7.36 code before any changes.

1
2
3
4
5

def sing(words, person):
print(words, person)

#
#
sing(‘John’)

Debugging Steps
The Traceback shows the error is on line 5 that the second positional

argument ‘person’ is missing. The Python Interpeter uses the value “John” as the
first positional argument. The function definition on line 1 shows two Positional
Arguments, and the function call on line 5 has only one argument.

How to Resolve the Issue
My function call on line 5 needs updated with the two arguments.

Good Code

1
2
3
4
5

def sing(words, person):
print(words, person)

#
#
sing(‘Happy Birthday dear’, ‘John’)

Chapter 7300

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Positional Arguments
Chapter 5 - Traceback

7.37 Reserved Keyword
Description: This example combines two strings and prints the result to the

Console. The print statement raises an error.

Intended Outcome
The Console prints, “Hello John.”

Actual Result
When the program runs the Console shows:

TypeError: ‘str’ object is not callable

Incorrect Code
This is the Example 7.37 code before any changes.

1
2
3

str = ‘hello’
str2 = ‘John’
print(str(str + ‘ ‘+ str2))

Debugging Steps
The Traceback shows and error on line 3.

How to Resolve the Issue
The keyword “str” is reserved and can’t be used as a variable name. I’ll

update lines 1 and 3 with a new variable name.

Examples 301

Good Code

1
2
3

str1 = ‘hello’
str2 = ‘John’
print(str(str1 + ‘ ‘ + str2))

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Reserved Keywords
Chapter 5 - Traceback

7.38 Dot Instead of Underscore
Description: Calling a class method raises an AttributeError.

Intended Outcome
After creating a new instance of the “Car” class, in line 6 I want to invoke the

parallelpark() method. This is the same “Car” class we created in Chapter 3 when
we looked at Classes.

Actual Result
When the program runs, an AttributeError is raised pointing to line 7. The

AttributeError refers to the “Car” class.

In [2]: runfile..Ex_38_Wrong.py”, line 7, in <module>

myCar.parallel_park()

AttributeError: ‘Car’ object has no attribute ‘parallel_park’

In [3]:

Incorrect Code
This is the Example 7.38 code before any changes.

Chapter 7302

1
2
3
4
5
6

Ex_38_Wrong.py
from car import Car
#
#
myCar = Car(‘Subaru’, ‘Crosstrek’, 2019)
myCar.parallel_park()

Debugging Steps
An AttributeError is raised when you try to access an object’s attribute

that doesn’t exist. The Traceback message pointed to line 6 where I attempted to
use the “parallel_park()” method for the object “myCar.” In the Console, I type
“help(myCar)” to view a list of attributes and methods for the “myCar” object.

In [2]: help(myCar)

class Car(builtins.object)
 | Car(model, make, year)
 |
 | Class represents a car
 | Data properties:
 | .model
 | .make
 | .year
 | Behavirors/Operations:
 | .drive
 | .parallelpark

The “Car” class has a docstring that lists the data properties and behaviors
for the class. After reviewing the docstring help, I realize I misspelled the name of
the “parrallel_park” method.

Note: I could also have typed one of these commands to see information
about the class instance “myCar.”

In [3]: dir(myCar)

In [4]: ?myCar

How to Resolve the Issue
Since I know the method name is wrong, I update line 6 with the correct

name.

Examples 303

Good Code

1
2
3
4
5
6

Ex_38_Wrong.py
from car import Car
#
#
myCar = Car(‘Subaru’, ‘Crosstrek’, 2019)
myCar.parallelpark()

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Class
Chapter 4 - Interactive Mode
Chapter 5 - Traceback

7.39 Key error in new dictionary
key:pair

Description: A TypeError is raised when I try to create a new dictionary
key:pair.

Intended Outcome
This example should create a new dictionary object with a list value.

Actual Result
When the program runs the Console shows:

In [2]: ..Ex_39_wrong.py”, line 2, in <module>
mydict1 = {[2019, 2020]: [‘great yr’, ‘bad yr’]}

TypeError: unhashable type: ‘list’

Incorrect Code
This is the Example 7.39 code before any changes.

Chapter 7304

1
2

mydict1 = {}
mydict1 = {[2019, 2020]: [‘great yr’, ‘bad yr’]}

Debugging Steps
The Traceback shows and error on line 2. Dictionary keys must be a

hashable, immutable object. In this example, I tried to use a “list” as my dictionary
key, and a list is mutable and not hashable.

How to Resolve the Issue
On line 4, I change the code to use a string for the key name.

Good Code

1
2

mydict1 = {}
mydict1 = {[‘2019’]: [‘great yr’, ‘bad yr’]}

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Dictionary
Chapter 3 - immutable
Chapter 5 - Traceback

7.40 Assign a dictionary key:value
Description: When I try to create a new key:value pair, the Python

interpreter raises an error.

Intended Outcome
The code should create a new key:value pair.

Examples 305

Actual Result
When the program runs the Console shows:

In [2]: SyntaxError: can’t assign to a functional

Out [1]: ‘hello’

Incorrect Code
This is the Example 7.40 code before any changes.

1
2

myDict = {}
myDict(‘a’) = 3

Debugging Steps
The Traceback says the SyntaxError is on Line 2.

How to Resolve the Issue
Because I used parentheses the Python Interpreter processes myDict(‘a’)

as a function call instead of a dictionary key. The key name should be enclosed in
square brackets instead of parantheses.

Good Code

1
2

myDict = {}
myDict[‘a’] = 3

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Dictionary
Chapter 5 - Traceback

7.41 Too many values to unpack
Description: Too many values to unpack when assigning values to three

Chapter 7306

variables.

Intended Outcome
The assignment statement on line 1 should create three new variables.

Actual Result
The program halts and the Traceback shows an error.

In [2]: ..Ex_41_Wrong.py”, line 2, in <module>
var1, var2, var3 = 0, 1, 0, 0

ValueError: too many values to unpack (expected 3)

Incorrect Code
This is the Example 7.41 code before any changes.

1 var1, var2, var3 = 0, 1, 0, 0

Debugging Steps
The Traceback shows an error on line 1. While it is legal to assign values to

multiple variables on the same line, you must have an equal number of variables
and values on the left and right side of the expression.

How to Resolve the Issue
On line 1, I remove the last “0” value.

Good Code

1 var1, var2, var3 = 0, 1, 0

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Assignment Statement
Chapter 5 - Traceback

Examples 307

7.42 Tuple Assignment Error
Description: Trying to change tuple element [0] raises an error.

Intended Outcome
I want to change the first element in the tuple.

Actual Result
When the program runs it halts with a TypeError.

In [2]: ..Ex_42_wrong.py”, line 3, in <module>
mytuple[0] = 1

TypeError: ‘tuple’ object does not support item assignment

Incorrect Code
This is the Example 7.42 code before any changes.

1
2

mytuple = (2, 3, 4)
mytuple[0] = 1

Debugging Steps
The Traceback shows and error on line 2. Tuples are immutable and can not

be changed.

How to Resolve the Issue
Since I can’t change an element in a tuple, I have to rethink the code. I can

replace the entire tuple with a new tuple with three elements, or use a list object
instead of a tuple. In this example, I switch to a list which is mutable and can be
changed.

