[pypy-svn] r3464 - pypy/trunk/src/pypy/appspace

sanxiyn at codespeak.net sanxiyn at codespeak.net
Mon Mar 29 03:57:14 CEST 2004


Author: sanxiyn
Date: Mon Mar 29 03:57:13 2004
New Revision: 3464

Removed:
   pypy/trunk/src/pypy/appspace/random.py
Log:
oops.


Deleted: /pypy/trunk/src/pypy/appspace/random.py
==============================================================================
--- /pypy/trunk/src/pypy/appspace/random.py	Mon Mar 29 03:57:13 2004
+++ (empty file)
@@ -1,805 +0,0 @@
-"""Random variable generators.
-
-    integers
-    --------
-           uniform within range
-
-    sequences
-    ---------
-           pick random element
-           pick random sample
-           generate random permutation
-
-    distributions on the real line:
-    ------------------------------
-           uniform
-           normal (Gaussian)
-           lognormal
-           negative exponential
-           gamma
-           beta
-           pareto
-           Weibull
-
-    distributions on the circle (angles 0 to 2pi)
-    ---------------------------------------------
-           circular uniform
-           von Mises
-
-General notes on the underlying Mersenne Twister core generator:
-
-* The period is 2**19937-1.
-* It is one of the most extensively tested generators in existence
-* Without a direct way to compute N steps forward, the
-  semantics of jumpahead(n) are weakened to simply jump
-  to another distant state and rely on the large period
-  to avoid overlapping sequences.
-* The random() method is implemented in C, executes in
-  a single Python step, and is, therefore, threadsafe.
-
-"""
-
-from warnings import warn as _warn
-from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
-from math import log as _log, exp as _exp, pi as _pi, e as _e
-from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
-from math import floor as _floor
-
-__all__ = ["Random","seed","random","uniform","randint","choice","sample",
-           "randrange","shuffle","normalvariate","lognormvariate",
-           "expovariate","vonmisesvariate","gammavariate",
-           "gauss","betavariate","paretovariate","weibullvariate",
-           "getstate","setstate","jumpahead", "WichmannHill", "getrandbits"]
-
-NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
-TWOPI = 2.0*_pi
-LOG4 = _log(4.0)
-SG_MAGICCONST = 1.0 + _log(4.5)
-BPF = 53        # Number of bits in a float
-
-# Translated by Guido van Rossum from C source provided by
-# Adrian Baddeley.  Adapted by Raymond Hettinger for use with
-# the Mersenne Twister core generator.
-
-import _random
-
-class Random(_random.Random):
-    """Random number generator base class used by bound module functions.
-
-    Used to instantiate instances of Random to get generators that don't
-    share state.  Especially useful for multi-threaded programs, creating
-    a different instance of Random for each thread, and using the jumpahead()
-    method to ensure that the generated sequences seen by each thread don't
-    overlap.
-
-    Class Random can also be subclassed if you want to use a different basic
-    generator of your own devising: in that case, override the following
-    methods:  random(), seed(), getstate(), setstate() and jumpahead().
-    Optionally, implement a getrandombits() method so that randrange()
-    can cover arbitrarily large ranges.
-
-    """
-
-    VERSION = 2     # used by getstate/setstate
-
-    def __init__(self, x=None):
-        """Initialize an instance.
-
-        Optional argument x controls seeding, as for Random.seed().
-        """
-
-        self.seed(x)
-        self.gauss_next = None
-
-    def seed(self, a=None):
-        """Initialize internal state from hashable object.
-
-        None or no argument seeds from current time.
-
-        If a is not None or an int or long, hash(a) is used instead.
-        """
-
-        if a is None:
-            import time
-            a = long(time.time() * 256) # use fractional seconds
-        super(Random, self).seed(a)
-        self.gauss_next = None
-
-    def getstate(self):
-        """Return internal state; can be passed to setstate() later."""
-        return self.VERSION, super(Random, self).getstate(), self.gauss_next
-
-    def setstate(self, state):
-        """Restore internal state from object returned by getstate()."""
-        version = state[0]
-        if version == 2:
-            version, internalstate, self.gauss_next = state
-            super(Random, self).setstate(internalstate)
-        else:
-            raise ValueError("state with version %s passed to "
-                             "Random.setstate() of version %s" %
-                             (version, self.VERSION))
-
-## ---- Methods below this point do not need to be overridden when
-## ---- subclassing for the purpose of using a different core generator.
