[pypy-svn] r5024 - pypy/trunk/src/pypy/appspace

arigo at codespeak.net arigo at codespeak.net
Thu Jun 10 14:38:26 CEST 2004


Author: arigo
Date: Thu Jun 10 14:38:25 2004
New Revision: 5024

Added:
   pypy/trunk/src/pypy/appspace/random.py
Log:
Pure Python implementation of random.py, from Python 2.2.


Added: pypy/trunk/src/pypy/appspace/random.py
==============================================================================
--- (empty file)
+++ pypy/trunk/src/pypy/appspace/random.py	Thu Jun 10 14:38:25 2004
@@ -0,0 +1,782 @@
+#
+#  This module is stolen from Python 2.2.
+#  Python 2.3 uses a C extension.
+#
+
+"""Random variable generators.
+
+    integers
+    --------
+           uniform within range
+
+    sequences
+    ---------
+           pick random element
+           generate random permutation
+
+    distributions on the real line:
+    ------------------------------
+           uniform
+           normal (Gaussian)
+           lognormal
+           negative exponential
+           gamma
+           beta
+
+    distributions on the circle (angles 0 to 2pi)
+    ---------------------------------------------
+           circular uniform
+           von Mises
+
+Translated from anonymously contributed C/C++ source.
+
+Multi-threading note:  the random number generator used here is not thread-
+safe; it is possible that two calls return the same random value.  However,
+you can instantiate a different instance of Random() in each thread to get
+generators that don't share state, then use .setstate() and .jumpahead() to
+move the generators to disjoint segments of the full period.  For example,
+
+def create_generators(num, delta, firstseed=None):
+    ""\"Return list of num distinct generators.
+    Each generator has its own unique segment of delta elements from
+    Random.random()'s full period.
+    Seed the first generator with optional arg firstseed (default is
+    None, to seed from current time).
+    ""\"
+
+    from random import Random
+    g = Random(firstseed)
+    result = [g]
+    for i in range(num - 1):
+        laststate = g.getstate()
+        g = Random()
+        g.setstate(laststate)
+        g.jumpahead(delta)
+        result.append(g)
+    return result
+
+gens = create_generators(10, 1000000)
+
+That creates 10 distinct generators, which can be passed out to 10 distinct
+threads.  The generators don't share state so can be called safely in
+parallel.  So long as no thread calls its g.random() more than a million
+times (the second argument to create_generators), the sequences seen by
+each thread will not overlap.
+
+The period of the underlying Wichmann-Hill generator is 6,953,607,871,644,
+and that limits how far this technique can be pushed.
+
+Just for fun, note that since we know the period, .jumpahead() can also be
+used to "move backward in time":
+
+>>> g = Random(42)  # arbitrary
+>>> g.random()
+0.25420336316883324
+>>> g.jumpahead(6953607871644L - 1) # move *back* one
+>>> g.random()
+0.25420336316883324
+"""
+# XXX The docstring sucks.
+
+from math import log as _log, exp as _exp, pi as _pi, e as _e
+from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
+from math import floor as _floor
+
+__all__ = ["Random","seed","random","uniform","randint","choice",
+           "randrange","shuffle","normalvariate","lognormvariate",
+           "cunifvariate","expovariate","vonmisesvariate","gammavariate",
+           "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
+           "getstate","setstate","jumpahead","whseed"]
+
+def _verify(name, computed, expected):
+    if abs(computed - expected) > 1e-7:
+        raise ValueError(
+            "computed value for %s deviates too much "
+            "(computed %g, expected %g)" % (name, computed, expected))
+
+NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
+_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
+
+TWOPI = 2.0*_pi
+_verify('TWOPI', TWOPI, 6.28318530718)
+
+LOG4 = _log(4.0)
+_verify('LOG4', LOG4, 1.38629436111989)
+
+SG_MAGICCONST = 1.0 + _log(4.5)
+_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)
+
+del _verify
+
+# Translated by Guido van Rossum from C source provided by
+# Adrian Baddeley.
+
+class Random:
+    """Random number generator base class used by bound module functions.
+
+    Used to instantiate instances of Random to get generators that don't
+    share state.  Especially useful for multi-threaded programs, creating
+    a different instance of Random for each thread, and using the jumpahead()
+    method to ensure that the generated sequences seen by each thread don't
+    overlap.