Good Code

1
2

myList = [2, 3, 4]
myList[0] = 1

Chapter 7308

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Immutable
Chapter 3 - Tuples
Chapter 4 - Debug Mode - Variable Explorer

7.43 str object is not callable
Description: When I try to concatenate two strings and print the result, a

TypeError ‘str’ object is not callable is raised.

Intended Outcome
In this code, I try to concatenate two strings and print the result.

Actual Result
When the program runs the Console shows:

In [2]: ..Ex_43_Wrong.py”, line 5, in <module>
print(str(str + mystr))

TypeError: ‘str’ object is not callable

Incorrect Code
This is the Example 7.43 code before any changes.

1
2
3

str = ‘hello’
mystr2 = ‘world’
print(str(str + mystr2))

Debugging Steps
The Traceback shows and error on line 3. In the Editor, I notice that both

instances of “str” are purple on line 3, indicating “str” is a reserved keyword or
function. The problem started on line 1 when I used a reserved keyword as a
variable name.

Examples 309

How to Resolve the Issue
On line 1 I need to change my variable name, and then I also need to update

line 3 to reflect the new variable name.

Good Code

1
2
3

str = ‘hello’
mystr2 = ‘world’
print(str(mystr1 + mystr2))

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Reserved Keywords
Chapter 3 - Keyword Arguments
Chapter 5 - Traceback

7.44 Can only Concatenate Tuple
Description: While trying to concatenate a tuple, the Python interpreter

raises a TypeError.

Intended Outcome
The code should combine two tuples.

Actual Result
When the program runs the Console shows:

In [2]: ..Ex_44_Concatenate_Tuple_wrong.py”, line 5, in <module>
myTuple3 = myTuple1 + myTuple2[0]
TypeError: can only concatenate tuple (not “int”) to tuple

Incorrect Code
This is the Example 7.44 code before any changes.

Chapter 7310

1
2
3
4
5

Ex_44_Concatenate_Tuple_Wrong.py
#
myTuple1 = (1, ‘a’, 2, ‘b’)
myTuple2 = (3, ‘c’)
myTuple3 = myTuple1 + myTuple2[0]

Debugging Steps
The Traceback shows an error on line 5, and mentions an “int”. In the

Console, I type “myTuple2[0]” and type(myTuple2[0]). The first object in
myTuple2 is an “int” with a value of 3.

In [2]: myTuple2[0]
Out [2]: 3

In [3]: type(myTuple2[0])
Out [3]: int

How to Resolve the Issue
Because I can’t concatenate a “tuple” and an “int,” I remove the index

notation on line 5.

Good Code

1
2
3
4
5

Ex_44_Concatenate_Tuple_Correct.py
#
myTuple1 = (1, ‘a’, 2, ‘b’)
myTuple2 = (3, ‘c’)
myTuple3 = myTuple1 + myTuple2

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Tuple Concatenation
Chapter 4 - Interactive Mode
Chapter 5 - Traceback

7.45 Float Comparison
Description: Comparing two float values fails.

Examples 311

Intended Outcome
The two float values are the same and should print the statement on line 6.

Actual Result
When the program runs the comparison on line 5 is False and the print

statement is not executed.

Incorrect Code
You’ll have to use your imagination that my computer stored these float

values differently. Although the float values look the same to me, internally the
computer can store them differently.

1
2
3
4

myfloat1 = .017
myfloat2 = .017
if myfloat1 == myfloat2:

print(‘they are the same’)

Debugging Steps
When two float values don’t match and you know they should, use the abs()

function.

How to Resolve the Issue
Rewrite the code to use the abs() function in the comparison on line 3.

Good Code

1
2
3
4

myfloat1 = .017
myfloat2 = .017
if abs(myfloat1 - myfloat2) < .0001:

print(‘they are the same’)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Comparing Floats

Chapter 7312

7.46 Unhashable type:dict
Description: A TypeError is raised when I try to create a new dictionary

key:value pair with an “int” value.

Intended Outcome
This example should create a new dictionary object with an “int” value.

Actual Result
When the program runs the Console shows:

In [2]: ..Ex_46/Ex_46_Wrong.py”, line 5, in <module>

mydict1[mydict2] = 8

TypeError: unhashable type: “dict’’

Incorrect Code
This is the Example 7.46 code before any changes.

1
2
3
4
5

Ex 46 Wrong.py
#
mydict1 = {}
mydict2 = {2: ‘orange’}
mydict1[mydict2] = 8

Debugging Steps
The Traceback shows and error on line 5 and states unhashable type “dict.”

Dictionary keys must be a hashable, immutable object. In this example, I tried to
use the mutable “mydict2” dictionary as a dictionary key for mydict1.

How to Resolve the Issue
Rather than using the “mydict2” object as the key name, I need to use the

individual key name. Key names are always an immutable object. I add a for loop
on line 5 to iterate through the dictionary keys in “mydict2.” Now I am using the
key name from “mydict2” as a new key name for “mydict1.”

Examples 313

Good Code

1
2
3
4
5
6

Ex 46 Correct.py
#
mydict1 = {}
mydict2 = {2: ‘orange’}
for key in mydict2:
 mydict1[key] = 8

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - immutable
Chapter 3 - Iteration
Chapter 3 - dictionaries
Chapter 5 - Traceback

7.47 builtin_function_or_method’ object
is not subscriptable

Description: When printing the error “‘builtin_function_or_method’ object is
not subscriptable” is raised.

Intended Outcome
This expression should print “mystr.”

Actual Result
When the program runs, and the Console shows:

In [2]: Ex_47_Wrong.py”, line 2, in <module>
print[mystr]

TypeError: ‘builtin_function_or_method’ object is not subscriptable

Out [1]: ‘hello’

Incorrect Code
This is the Example 7.47 code before any changes.

Chapter 7314

1
2

mystr = ‘hello’
print[mystr]

Debugging Steps
The Traceback shows and error on line 2. After reviewing the code, I

realize I used square brackets around “mystr” instead of parenthesis. The Python
Interpreter tries to use subscripting with “print” because of the brackets. Since
print is a function I should use parenthesis around the argument “mystr.”

How to Resolve the Issue
On line 2 I change the square brackets to parentheses.

Good Code

1
2

mystr = ‘hello’
print(mystr)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Print Statements
Chapter 3 - Invoke a Function
Chapter 5 - Traceback

7.48 String Comparison Error
Description: The expression to test if a word is in a string raises a

TypeError.

Intended Outcome
On line 6, I am testing if a word is in the string “myphrase.” I want to print a

phrase on line 7 if the expression is true.

Examples 315

Actual Result
When the program runs the Console shows:

In [3]: Ex_48_Wrong.py”, line 6, in <module>
if words in myphrase:

TypeError: ‘in <string>’ requires string as left operand, not list

Incorrect Code
This is the Example 7.48 code before any changes.

1
2
3
4
5
6
7

Ex 48 Wrong.py
#
words = [‘hello’, ‘1999’]
myphrase = ‘hello world it is 1999’
#
if words in myphrase:

print(“It’s 1999”)

Debugging Steps
The Traceback shows and error on line 6, and says my left operand must be

a string instead of a list. In the Console, I can use the “type()” function to find the
type of “words”.

In [3]: type(words)
Out [1]: list

How to Resolve the Issue
On line 6, I add a for loop to iterate over the list “words.” I also change

the “if” statement on line 7 to use the iterator “word.” Now the test on line 7 is
comparing each individual word in the “words” list.