-
-## -------------------- pickle support  -------------------
-
-    def __getstate__(self): # for pickle
-        return self.getstate()
-
-    def __setstate__(self, state):  # for pickle
-        self.setstate(state)
-
-    def __reduce__(self):
-        return self.__class__, (), self.getstate()
-
-## -------------------- integer methods  -------------------
-
-    def randrange(self, start, stop=None, step=1, int=int, default=None,
-                  maxwidth=1L<<BPF):
-        """Choose a random item from range(start, stop[, step]).
-
-        This fixes the problem with randint() which includes the
-        endpoint; in Python this is usually not what you want.
-        Do not supply the 'int', 'default', and 'maxwidth' arguments.
-        """
-
-        # This code is a bit messy to make it fast for the
-        # common case while still doing adequate error checking.
-        istart = int(start)
-        if istart != start:
-            raise ValueError, "non-integer arg 1 for randrange()"
-        if stop is default:
-            if istart > 0:
-                if istart >= maxwidth:
-                    return self._randbelow(istart)
-                return int(self.random() * istart)
-            raise ValueError, "empty range for randrange()"
-
-        # stop argument supplied.
-        istop = int(stop)
-        if istop != stop:
-            raise ValueError, "non-integer stop for randrange()"
-        width = istop - istart
-        if step == 1 and width > 0:
-            # Note that
-            #     int(istart + self.random()*width)
-            # instead would be incorrect.  For example, consider istart
-            # = -2 and istop = 0.  Then the guts would be in
-            # -2.0 to 0.0 exclusive on both ends (ignoring that random()
-            # might return 0.0), and because int() truncates toward 0, the
-            # final result would be -1 or 0 (instead of -2 or -1).
-            #     istart + int(self.random()*width)
-            # would also be incorrect, for a subtler reason:  the RHS
-            # can return a long, and then randrange() would also return
-            # a long, but we're supposed to return an int (for backward
-            # compatibility).
-
-            if width >= maxwidth:
-                return int(istart + self._randbelow(width))
-            return int(istart + int(self.random()*width))
-        if step == 1:
-            raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
-
-        # Non-unit step argument supplied.
-        istep = int(step)
-        if istep != step:
-            raise ValueError, "non-integer step for randrange()"
-        if istep > 0:
-            n = (width + istep - 1) / istep
-        elif istep < 0:
-            n = (width + istep + 1) / istep
-        else:
-            raise ValueError, "zero step for randrange()"
-
-        if n <= 0:
-            raise ValueError, "empty range for randrange()"
-
-        if n >= maxwidth:
-            return istart + self._randbelow(n)
-        return istart + istep*int(self.random() * n)
-
-    def randint(self, a, b):
-        """Return random integer in range [a, b], including both end points.
-        """
-
-        return self.randrange(a, b+1)
-
-    def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
-                   _Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
-        """Return a random int in the range [0,n)
-
-        Handles the case where n has more bits than returned
-        by a single call to the underlying generator.
-        """
-
-        try:
-            getrandbits = self.getrandbits
-        except AttributeError:
-            pass
-        else:
-            # Only call self.getrandbits if the original random() builtin method
-            # has not been overridden or if a new getrandbits() was supplied.
-            # This assures that the two methods correspond.
-            if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
-                k = int(1.00001 + _log(n-1, 2.0))   # 2**k > n-1 > 2**(k-2)
-                r = getrandbits(k)
-                while r >= n:
-                    r = getrandbits(k)
-                return r
-        if n >= _maxwidth:
-            _warn("Underlying random() generator does not supply \n"
-                "enough bits to choose from a population range this large")
-        return int(self.random() * n)
-
-## -------------------- sequence methods  -------------------
-
-    def choice(self, seq):
-        """Choose a random element from a non-empty sequence."""
-        return seq[int(self.random() * len(seq))]
-
-    def shuffle(self, x, random=None, int=int):
-        """x, random=random.random -> shuffle list x in place; return None.
-
-        Optional arg random is a 0-argument function returning a random
-        float in [0.0, 1.0); by default, the standard random.random.
-
-        Note that for even rather small len(x), the total number of
-        permutations of x is larger than the period of most random number
-        generators; this implies that "most" permutations of a long
-        sequence can never be generated.
-        """
-
-        if random is None:
-            random = self.random
-        for i in reversed(xrange(1, len(x))):
-            # pick an element in x[:i+1] with which to exchange x[i]
-            j = int(random() * (i+1))
-            x[i], x[j] = x[j], x[i]
-
-    def sample(self, population, k):
-        """Chooses k unique random elements from a population sequence.