+
+    Class Random can also be subclassed if you want to use a different basic
+    generator of your own devising: in that case, override the following
+    methods:  random(), seed(), getstate(), setstate() and jumpahead().
+
+    """
+
+    VERSION = 1     # used by getstate/setstate
+
+    def __init__(self, x=None):
+        """Initialize an instance.
+
+        Optional argument x controls seeding, as for Random.seed().
+        """
+
+        self.seed(x)
+
+## -------------------- core generator -------------------
+
+    # Specific to Wichmann-Hill generator.  Subclasses wishing to use a
+    # different core generator should override the seed(), random(),
+    # getstate(), setstate() and jumpahead() methods.
+
+    def seed(self, a=None):
+        """Initialize internal state from hashable object.
+
+        None or no argument seeds from current time.
+
+        If a is not None or an int or long, hash(a) is used instead.
+
+        If a is an int or long, a is used directly.  Distinct values between
+        0 and 27814431486575L inclusive are guaranteed to yield distinct
+        internal states (this guarantee is specific to the default
+        Wichmann-Hill generator).
+        """
+
+        if a is None:
+            # Initialize from current time
+            import time
+            a = long(time.time() * 256)
+
+        if type(a) not in (type(3), type(3L)):
+            a = hash(a)
+
+        a, x = divmod(a, 30268)
+        a, y = divmod(a, 30306)
+        a, z = divmod(a, 30322)
+        self._seed = int(x)+1, int(y)+1, int(z)+1
+
+        self.gauss_next = None
+
+    def random(self):
+        """Get the next random number in the range [0.0, 1.0)."""
+
+        # Wichman-Hill random number generator.
+        #
+        # Wichmann, B. A. & Hill, I. D. (1982)
+        # Algorithm AS 183:
+        # An efficient and portable pseudo-random number generator
+        # Applied Statistics 31 (1982) 188-190
+        #
+        # see also:
+        #        Correction to Algorithm AS 183
+        #        Applied Statistics 33 (1984) 123
+        #
+        #        McLeod, A. I. (1985)
+        #        A remark on Algorithm AS 183
+        #        Applied Statistics 34 (1985),198-200
+
+        # This part is thread-unsafe:
+        # BEGIN CRITICAL SECTION
+        x, y, z = self._seed
+        x = (171 * x) % 30269
+        y = (172 * y) % 30307
+        z = (170 * z) % 30323
+        self._seed = x, y, z
+        # END CRITICAL SECTION
+
+        # Note:  on a platform using IEEE-754 double arithmetic, this can
+        # never return 0.0 (asserted by Tim; proof too long for a comment).
+        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
+
+    def getstate(self):
+        """Return internal state; can be passed to setstate() later."""
+        return self.VERSION, self._seed, self.gauss_next
+
+    def setstate(self, state):
+        """Restore internal state from object returned by getstate()."""
+        version = state[0]
+        if version == 1:
+            version, self._seed, self.gauss_next = state
+        else:
+            raise ValueError("state with version %s passed to "
+                             "Random.setstate() of version %s" %
+                             (version, self.VERSION))
+
+    def jumpahead(self, n):
+        """Act as if n calls to random() were made, but quickly.
+
+        n is an int, greater than or equal to 0.
+
+        Example use:  If you have 2 threads and know that each will
+        consume no more than a million random numbers, create two Random
+        objects r1 and r2, then do
+            r2.setstate(r1.getstate())
+            r2.jumpahead(1000000)
+        Then r1 and r2 will use guaranteed-disjoint segments of the full
+        period.
+        """
+
+        if not n >= 0:
+            raise ValueError("n must be >= 0")
+        x, y, z = self._seed
+        x = int(x * pow(171, n, 30269)) % 30269
+        y = int(y * pow(172, n, 30307)) % 30307
+        z = int(z * pow(170, n, 30323)) % 30323
+        self._seed = x, y, z
+
+    def __whseed(self, x=0, y=0, z=0):
+        """Set the Wichmann-Hill seed from (x, y, z).
+
+        These must be integers in the range [0, 256).
+        """
+
+        if not type(x) == type(y) == type(z) == type(0):
+            raise TypeError('seeds must be integers')
+        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
+            raise ValueError('seeds must be in range(0, 256)')
+        if 0 == x == y == z:
+            # Initialize from current time
+            import time
+            t = long(time.time() * 256)
+            t = int((t&0xffffff) ^ (t>>24))
+            t, x = divmod(t, 256)
+            t, y = divmod(t, 256)
+            t, z = divmod(t, 256)
+        # Zero is a poor seed, so substitute 1
+        self._seed = (x or 1, y or 1, z or 1)
+
+        self.gauss_next = None
+
+    def whseed(self, a=None):
+        """Seed from hashable object's hash code.