Good Code

1
2
3
4
5
6
7
8

Ex 48 Wrong.py
#
words = [‘hello’, ‘1999’]
myphrase = ‘hello world it is 1999’
#
for word in words:

if word in myphrase:
print(“It’s 1999”)

Chapter 7316

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - In comparison operator
Chapter 3 - Invoke a Function
Chapter 3 - Iterate through Items in a List
Chapter 3 - Data Types
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 6 - Check Object Type

7.49 Invalid literal for int() with base 10
Description: This code raises an error when converting a string into an

integer.

Intended Outcome
This code converts a string into an integer for an arithmetic operation.

Actual Result
When the program runs, and the Console shows:

In [2]: ..Ex_49/Ex_49_Wrong.py”, line 4, in <module>
total = 567 + int(mystr)

ValueError: invalid literal for int() with base 10: ‘1.25’

Incorrect Code
This is the Example 7.49 code before any changes.

1
2
3
4

Ex 49 Wrong.py
#
mystr = ‘1.25’
total = 567 + int(mystr)

Debugging Steps
The Traceback shows and error on line 4 that indicates something is wrong

with my int() function. I know this expression is valid to convert “4” into the

Examples 317

integer four, so something must be wrong with the “value” of the “mystr” variable.
In fact, the Traceback showed ValueError.

The int() function is one of the “Built-in Functions” in the Python Standard
Library. The online help for int(x) says “x” must be a string that represents an
integer literal. While I can’t convert the string ‘1.25’ into a whole number int, it is
legal to convert a float to an int.

How to Resolve the Issue
Since it is invalid to change “1.25” into an “int,” I first change the string into

a float. As shown below, I updated line 4.

Good Code

1
2
3
4

Ex 49 Correct.py
#
mystr = ‘1.25’
total = 567 + int(float(mystr))

Reference
These topics from previous chapters are a good reference for this example.

Chapter 5 - Traceback
Chapter 6 - Check Object Type
Chapter 6 - Object Value

7.50 Variable Referenced Before
Assignment

Description: A variable is referenced before assignment.

Intended Outcome
My function “myfunc()” should increment my “transaction” variable.

Actual Result
When the program runs the Console shows an error on line 3.

Chapter 7318

In [3]: Ex_50_Wrong.py”, line 3, in myfunc
transaction += 1

UnboundLocalError: local variable ‘transaction’ referenced before assignment

Incorrect Code
This is the Example 7.50 code before any changes.

1
2
3
4
5
6

def myfunc():
transaction += 1
print(transaction)

#
#
myfunc()

Debugging Steps
The Traceback shows and error on line 3. The variable “transaction” is inside

the myfunc() definition, which is why the error is an “UnboundLocalError.” If this
expression was contained in the main program instead of a function definition, the
error would be a “NameError” that the variable “transaction” was not defined.

How to Resolve the Issue
The error message says I used “transaction” on line 3 before it was assigned

a value, so I insert an assignment statement on line 2.

Good Code

1
2
3
4
5
6
7

def myfunc():
transaction = 0
transaction += 1
print(transaction)

#
#
myfunc()

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Scope and Namespace
Chapter 3 - Assignment
Chapter 5 - Traceback

Examples 319

7.51 Plot: Shape Mismatch
Description: While creating a bar chart a ValueError is raised.

Intended Outcome
This code draws a bar chart.

Actual Result
When the program runs, the Console shows:

In [2]: ValueError: shape mismatch: objects cannot be broadcast to a single shape

Incorrect Code
This is the Example 7.51 code before any changes.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import matplotlib.pyplot as plot
import statistics
#
#
myL = [1.41, 2.3, 1.99, 1.2]
total = str(len(myL))
bins = [0, 1, 2, 3, 4] # change to whole numbers
avg = str(round(statistics.mean(myL), 2))
xlbl = total + ‘Purchases, Avg: $’ + avg
xl = [‘Item1’, ‘item2’, ‘item3’, ‘item4’]
fig, ax = plot.subplots()
ax.bar(bins, myL, width=.3, color=‘b’)
plot.xticks(bins, xl, color=‘cornflowerblue’)
plot.yticks(color=‘g’)
plot.ylabel(‘cost’, color=‘g’)
plot.xlabel(xlbl, color=‘g’, style=‘italic’)
ax.set_title(‘Avg Cost Per Purchase’, color=‘r’,

fontweight=‘bold’, fontsize=12)
ax.spines[‘top’].set_color(‘y’)
ax.spines[‘bottom’].set_color(‘y’)
ax.spines[‘left’].set_color(‘y’’)
ax.spines[‘right’].set_color(‘y’)
fig.subplots_adjust(top=1.1) # add space at top
#
plot.text(3.6, 1.8, ‘2020’, bbox={‘alpha’: 0.1})
plot.show()

Debugging Steps
The Traceback shows and error on line 12, which is the function call bar().

Chapter 7320

The error is not immediately obvious. I can search the internet for the exact error
message, or I can look at the arguments to see if they are reasonable for this
function. I experiment with only one element in both lists, and realize Matplotlib
requires the x and y iterators have the same number of elements. Line 12 uses
the “bins” and “myL” lists created on lines 5 and 7, which do not have the same
number of elements.

How to Resolve the Issue
On line 7, I change my “bins” list.

Good Code

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

import matplotlib.pyplot as plot
import statistics
#
#
myL = [1.41, 2.3, 1.99, 1.2]
total = str(len(myL))
bins = [1, 2, 3, 4] # change to whole numbers
avg = str(round(statistics.mean(myL), 2))
xlbl = total + ‘Purchases, Avg: $’ + avg
xl = [‘Item1’, ‘item2’, ‘item3’, ‘item4’]
fig, ax = plot.subplots()
ax.bar(bins, myL, width=.3, color=‘b’)
plot.xticks(bins, xl, color=‘cornflowerblue’)
plot.yticks(color=‘g’)
plot.ylabel(‘cost’, color=‘g’)
plot.xlabel(xlbl, color=‘g’, style=‘italic’)
ax.set_title(‘Avg Cost Per Purchase’, color=‘r’,

fontweight=‘bold’, fontsize=12)
ax.spines[‘top’].set_color(‘y’)
ax.spines[‘bottom’].set_color(‘y’)
ax.spines[‘left’].set_color(‘y’’)
ax.spines[‘right’].set_color(‘y’)
fig.subplots_adjust(top=1.1) # add space at top
#
plot.text(3.6, 1.8, ‘2020’, bbox={‘alpha’: 0.1})
plot.show()

Examples 321

Reference
These topics from previous chapters are a good reference for this example.

Chapter 5 - Traceback

7.52 Unpacking Operator
Description: In a function call, I leave off the * unpacking operator and an

IndexError is raised.

Intended Outcome
This code prints tickets for each name from the “name” tuple.

Actual Result
When the program runs, the Console shows an error from line 4.

In [2]: .. line 4, in print_tickets
print(name[i])

IndexError: tuple index out of range

Chapter 7322

Incorrect Code
This is the Example 7.52 code before any changes.