+
+        None or no argument seeds from current time.  It is not guaranteed
+        that objects with distinct hash codes lead to distinct internal
+        states.
+
+        This is obsolete, provided for compatibility with the seed routine
+        used prior to Python 2.1.  Use the .seed() method instead.
+        """
+
+        if a is None:
+            self.__whseed()
+            return
+        a = hash(a)
+        a, x = divmod(a, 256)
+        a, y = divmod(a, 256)
+        a, z = divmod(a, 256)
+        x = (x + a) % 256 or 1
+        y = (y + a) % 256 or 1
+        z = (z + a) % 256 or 1
+        self.__whseed(x, y, z)
+
+## ---- Methods below this point do not need to be overridden when
+## ---- subclassing for the purpose of using a different core generator.
+
+## -------------------- pickle support  -------------------
+
+    def __getstate__(self): # for pickle
+        return self.getstate()
+
+    def __setstate__(self, state):  # for pickle
+        self.setstate(state)
+
+## -------------------- integer methods  -------------------
+
+    def randrange(self, start, stop=None, step=1, int=int, default=None):
+        """Choose a random item from range(start, stop[, step]).
+
+        This fixes the problem with randint() which includes the
+        endpoint; in Python this is usually not what you want.
+        Do not supply the 'int' and 'default' arguments.
+        """
+
+        # This code is a bit messy to make it fast for the
+        # common case while still doing adequate error checking.
+        istart = int(start)
+        if istart != start:
+            raise ValueError, "non-integer arg 1 for randrange()"
+        if stop is default:
+            if istart > 0:
+                return int(self.random() * istart)
+            raise ValueError, "empty range for randrange()"
+
+        # stop argument supplied.
+        istop = int(stop)
+        if istop != stop:
+            raise ValueError, "non-integer stop for randrange()"
+        if step == 1 and istart < istop:
+            try:
+                return istart + int(self.random()*(istop - istart))
+            except OverflowError:
+                # This can happen if istop-istart > sys.maxint + 1, and
+                # multiplying by random() doesn't reduce it to something
+                # <= sys.maxint.  We know that the overall result fits
+                # in an int, and can still do it correctly via math.floor().
+                # But that adds another function call, so for speed we
+                # avoided that whenever possible.
+                return int(istart + _floor(self.random()*(istop - istart)))
+        if step == 1:
+            raise ValueError, "empty range for randrange()"
+
+        # Non-unit step argument supplied.
+        istep = int(step)
+        if istep != step:
+            raise ValueError, "non-integer step for randrange()"
+        if istep > 0:
+            n = (istop - istart + istep - 1) / istep
+        elif istep < 0:
+            n = (istop - istart + istep + 1) / istep
+        else:
+            raise ValueError, "zero step for randrange()"
+
+        if n <= 0:
+            raise ValueError, "empty range for randrange()"
+        return istart + istep*int(self.random() * n)
+
+    def randint(self, a, b):
+        """Return random integer in range [a, b], including both end points.
+        """
+
+        return self.randrange(a, b+1)
+
+## -------------------- sequence methods  -------------------
+
+    def choice(self, seq):
+        """Choose a random element from a non-empty sequence."""
+        return seq[int(self.random() * len(seq))]
+
+    def shuffle(self, x, random=None, int=int):
+        """x, random=random.random -> shuffle list x in place; return None.
+
+        Optional arg random is a 0-argument function returning a random
+        float in [0.0, 1.0); by default, the standard random.random.
+
+        Note that for even rather small len(x), the total number of
+        permutations of x is larger than the period of most random number
+        generators; this implies that "most" permutations of a long
+        sequence can never be generated.
+        """
+
+        if random is None:
+            random = self.random
+        for i in xrange(len(x)-1, 0, -1):
+            # pick an element in x[:i+1] with which to exchange x[i]
+            j = int(random() * (i+1))
+            x[i], x[j] = x[j], x[i]
+
+## -------------------- real-valued distributions  -------------------
+
+## -------------------- uniform distribution -------------------
+
+    def uniform(self, a, b):
+        """Get a random number in the range [a, b)."""
+        return a + (b-a) * self.random()
+
+## -------------------- normal distribution --------------------
+
+    def normalvariate(self, mu, sigma):
+        """Normal distribution.
+
+        mu is the mean, and sigma is the standard deviation.
+
+        """
+        # mu = mean, sigma = standard deviation
+
+        # Uses Kinderman and Monahan method. Reference: Kinderman,
+        # A.J. and Monahan, J.F., "Computer generation of random
+        # variables using the ratio of uniform deviates", ACM Trans
+        # Math Software, 3, (1977), pp257-260.
+
+        random = self.random
+        while 1:
+            u1 = random()
+            u2 = random()
+            z = NV_MAGICCONST*(u1-0.5)/u2
+            zz = z*z/4.0
+            if zz <= -_log(u2):
+                break
+        return mu + z*sigma
+
+## -------------------- lognormal distribution --------------------
+
+    def lognormvariate(self, mu, sigma):
+        """Log normal distribution.
+
+        If you take the natural logarithm of this distribution, you'll get a
+        normal distribution with mean mu and standard deviation sigma.
+        mu can have any value, and sigma must be greater than zero.
+
+        """
+        return _exp(self.normalvariate(mu, sigma))
+
+## -------------------- circular uniform --------------------
+
+    def cunifvariate(self, mean, arc):
+        """Circular uniform distribution.
+
+        mean is the mean angle, and arc is the range of the distribution,
+        centered around the mean angle.  Both values must be expressed in
+        radians.  Returned values range between mean - arc/2 and
+        mean + arc/2 and are normalized to between 0 and pi.
+
+        Deprecated in version 2.3.  Use:
+            (mean + arc * (Random.random() - 0.5)) % Math.pi
+
+        """
+        # mean: mean angle (in radians between 0 and pi)
+        # arc:  range of distribution (in radians between 0 and pi)
+
+        return (mean + arc * (self.random() - 0.5)) % _pi
+
+## -------------------- exponential distribution --------------------
+
+    def expovariate(self, lambd):
+        """Exponential distribution.
+
+        lambd is 1.0 divided by the desired mean.  (The parameter would be
+        called "lambda", but that is a reserved word in Python.)  Returned
+        values range from 0 to positive infinity.
+
+        """
+        # lambd: rate lambd = 1/mean
+        # ('lambda' is a Python reserved word)
+
+        random = self.random
+        u = random()
+        while u <= 1e-7:
+            u = random()
+        return -_log(u)/lambd
+
+## -------------------- von Mises distribution --------------------
+
+    def vonmisesvariate(self, mu, kappa):
+        """Circular data distribution.
+
+        mu is the mean angle, expressed in radians between 0 and 2*pi, and
+        kappa is the concentration parameter, which must be greater than or
+        equal to zero.  If kappa is equal to zero, this distribution reduces
+        to a uniform random angle over the range 0 to 2*pi.
+
+        """
+        # mu:    mean angle (in radians between 0 and 2*pi)
+        # kappa: concentration parameter kappa (>= 0)
+        # if kappa = 0 generate uniform random angle
+
+        # Based upon an algorithm published in: Fisher, N.I.,
+        # "Statistical Analysis of Circular Data", Cambridge
+        # University Press, 1993.
+
+        # Thanks to Magnus Kessler for a correction to the
+        # implementation of step 4.
+
+        random = self.random
+        if kappa <= 1e-6:
+            return TWOPI * random()
+
+        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
+        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
+        r = (1.0 + b * b)/(2.0 * b)
+
+        while 1:
+            u1 = random()
+
+            z = _cos(_pi * u1)
+            f = (1.0 + r * z)/(r + z)
+            c = kappa * (r - f)
+
+            u2 = random()
+
+            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
+                break
+
+        u3 = random()
+        if u3 > 0.5:
+            theta = (mu % TWOPI) + _acos(f)
+        else:
+            theta = (mu % TWOPI) - _acos(f)
+
+        return theta
+
+## -------------------- gamma distribution --------------------
+
+    def gammavariate(self, alpha, beta):
+        """Gamma distribution.  Not the gamma function!
+
+        Conditions on the parameters are alpha > 0 and beta > 0.