1
2
3
4
5
6
7
8
9

def print_tickets(number_of_tickets, *name):
i = 0

while i < number_of_tickets:
print(name[i])
i += 1

#
#

names = (‘John’, ‘Alice’)
print_tickets(2, names)

Debugging Steps
The Traceback shows and index error on line 4, indicating the tuple indexing

I’m using is wrong. Because the program has ended, I need to enter “debug mode”
to see the value of the “names” object.

1.	 In the Console, type %debug to start “debug mode.”

	 In [2]: %debug

2	 i = 0
3 while i < number_of_tickets:

----> 4 	 print(name[i])

5	 i += 1
6

ipdb>

2.	 The Console displays an arrow next to line 4, and the prompt changes to
ipdb>. In the Console, type “names.”

ipdb> names

	 The Python Interpreter returns a tuple.

(‘John’, ‘Alice’)

How to Resolve the Issue
 I realize I left the * unpacking operator off my function call on line 9.

Examples 323

Good Code
On line 9 I add the unpacking operator *.

1
2
3
4
5
6
7
8
9

def print_tickets(number_of_tickets, *name):
i = 0

while i < number_of_tickets:
print(name[i])
i += 1

#
#

names = (‘John’, ‘Alice’)
print_tickets(2, *names)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Unpacking Operators
Chapter 3 - Iterate through items in a tuple
Chapter 4 - Debug Mode
Chapter 4 - Interactive Mode
Chapter 5 - Traceback
Chapter 6 - Check Object Type
Chapter 6 - Object Value

7.53 Unpack Non-iterable Bool
Description: In a function call, there are two different types of return

statements, causing a TypeError.

Intended Outcome
The code assigns values to variables “i” and “j.”

Actual Result
When the program runs, the Console shows an error from line 10.

In [2]: ...File “/...Ex53_Wrong.py”, line 10, in <module>
j, k = myfunction(-1)

TypeError: cannot unpack non-iterable bool object

Chapter 7324

Incorrect Code

This is the Example 7.53 code before any changes.

1
2
3
4
5
6
7
8
9
10

def myfunction(i):
if i > 0:

return i, ‘some text’
else:

return False
#
#
j = 0
k = ‘’
j, k = myfunction(-1)

Debugging Steps
The Traceback shows a TypeError on line 10, pointing to a bool object which

is a True or False value. Line 10 assigns the function return values to “j” and “k”.
When the function returns the “False” bool on line 5 it causes an error.

How to Resolve the Issue
 I update the return statement on line 5.

Good Code
On line 5 I update the return statement.

1
2
3
4
5
6
7
8
9
10

def myfunction(i):
if i > 0:

return i, ‘some text’
else:

return i, ‘some text’
#
#
j = 0
k = ‘’
j, k = myfunction(-1)

Reference
These topics from previous chapters are a good reference for this example.

Chapter 3 - Unpacking Operators
Chapter 3 - Boolean

Examples 325

Chapter 3 - Function Return Objects
Chapter 3 - Tuple Return Object
Chapter 5 - Traceback
Chapter 6 - Check Object Type
Chapter 6 - Object Value

Chapter 7326

Conclusion

Einstein said, “If you can’t explain it simply, you don’t understand it well
enough.” Learning new things is a passion of mine, and I’ve found the process of
organizing notes, creating illustrations, and pondering how to craft clear examples
helps me grasp concepts. Then too, it’s nice to go back in a year when I’ve
forgotten something and refer to the examples in this book.

Thank you for reading along with me through the interesting topics and
less than thrilling subjects. If the result is you have mastered new features, it was
worth it! I’d love to hear the cool things you’re doing with Python, so please don’t
hesitate to leave comments in a review. 

328

Glossary

word definition index

Class
A template for creating user-defined objects. Class
definitions normally contain method definitions which
operate on instances of the class.

145

abstraction Ignoring or hiding details to capture some kind of
commonality between different instances. 149

algorithmic
complexity

Algorithmic complexity is a measure of how long an
algorithm would take to complete given an input of size
n. If an algorithm has to scale, it should compute the
result within a finite and practical time bound even for
large values of n.

21

argument

An argument is an object passed to
a function (or method) when calling the
function. Arguments “passed” to a function are used
by the function code and the function can update the
objects.

120

assignment
statement

An assignment statement or “binding” creates a
variable and binds or associates the name with an
object.

74

attribute A value associated with an object which is referenced
by name using dotted expressions. 203

bind Associate a variable name with an object (place in
memory) 37

boolean
Booleans in Python are implemented as a subclass
of integers. There are only two booleans, Py_
False and Py_True.

216

call a function When you call a function you are telling the computer
to run (or execute) that set of actions. 334

330

Comparison
Operators

There are eight comparison operations in Python that
compare two object values. 108

comprehension A compact way to process all or create iterables such
as lists, dictionaries, or sets. 86

container A non-scalar object with an internal structure. These
objects contain references to other objects. 126

Control
Statements

A statement is part of a suite (a “block” of code). A
statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

255

Convert Data
Type Change an object’s data type. 49

Data Structures Any method of organising a collection of data to allow it
to be manipulated effectively. 185

decomposition Breaking a program into smaller, self-contained pieces
of code that are easier to debug. 120

define a function When you define a function you give a name to a set of
actions you want the computer to perform. 258

dictionary
An associative array, where arbitrary keys are mapped
to values. The keys can be any object with __hash__
() and __eq__() methods.

98

Exception
An error condition that changes the normal flow of
control in a program. An exception may be generated
(“raised”) by hardware or software.

197

Expression

An expression is a piece of syntax that evaluates to
some value. The actions that a program takes are
referred to as “control statements” or “expressions.”
Objects, literals, names, function calls and operators
are combined to form expressions.

42

float A floating point data type such as 2.34 185

function

A series of statements which returns some
value to a caller. It can also be passed zero or
more arguments which may be used in the execution of
the body.

120

generator

A function which returns a generator iterator.
It looks like a normal function except that it
contains yield expressions for producing a series of
values usable in a for-loop or that can be retrieved one
at a time with the next() function.

89

hashable
An object is hashable if it has a hash value which never
changes during its lifetime, and can be compared to
other objects.

74

heterogeneous Different data types 66

Identifier A formal name used in source code to refer to
a variable, function, procedure, package. 148

immutable
An object with a fixed value. Immutable objects include
numbers, strings and tuples. Such an object cannot be
altered.

67

Glossary 331

index A number used to select an element of a list,
vector, array or other sequence. 96

instance
An individual object of a certain class. While a class is
just the type definition, an actual usage of a class is
called “instance”.

148

instantiation When you create an instance of an object from a class. 148

integer Whole number. 87

iterable
An object capable of returning its members one at a
time. Examples of iterables include all sequence types
(such as list, str, and tuple.)

117

List A built-in Python sequence. Despite its name it is more
akin to an array in other languages . 234

Local Local variables are declared inside a function, and can
be used only inside that function. 182

magic method An informal synonym for special method. 174

method A function which is defined inside a class body. 279

modularity Designing code as independent self-contained modules
that are easy to reuse. 149

modules An independent piece of software which forms part of
one or more larger programs. 149

mutable Objects whose value can change are said to be
mutable. 54

namspace

The place where a variable is stored. Namespaces are
implemented as dictionaries. There are the local, global
and built-in namespaces as well as nested namespaces
in objects (in methods).

183

NAN Not-a-Number 47

nested scope

The ability to refer to a variable in an enclosing
definition. For instance, a function defined inside
another function can refer to variables in the outer
function.