+
+        """
+
+        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
+
+        # Warning: a few older sources define the gamma distribution in terms
+        # of alpha > -1.0
+        if alpha <= 0.0 or beta <= 0.0:
+            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
+
+        random = self.random
+        if alpha > 1.0:
+
+            # Uses R.C.H. Cheng, "The generation of Gamma
+            # variables with non-integral shape parameters",
+            # Applied Statistics, (1977), 26, No. 1, p71-74
+
+            ainv = _sqrt(2.0 * alpha - 1.0)
+            bbb = alpha - LOG4
+            ccc = alpha + ainv
+
+            while 1:
+                u1 = random()
+                u2 = random()
+                v = _log(u1/(1.0-u1))/ainv
+                x = alpha*_exp(v)
+                z = u1*u1*u2
+                r = bbb+ccc*v-x
+                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
+                    return x * beta
+
+        elif alpha == 1.0:
+            # expovariate(1)
+            u = random()
+            while u <= 1e-7:
+                u = random()
+            return -_log(u) * beta
+
+        else:   # alpha is between 0 and 1 (exclusive)
+
+            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
+
+            while 1:
+                u = random()
+                b = (_e + alpha)/_e
+                p = b*u
+                if p <= 1.0:
+                    x = pow(p, 1.0/alpha)
+                else:
+                    # p > 1
+                    x = -_log((b-p)/alpha)
+                u1 = random()
+                if not (((p <= 1.0) and (u1 > _exp(-x))) or
+                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
+                    break
+            return x * beta
+
+
+    def stdgamma(self, alpha, ainv, bbb, ccc):
+        # This method was (and shall remain) undocumented.
+        # This method is deprecated
+        # for the following reasons:
+        # 1. Returns same as .gammavariate(alpha, 1.0)
+        # 2. Requires caller to provide 3 extra arguments
+        #    that are functions of alpha anyway
+        # 3. Can't be used for alpha < 0.5
+
+        # ainv = sqrt(2 * alpha - 1)
+        # bbb = alpha - log(4)
+        # ccc = alpha + ainv
+        import warnings
+        warnings.warn("The stdgamma function is deprecated; "
+                      "use gammavariate() instead",
+                      DeprecationWarning)
+        return self.gammavariate(alpha, 1.0)
+
+
+
+## -------------------- Gauss (faster alternative) --------------------
+
+    def gauss(self, mu, sigma):
+        """Gaussian distribution.
+
+        mu is the mean, and sigma is the standard deviation.  This is
+        slightly faster than the normalvariate() function.
+
+        Not thread-safe without a lock around calls.
+
+        """
+
+        # When x and y are two variables from [0, 1), uniformly
+        # distributed, then
+        #
+        #    cos(2*pi*x)*sqrt(-2*log(1-y))
+        #    sin(2*pi*x)*sqrt(-2*log(1-y))
+        #
+        # are two *independent* variables with normal distribution
+        # (mu = 0, sigma = 1).
+        # (Lambert Meertens)
+        # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+        # Multithreading note: When two threads call this function
+        # simultaneously, it is possible that they will receive the
+        # same return value.  The window is very small though.  To
+        # avoid this, you have to use a lock around all calls.  (I
+        # didn't want to slow this down in the serial case by using a
+        # lock here.)
+
+        random = self.random
+        z = self.gauss_next
+        self.gauss_next = None
+        if z is None:
+            x2pi = random() * TWOPI
+            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
+            z = _cos(x2pi) * g2rad
+            self.gauss_next = _sin(x2pi) * g2rad
+
+        return mu + z*sigma
+
+## -------------------- beta --------------------
+## See
+## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
+## for Ivan Frohne's insightful analysis of why the original implementation:
+##
+##    def betavariate(self, alpha, beta):
+##        # Discrete Event Simulation in C, pp 87-88.
+##
+##        y = self.expovariate(alpha)
+##        z = self.expovariate(1.0/beta)
+##        return z/(y+z)
+##
+## was dead wrong, and how it probably got that way.
+
+    def betavariate(self, alpha, beta):
+        """Beta distribution.
+
+        Conditions on the parameters are alpha > -1 and beta} > -1.
+        Returned values range between 0 and 1.
+
+        """
+
+        # This version due to Janne Sinkkonen, and matches all the std
+        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
+        y = self.gammavariate(alpha, 1.)
+        if y == 0:
+            return 0.0
+        else:
+            return y / (y + self.gammavariate(beta, 1.))
+
+## -------------------- Pareto --------------------
+
+    def paretovariate(self, alpha):
+        """Pareto distribution.  alpha is the shape parameter."""