165

NoneType Absence of a value 286

Object

Objects have an identity, type, and value and are
Python’s abstraction for data. State refers to the
properties of an object, the attributes or value of
the object. The object’s behavior is how the Python
Interpreter interacts with that type of object.

36

Operators
A symbol used as a function, with infix syntax if it has
two arguments (e.g. “+”) or prefix syntax if it has only
one (e.g. Boolean NOT).

106

parameters

When definining a function, the objects in parentheses
are “parameters.” When you call a function, the
objects are called arguments, Arguments “passed” to a
function are used by the function code and the function
can update the objects.

120

Pythonic An idea or piece of code which closely follows the most
common idioms of the Python language. 216

332

range The range() function generates arithmetic progressions
or intervals. 117

reference An address, from the point of view of a programming
language. 56

Scope

The scope of an identifier is the region of a program
source within which it represents a certain thing. This
usually extends from the place where it is declared to
the end of the smallest enclosing block (begin/end or
procedure/function body).

151

script In the Editor of IDE you write code statements and
expressions and save the code as a “script” file. 222

Sequence An iterable which supports efficient element access
using integer indices 108

set A collection of objects. 89

Slice

An object usually containing a portion of a sequence.
A slice is created using the subscript notation, [] with
colons between numbers when several are given, such
as in variable_name[1:3:5].

102

statement
A statement is part of a suite (a “block” of code). A
statement is either an expression or one of several
constructs with a keyword, such as if, while or for.

115

string A sequence of characters. 49

Traceback The most recent call list. 199

Tuple A data object containing two or more components. 67

type The type of a Python object determines what kind of
object it is; every object has a type. 82

value

An object’s type determines the operations that the
object supports (e.g., “does it have a length?”) and
also defines the possible values for objects of that type.
A boolean object has a value of True or False. An “int”
type has a whole number value.

85

Variables
A named memory location in which a program can
store intermediate results and from which it can read it
them.

37

Appendix

URLs

Arguments
The Python design and glossary entries for arguments are shown in this section.
Also see Calls, Functions, and Parameters.

The design of keyword only arguments is covered in PEP 3102:

https://www.python.org/dev/peps/pep-3102/

 The Python glossary entry for arguments:

https://docs.python.org/3/glossary.html#term-argument

Python terminology on arguments and parameters:

https://docs.python.org/3.3/library/inspect.html#inspect.Parameter

The difference between Arguments and Parameters:

https://docs.python.org/3/faq/programming.html#faq-argument-vs-parameter

Assert
The Python reference for assert statements is available on the docs.ptyhon.org
website. 

https://docs.python.org/3/reference/simple_stmts.html#the-assert-statement

334

Attributes
The Python glossary entry for “attributes” is available on the docs.ptyhon.org
website.

https://docs.python.org/3/glossary.html#term-attribute

Built-in Functions
The Python reference for built-in functions is available on the docs.ptyhon.org
website. 

https://docs.python.org/3/library/functions.html

Calls
The Python reference documentation explains “calling” functions and methods, and
is available on the docs.ptyhon.org website.

https://docs.python.org/3/reference/expressions.html#calls

Classes

Information on Python Classes is available on the docs.ptyhon.org website.

9.3.2 Instantiation and Attribute References

9.3.3 Instance Objects, Attributes and Methods

9.3.4 Method Objects

9.9 Container Objects, Elements, and Iterators.

https://docs.python.org/2/tutorial/classes.html

Comparisons
The following link is the Python reference on comparisons.

https://docs.python.org/3/reference/expressions.html#comparisons

Appendix - References 335

Comprehensions
The following link is the Python reference on “comprehensions.”

https://docs.python.org/3/reference/expressions.html#displays-for-lists-sets-
and-dictionaries

Containers
The docs.ptyhon.org website explains “containers” in the 9.9 section “Container
Objects and Iterators.” The section 3.1 topic “Objects, values and types” also
explains that objects that contain references to other objects are containers.
Examples of containers are tuples, lists and dictionaries.

https://docs.python.org/3.8/reference/datamodel.html#index-3

The 3.1 topic “objects, values, and types” explains that “container” objects contain
references to other objects. This “Data Model” reference is available on the
docs.ptyhon.org website.

https://docs.python.org/3/reference/datamodel.html#index-3

doctest
The docs.ptyhon.org website has details on using the doctest module to search
and validate examples in docstrings.

https://docs.python.org/3/library/doctest.html?highlight=doctest

Interactive Python examples are also available. These examples include reading in a
text file

Functions
The Python reference documentation explains “functions,” and is available on the
docs.ptyhon.org website.

Built-in Functions in the Python Standard Library.

https://docs.python.org/3/reference/compound_stmts.html#function

The Python tutorial for “Defining Functions” is available on the docs.ptyhon.org
website.  

https://docs.python.org/3/tutorial/controlflow.html#defining-functions

https://docs.python.org/3/reference/compound_stmts.html#function-definitions

336

The difference between function parameters and arguments is explained in the
FAQs available on the docs.ptyhon.org website.

https://docs.python.org/3/faq/programming.html#faq-argument-vs-parameter

The Python glossary entry for “functions” is available on the docs.ptyhon.org
website.

https://docs.python.org/3/glossary.html#term-function

Glossary
The official Python glossary is available on the docs.ptyhon.org website

https://docs.python.org/3/glossary.html

The if Statement
Information on the if statement is available on the docs.ptyhon.org website

https://docs.python.org/3/reference/compound_stmts.html#the-if-statement

Immutable
The Python glossary explains the concept of “immutable” objects, and is available
on the docs.ptyhon.org website.

https://docs.python.org/3/glossary.html#term-immutable

Inspect
The Python reference for the “inspect” library is available on the docs.ptyhon.org
website.

https://docs.python.org/3/library/inspect.html

Interactive Mode
Interactive Mode in the Console is explained on the ipython.readthedocs website.

https://ipython.readthedocs.io/en/stable/interactive/reference.html.

Appendix - References 337

Iterable and Iterations
The Python glossary explains the “iterable” concept, and is available on the
docs.ptyhon.org website.

https://docs.python.org/3/glossary.html#term-iterable

The docs.ptyhon.org website explains Classes in the 9.9 section “Container
Objects and Iterators.”

https://docs.python.org/2/tutorial/classes.html

Logging
The Python docs for the “logging library” are available on the docs.ptyhon.org
website.

https://docs.python.org/3/library/logging.html#logging.basicConfig

https://docs.python.org/3.8/howto/logging.html

https://docs.python.org/3/library/logging.html

Magic Functions
Functions that begin with the percent symbol are magic functions or magic

commands and are sometimes implemented in a iPython kernel. Read more about
magic functions at https://ipython.readthedocs.io/en/stable/interactive/reference.
html.

Methods
The Python glossary explains “methods,” and is available on the docs.ptyhon.org
website.

https://docs.python.org/3/glossary.html#term-method

Objects
The Python glossary explains “objects,” and is available on the docs.ptyhon.org
website.

https://docs.python.org/3/glossary.html#term-object

Objects like data attributes have value or “state,” and objects like methods have
“defined behavior.” 

338

The 3.1 topic “objects, values, and types” in the “Data Model” reference is
available on the docs.ptyhon.org website.

https://docs.python.org/3/reference/datamodel.html#index-3

Parameters
The Python glossary explains “parameters,” and is available on the
docs.ptyhon.org website.

https://docs.python.org/3/glossary.html#term-parameter

There is information on arguments and parameters in the “inspect library.”

https://docs.python.org/3.3/library/inspect.html#inspect.Parameter

The difference between Arguments and Parameters is explained in the FAQs.

https://docs.python.org/3/faq/programming.html#faq-argument-vs-parameter

The pass Statement
Information on the pass statement is available on the docs.ptyhon.org website

https://docs.python.org/3/reference/simple_stmts.html#the-pass-statement

The return Statement
Information on the return statement is available on the docs.ptyhon.org website

https://docs.python.org/3/reference/simple_stmts.html#the-return-statement

State
The Python glossary explains the “state” of data attributes, or objects with value.

https://docs.python.org/3/glossary.html#term-object

Statements
The Python glossary explains “statements,” and is available on the
docs.ptyhon.org website.

https://docs.python.org/3/glossary.html#term-statement

https://docs.python.org/3/reference/simple_stmts.html

Appendix - References 339

timeit
Information on the timeit() function is available on the docs.ptyhon.org website

https://docs.python.org/3/library/timeit.html

The try Statement
Information on the try statement is available on the docs.ptyhon.org website

https://docs.python.org/3/reference/compound_stmts.html#the-try-statement

Types
The Python glossary explains “types,” and is available on the docs.ptyhon.org
website.

https://docs.python.org/3/glossary.html#term-type

The 3.1 topic “objects, values, and types” in the “Data Model” reference is
available on the docs.ptyhon.org website.

https://docs.python.org/3/reference/datamodel.html#index-3

Values
The 3.1 topic “objects, values, and types” in the “Data Model” reference is
available on the docs.ptyhon.org website.

https://docs.python.org/3/reference/datamodel.html#index-3

Chapter 7 Examples
Example Traceback Error

1 N/A
2 list index out of range
3 list index out of range
4 N/A
5 expected an indented block
6 ‘int’ object has no attribute ‘upper
7 expected an indented block

340

8 invalid syntax
9 invalid syntax
10 name <object> is not defined
11 invalid syntax
12 invalid syntax
13 name <object> is not defined

14 No such file or directory: ‘file.txt’

15 Custom error message is raised

16 invalid syntax

17 unsupported operand type(s) for /: ‘NoneType’ and ‘int’

18 module ‘math’ has no attribute ‘cube’

19 name ‘plt’ is not defined

20 ‘Worksheet Sheet1 does not exist.’

21 invalid literal for int() with base 10:

22 name ‘plt’ is not defined

23 list.remove(x): x not in list

24 float divison by zero

25 N/A

26 month must be in 1..12

27 N/A’

28 NoneType object has no attribute ‘upper’

29 N/A

30 N/A

31 KeyError: 4

32 can only concatenate str (not “int”) to str

33 N/A

34 bad operand type for unary +: ‘str’

35 StopIteration

36 missing 1 required positional argument:

37 str object is not callable

38 object has no attribute

39 unhashable type: ‘list’

40 can’t assign to a functional

41 too many values to unpack

42 ‘tuple’ object does not support item assignment

43 ‘str’ object is not callable

44 can only concatenate tuple (not “int”) to tuple

45 N/A

46 unhashable type: ‘dict’

47 ‘builtin_function_or_method’ object is not subscriptable

Appendix - References 341

48 ‘in <string>’ requires string as left operand, not list

49 invalid literal for int() with base 10:

50 local variable <variable> referenced before assignment

51 shape mismatch: objects cannot be broadcast to a single shape

52 tuple index out of range

53 unpack non-iterable bool

Chapter 7 Errors
bad operand type for unary +: ‘str’ -- Example 34

builtin_function_or_method’ object is not subscriptable -- Example 47

can only concatenate str (not “int”) to str -- Example 32

can only concatenate tuple (not “int”) to tuple -- Example 44

can’t assign to a functional -- Example 40

Custom error message is raised -- Example 15

expected an indented block -- Example 5

expected an indented block -- Example 7

float divison by zero -- Example 24

in <string>’ requires string as left operand, not list -- Example 48

int object has no attribute ‘upper -- Example 6

invalid literal for int() with base 10: -- Example 21

invalid literal for int() with base 10: -- Example 49

invalid syntax -- Example 8

invalid syntax -- Example 9

invalid syntax -- Example 11

invalid syntax -- Example 12

invalid syntax -- Example 16

KeyError: 4 -- Example 31

342

list index out of range -- Example 2

list index out of range -- Example 3

list.remove(x): x not in list -- Example 23

local variable <variable> referenced before assignment -- Example 50

missing 1 required positional argument: -- Example 36

module ‘math’ has no attribute ‘cube’ -- Example 18

month must be in 1..12 -- Example 26

name ‘plt’ is not defined -- Example 19

name ‘plt’ is not defined -- Example 22

name <object> is not defined -- Example 10

name <object> is not defined -- Example 13

No such file or directory: ‘file.txt’ -- Example 14

NoneType object has no attribute ‘upper’ -- Example 28

object has no attribute -- Example 38

shape mismatch: objects cannot be broadcast to a single shape -- Ex 51

StopIteration -- Example 35

str object is not callable -- Example 37, 43

too many values to unpack -- Example 41

tuple index out of range -- Example 52

tuple object does not support item assignment -- Example 42

unpack non-iterable bool - Example 53

unhashable type: ‘dict’ -- Example 46

unhashable type: ‘list’ -- Example 39

unsupported operand type(s) for /: ‘NoneType’ and ‘int’ -- Example 17

Worksheet Sheet1 does not exist.’ -- Example 20

Appendix - References 343

Libraries
This is a list of some common Python libraries. Another source for libraries is

https://pypi.org.

bs4 - beautiful soup for html (web scrapper)

bisect

calendar

cmath

cmd

Collections - container datatypes like defaultdict, Counter, and
namedtuple()

copy

csv

datetime

functools

inspect

itertools

json

logging

math

matplotlib - plots and charts

numPy

openpyxl

operator

os

os.path

pillow - images

pypi.org - Python Package Index

random

re - regular expression matching

344

shutil

smtplib - email

statistics

string

time

timeit

urllib

pywin32 -COM technology for Windows applications like Outlook or File
operations

Python Coding -
One Year Later

Copyright © January, 2021 by Cathy Young

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted in any form or by any other means, electronic,
mechanical, photocopying, recording, scanning or otherwise by any party
except as permitted under Sections 107 or 108 of the 1976 United States
Copyright Act without the prior written permission of the publisher and
copyright owner.

Trademarks
All terms mentioned in this book that are known to be trademarks

have been capitalized. All other trademarks are the property of their
respective owners.

References & Citations
“Welcome to Python.org.” Python.org, www.python.org/.

IDE used in this book is from www.Anaconda.com

Devopedia. 2020. “Algorithmic Complexity.” Version 7, January 6. Accessed
2020-11-24. https://devopedia.org/algorithmic-complexity

https://code.org/tos

https://funprogramming.org/50-What-are-global-and-local-variables.html

Warning and Disclaimer
The information provided in this book is on an “as is” basis. The

author is not responsible or liable to any person or entity with respect to
any loss or damages arising from the information contained in this book. The

author makes no representations or warranties, express or implied, as to the
condition, quality, merchantability or fitness of any product mentioned. 