+        # Jain, pg. 495
+
+        u = self.random()
+        return 1.0 / pow(u, 1.0/alpha)
+
+## -------------------- Weibull --------------------
+
+    def weibullvariate(self, alpha, beta):
+        """Weibull distribution.
+
+        alpha is the scale parameter and beta is the shape parameter.
+
+        """
+        # Jain, pg. 499; bug fix courtesy Bill Arms
+
+        u = self.random()
+        return alpha * pow(-_log(u), 1.0/beta)
+
+## -------------------- test program --------------------
+
+def _test_generator(n, funccall):
+    import time
+    print n, 'times', funccall
+    code = compile(funccall, funccall, 'eval')
+    sum = 0.0
+    sqsum = 0.0
+    smallest = 1e10
+    largest = -1e10
+    t0 = time.time()
+    for i in range(n):
+        x = eval(code)
+        sum = sum + x
+        sqsum = sqsum + x*x
+        smallest = min(x, smallest)
+        largest = max(x, largest)
+    t1 = time.time()
+    print round(t1-t0, 3), 'sec,',
+    avg = sum/n
+    stddev = _sqrt(sqsum/n - avg*avg)
+    print 'avg %g, stddev %g, min %g, max %g' % \
+              (avg, stddev, smallest, largest)
+
+def _test(N=20000):
+    print 'TWOPI         =', TWOPI
+    print 'LOG4          =', LOG4
+    print 'NV_MAGICCONST =', NV_MAGICCONST
+    print 'SG_MAGICCONST =', SG_MAGICCONST
+    _test_generator(N, 'random()')
+    _test_generator(N, 'normalvariate(0.0, 1.0)')
+    _test_generator(N, 'lognormvariate(0.0, 1.0)')
+    _test_generator(N, 'cunifvariate(0.0, 1.0)')
+    _test_generator(N, 'expovariate(1.0)')
+    _test_generator(N, 'vonmisesvariate(0.0, 1.0)')
+    _test_generator(N, 'gammavariate(0.01, 1.0)')
+    _test_generator(N, 'gammavariate(0.1, 1.0)')
+    _test_generator(N, 'gammavariate(0.1, 2.0)')
+    _test_generator(N, 'gammavariate(0.5, 1.0)')
+    _test_generator(N, 'gammavariate(0.9, 1.0)')
+    _test_generator(N, 'gammavariate(1.0, 1.0)')
+    _test_generator(N, 'gammavariate(2.0, 1.0)')
+    _test_generator(N, 'gammavariate(20.0, 1.0)')
+    _test_generator(N, 'gammavariate(200.0, 1.0)')
+    _test_generator(N, 'gauss(0.0, 1.0)')
+    _test_generator(N, 'betavariate(3.0, 3.0)')
+    _test_generator(N, 'paretovariate(1.0)')
+    _test_generator(N, 'weibullvariate(1.0, 1.0)')
+
+    # Test jumpahead.
+    s = getstate()
+    jumpahead(N)
+    r1 = random()
+    # now do it the slow way
+    setstate(s)
+    for i in range(N):
+        random()
+    r2 = random()
+    if r1 != r2:
+        raise ValueError("jumpahead test failed " + `(N, r1, r2)`)
+
+# Create one instance, seeded from current time, and export its methods
+# as module-level functions.  The functions are not threadsafe, and state
+# is shared across all uses (both in the user's code and in the Python
+# libraries), but that's fine for most programs and is easier for the
+# casual user than making them instantiate their own Random() instance.
+_inst = Random()
+seed = _inst.seed
+random = _inst.random
+uniform = _inst.uniform
+randint = _inst.randint
+choice = _inst.choice
+randrange = _inst.randrange
+shuffle = _inst.shuffle
+normalvariate = _inst.normalvariate
+lognormvariate = _inst.lognormvariate
+cunifvariate = _inst.cunifvariate
+expovariate = _inst.expovariate
+vonmisesvariate = _inst.vonmisesvariate
+gammavariate = _inst.gammavariate
+stdgamma = _inst.stdgamma
+gauss = _inst.gauss
+betavariate = _inst.betavariate
+paretovariate = _inst.paretovariate
+weibullvariate = _inst.weibullvariate
+getstate = _inst.getstate
+setstate = _inst.setstate
+jumpahead = _inst.jumpahead
+whseed = _inst.whseed
+
+if __name__ == '__main__':
+    _test()



More information about the Pypy-commit mailing list