Symbols
_ 41, 113, 178
- 110
! 109, 218
? 176, 180, 181
.. See Dotted Notation
‘’ 49
“” 49
() 80. See also Functions, Tuples, Classes
[] 80
[] 55, 102. See Lists; See also Indexing, Slicing, Lists
{} 74, 89, 159. See Dictionaries
@ 37, 259
* 108, 124, 139. See Unpacking operator
** 124
\ 103
& 92, 111
42
^ 112
= 37
| 91, 110, 112
$ 37, 259
*args 124
- comment 35, 37, 259
: - control statement, function definition, class 115
\ - escape sequence 42
// Integer division 107
*kwargs 124
% modulo 44, 107, 215

A
abs() 110
abstraction 36, 120, 145, 149
add 95, 114
Add a New Key Pair to an Existing Dictionary 83
Add Character When Joining Strings 64
algorithmic complexity 21
alias 56, 109, 271
alphabet 52
always True 117, 215

Anaconda 27
apostrophe 204
Apostrophes 43
Append element to list 61
Append to a Dictionary 80
arbitrary keyword argument 125
argument 120
Arithmetic 106
ArithmeticError 203
arrays 71
assert 197, 201
AssertionError 203
Assign 168
assignment index out of range 205
assignment operator 95
assignment statement 37, 49, 74
asymptotic notation 21
attribute 147, 148, 150, 169, 182, 203
AttributeError 80, 147, 179, 203, 249, 268

B
backslash 42
Backup 165
Backups 20
bad operand type for unary +: ‘str’ 296
bar chart 319
base case 129
base class 262
BeautifulSoup 281
behavior 56, 70, 124, 128, 148
Big O 21
binary 47
bind 37
binding 37
bitwise 111
block of code 35, 115, 118
bool 323
boolean 43, 121, 127, 216
brackets 96, 102, 222, 285
branch 115
break 31, 117, 176, 215

Index

348

Breakpoint 164, 171, 172, 174
bs4 281
built-in 51, 198, 203
builtin_function_or_method 291, 313
builtin_function_or_method’ object is not
subscriptable 313
byte literal 49

C
callable object 117
Calling a Function 334
Calling a method 148
calling or invoking a function 120, 121, 135
Calls 121, 334
Call Signature 121, 125, 146, 184. See Function call
signature
Camel Case 50
can only concatenate str (not “int”) to str 294
can only concatenate tuple (not “int”) to tuple 309
can’t assign to a functional 305
case. See lowercase; See also swapcase; See
also upper
case sensitive 35, 255
Cast. See Convert Data Type
cell 189
chain() 118
chart 136, 277
Classes 35, 145
class variables 146
Clear Console 176, 177
close() 195
Cntrl + I 184, 279. See help
Cntrl C 31
Code Block 31, 118
code completion 168
Code Completion 170
Collections 72, 95
colon 115
color coding 170
combine. See also concatenate
command file 165
Comment 35, 42, 146
Comparing Floats 110
comparison 284
Comparison Operators 48, 88, 108
Complexity 21
compound statements 115
comprehension 86. See List comprehension

Computational Complexity 21
concatenate 48, 71, 108
concatenating 45
concatenation 48, 70, 106, 108
conditional statement 116
Console 28, 31, 50, 165, 166, 171, 173
container 47
Container 43, 126
context management protocol 114
continue 58
Control Statements 115, 120, 255
Convert Data Type 45, 49
copy 56
copyfile 166
count 61, 86, 92, 95, 108
Counter 95, 118, 178, 188. See also iterate
create a file 167
csv 262
cube 268, 269, 340
current date 165
custom error message 263
custom message 263

D
dash 110
data. See Referencing Object Values
Data scrubbing 23
Data Structures 35, 47, 116, 180, 185
Data type 43, 55
date 165
datetime 202, 228
day 189, 190
Debug Commands 176
Debug Mode 171
decimal 50
decomposition 120
deepcopy 58
def 258
defaultdict 95
Defined behavior 36
Defined Behavior 337
defining a function 120, 123, 258
del() - delete 60, 83
depth 206
diagram 26, 162
dictionary 74, 98
Dictionary Comprehensions 86

Index 349

dictionary unpacking operator 124
difference() 92
digit 107
dir 166
dir() 181
Dir() 50, 181
directory 263
Divide and Conquer 24
divide by zero 209
division 44, 106, 107, 215
docs.python.org 108
docstring 180, 181, 186
DocString 145, 146, 180
do nothing. See pass
dotted notation 213
Dotted Notation 36, 145, 147, 148, 149
down 177
dummy 41
dunder 113
dynamic typing 121, 172

E
Editor 28, 31, 34, 164, 165, 168
efficient 21
Elements 23, 47, 67, 74, 83, 96, 102, 126
Else Statement 115
empty block of code 251
end 144
Endless loop 236, 245, 246
environ 166
EOFError 204
EOL 49
epsilon 110
equal 114
Errors 198
escape sequence 49
Escape Sequence 42
Even 107
Excel 249, 272
except 263
exception 197
Exception 197
Exit 177
expected an indented block 247, 252
explicit line joining 42
exponent 106
expression 115

Expression 42
extend 61

F
file 167, 194, 195, 262
file handling 115
FileNotFoundError 261
filter() 142. See zfill
find 48, 50, 108. See in
Find a Substring 110
first-class objects 120
float 43, 45, 46, 110, 185
float divison by zero 280
Float rounding errors 185
floor division 107
Focused testing 189
for 69, 83, 88, 115, 116
for loop. See also nested
formatted string literal 49
fsum 270
function 120
function calls 42
Function Return Object 70, 111, 126, 127, 216

G
generator expression 89
getfullargspec 231
Global 35, 38, 123, 151, 185. See also Scope
globals() 186
graph 270. See also chart

H
hash 42
hashable 37, 74
hash character 35, 114
help 184, 279
help() 50, 147, 183, 271
helper program 194
heterogeneous 66
higher-order function 140
highlight 164
highlights 261
histogram 277
HTML 191, 281

350

I
id() 159, 185
IDE 17
Identifier 34, 36, 49, 109, 148
Identity 185
if 116. See also in
ignore 41
Illegal character 259
immutable 36, 43, 49, 67
implicit line joining 42
import 149, 204, 271
in 108
in <string> requires string as left operand, not list
315
in common 92, 111
incompatible types 282
increment. See Counter
indentation 118
IndentationError 204, 252
Indented Code 118
index 47, 50, 62, 96
IndexError 69, 96
index is out of range 55
indirection 38, 56
inefficient 21
infinite 167
init 114
initialize 153
input() 204, 276
inputs 120
insert 61
Inspect 125, 147, 179, 180, 184
instance 145, 148. See also Endless loop
instance variables 146
instantiation 148
integer 46, 54, 69, 87
integer division 107
Interactive Interpreter 113, 177, 178
Interactive Mode 177
intersection 91, 92
int object has no attribute ‘upper’ 249, 339
Introspection 164, 168, 179
invalid literal for int() with base 10: 276, 316
invalid syntax 253, 254, 257, 259, 265, 340
Invoke a Function 70, 114, 121
ipdb 177
iPython 173, 178
isalpha 50

is, comparison operator 109
isinstance 44
isnan(x) 47
itemgetter 66
items 47
iter() 117, 144
iterables 47, 136
Iterables 117
iterable unpacking operator 124
iterate 47, 53, 55, 58, 69, 83, 84, 88, 106, 116, 117
iterator 117
iterator protocol 117
itertools 117

J
join() 50, 61, 63
Joining Lines 42

K
kernel 173, 237
keyboard interrupt 31
Key error 303
KeyError 272
keyword 35, 115, 122, 123, 125, 250, 257, 265
keyword argument 123. See also keyword

L
lambda 141, 143
last 55
last digit 107
last evaluation 178
lazily 88
LEGB 151, 159
len() 48, 54, 81, 102, 114, 185
less than 146
letters 52
lexical scoping 151
libraries 149
Linear complexity 22
line feed 288
line return 228
List comprehension 58
list comprehensions 141
listdir 166

Index 351

list index out of range 236, 239, 242
list of files 263
list.remove(x): x not in list 279
Lists 54, 234
literal 49
local 38, 151, 177, 181, 185
Local 182
locals() 185
local scope 165
localtime 166
local variable <variable> referenced before
assignment 318
locate. See in
Logarithmic complexity 22
logging 164, 186, 187, 281
logic error 198, 282
loop 83, 112, 116, 117, 215
lowercase 34, 50, 66, 121, 146, 257
lstrip 50
lstrip() 228
lt 114

M
magic function 172, 174
main 114
makedirs 166
mandatory 123
map() 58, 64, 140. See also List comprehension
mapping type 48
Matching 284
math 177, 270, 282
matplotlib 270, 277, 278, 320
max 108, 140
membership 108
Memory 179
method 36, 38, 50, 120, 125, 147, 148, 249, 278,
279
min 108
missing 1 required positional argument 299
misspelled 205, 265
modularity 149
module ‘math’ has no attribute ‘cube’ 268
modules 36, 149
modulo 44, 106, 107, 215
month must be in 1..12 283
multidimensional 71
mutable 43, 54

N
name 114
name <object> is not defined 256
namedtuple 72, 95
NameError 165, 200, 203, 205, 255, 256
names 34
namespace 151, 154, 256
Namespace 179, 183
naming convention. See syntax
NAN 47
nested 118, 159, 165
network ports 115
new 114
next 177
None 46, 267
NoneType 43, 46, 286
NoneType object has no attribute ‘upper’ 287
non-iterable Bool 323
nonlocal 160
non-scalar 43, 47
No such file or directory: ‘file.txt’ 262
not 108
not a number 47
notes. See Comment
null 46
numbers 34, 46, 53
numerical operations 106
numpy.py 71

O
Object 36
object has no attribute 301
Odd 107
oldest date 170
one-line swap 68
open() 167, 194, 195, 262
operator 37, 42, 66
operator overloading 114
operator precedence 282
operators 106
optional argument 123
os 166, 262
Outline Pane 120, 165
out of bounds 206
Out of Memory 200
outputs 120

352

overloading. See also chart
override 145, 146. See also special method

P
padding numbers 51
parameters 120
parentheses 120, 203, 219, 252, 253
pass 120, 252
path 166
pause. See sleep
pause program 171
PEP 34
pipe 112
plot 136, 270, 277, 319
pop() 64
positional argument 122, 123, 124, 139, 299
Power 106
prefix. See r prefix
primitive 43
print 166
print() 144
Private Names 113
pseudocode 198
Pseudocode 23
punctuation. See string module
purple icon 170
Pythonic 111, 127, 216

Q
quit 177. See keyboard interrupt
quote 204
quotes 80, 214, 285. See also raw quotes
quotient 107

R
Raise 201
range 54, 87, 117
raw 42, 49
raw quotes 103
read() 262
RecursionError 206
recursive 39, 123, 129
red 170, 253, 254, 255, 259, 265
red dot 171, 174

reducing 107
refactor 72
reference 56
Referencing Object Values 35
remainder 44, 107, 215
Remainder 106, 110
remove 279
remove() 64
repetition 70, 108
replace 50
replace substring 50
repr() 47, 49, 53, 185
required 123
reserved keywords 35
restart 237
Restart Kernel 173
return 126, 231
Return object 70, 111, 126, 127, 216
rindex 50
rounding errors 185
r prefix 42, 49
rsplit 50
rstrip 50
rstrip() 228
run *.py script in Terminal 165
runtime 198

S
sales tax 58
scalar 43, 46, 49
Scope 40, 151
script 29, 222
scroll 167
Scrub Data. See also Data scrubbing
search 116
Search 108. See also in
self 145
Semantic 198
sequence 47, 96
Sequence 108. See also Data Structures
Sequence Operations 61, 108
sequence protocol 96, 117
sequence type 47
set 65, 89
set comprehension 93
setdefault() 82
shape mismatch: objects cannot be broadcast to a

Index 353

single shape 319
Shell 28, 29, 164, 166
short-circuit operator 109, 218
signature() 184
skip 102. See pass
sleep 165, 166
slice() 103
slicing 94
Slicing 102
sort() 65, 142
sorted 65
Special characters 42, 185
special method 37, 114, 145
split 50
sqrt 177
square brackets 55
stack 38, 130, 150, 173
state 147
statement 115
step 102
step into 290
stop 102, 237. See also keyboard interrupt
Stop 31
StopIteration 297
str 114
strftime 166, 228
string 49
string indices must be integers 54
String Module 50
strip 51
strip() 228
str object is not callable 308
sub 114
subclass 95, 145, 149
subscriptable 313
substring 102, 108, 112
Substring 112
suite 118, 237, 248
superclass 145
swapcase 51
swap values 68, 70
switch 190
symmetric 111
syntax 34
SyntaxError 253, 254, 259
Syntax Errors 198
System-Defined Names 113

T
tab 228
Terminal 165
Test Data 23, 191
test objects 193
text sequence type 47
throw away 41
time 165, 166, 188, 228
timeit 188
token. See also rsplit
tokenize 50
too many values to unpack 306
Top-level code 114
Traceback 199
try 263
Try and Except 200
Tuple 67
tuple index out of range 321
tuple object does not support item assignment 67
tutorial 145
txt 178, 262
type 275
type() 185
Type 43, 82
TypeError 54, 263
Type error when adding; eur euro ; usd 3.45 264

U
UnboundLocalError 206, 208
Undefined name 260
underline 114
underscore 41, 46, 113
unhandled 197
unhashable type: ‘dict’ 312
unhashable type: ‘list 303
unicode error 43
unicodeescape 43
Union 91
unpack 41, 306
unpacking operator 124, 125, 322
Unpack Non-iterable Bool 323
unsupported operand type(s) for /: ‘NoneType’ and
‘int’ 267
upper 51
urllib 281
urlopen 281
user input. See input()

354

user reports 186

V
value 36, 37, 85
ValueError 209, 278, 282
Variable Explorer 173
Variables 37
variables in memory 179
version 114, 185
vowels 59

W
while 69, 116, 117, 215
whitespace 49, 50, 53, 228
Whitespace 185
with 115
with statement 114
wrap 114

X
XML 281

Y
year 169
yellow triangle 34, 198
yield 89, 126

Z
zero 228
zfill 51
zip() 136