-
-        Returns a new list containing elements from the population while
-        leaving the original population unchanged.  The resulting list is
-        in selection order so that all sub-slices will also be valid random
-        samples.  This allows raffle winners (the sample) to be partitioned
-        into grand prize and second place winners (the subslices).
-
-        Members of the population need not be hashable or unique.  If the
-        population contains repeats, then each occurrence is a possible
-        selection in the sample.
-
-        To choose a sample in a range of integers, use xrange as an argument.
-        This is especially fast and space efficient for sampling from a
-        large population:   sample(xrange(10000000), 60)
-        """
-
-        # Sampling without replacement entails tracking either potential
-        # selections (the pool) in a list or previous selections in a
-        # dictionary.
-
-        # When the number of selections is small compared to the
-        # population, then tracking selections is efficient, requiring
-        # only a small dictionary and an occasional reselection.  For
-        # a larger number of selections, the pool tracking method is
-        # preferred since the list takes less space than the
-        # dictionary and it doesn't suffer from frequent reselections.
-
-        n = len(population)
-        if not 0 <= k <= n:
-            raise ValueError, "sample larger than population"
-        random = self.random
-        _int = int
-        result = [None] * k
-        if n < 6 * k:     # if n len list takes less space than a k len dict
-            pool = list(population)
-            for i in xrange(k):         # invariant:  non-selected at [0,n-i)
-                j = _int(random() * (n-i))
-                result[i] = pool[j]
-                pool[j] = pool[n-i-1]   # move non-selected item into vacancy
-        else:
-            try:
-                n > 0 and (population[0], population[n//2], population[n-1])
-            except (TypeError, KeyError):   # handle sets and dictionaries
-                population = tuple(population)
-            selected = {}
-            for i in xrange(k):
-                j = _int(random() * n)
-                while j in selected:
-                    j = _int(random() * n)
-                result[i] = selected[j] = population[j]
-        return result
-
-## -------------------- real-valued distributions  -------------------
-
-## -------------------- uniform distribution -------------------
-
-    def uniform(self, a, b):
-        """Get a random number in the range [a, b)."""
-        return a + (b-a) * self.random()
-
-## -------------------- normal distribution --------------------
-
-    def normalvariate(self, mu, sigma):
-        """Normal distribution.
-
-        mu is the mean, and sigma is the standard deviation.
-
-        """
-        # mu = mean, sigma = standard deviation
-
-        # Uses Kinderman and Monahan method. Reference: Kinderman,
-        # A.J. and Monahan, J.F., "Computer generation of random
-        # variables using the ratio of uniform deviates", ACM Trans
-        # Math Software, 3, (1977), pp257-260.
-
-        random = self.random
-        while True:
-            u1 = random()
-            u2 = 1.0 - random()
-            z = NV_MAGICCONST*(u1-0.5)/u2
-            zz = z*z/4.0
-            if zz <= -_log(u2):
-                break
-        return mu + z*sigma
-
-## -------------------- lognormal distribution --------------------
-
-    def lognormvariate(self, mu, sigma):
-        """Log normal distribution.
-
-        If you take the natural logarithm of this distribution, you'll get a
-        normal distribution with mean mu and standard deviation sigma.
-        mu can have any value, and sigma must be greater than zero.
-
-        """
-        return _exp(self.normalvariate(mu, sigma))
-
-## -------------------- exponential distribution --------------------
-
-    def expovariate(self, lambd):
-        """Exponential distribution.
-
-        lambd is 1.0 divided by the desired mean.  (The parameter would be
-        called "lambda", but that is a reserved word in Python.)  Returned
-        values range from 0 to positive infinity.
-
-        """
-        # lambd: rate lambd = 1/mean
-        # ('lambda' is a Python reserved word)
-
-        random = self.random
-        u = random()
-        while u <= 1e-7:
-            u = random()
-        return -_log(u)/lambd
-
-## -------------------- von Mises distribution --------------------
-
-    def vonmisesvariate(self, mu, kappa):
-        """Circular data distribution.
-
-        mu is the mean angle, expressed in radians between 0 and 2*pi, and
-        kappa is the concentration parameter, which must be greater than or
-        equal to zero.  If kappa is equal to zero, this distribution reduces
-        to a uniform random angle over the range 0 to 2*pi.
-
-        """
-        # mu:    mean angle (in radians between 0 and 2*pi)
-        # kappa: concentration parameter kappa (>= 0)
-        # if kappa = 0 generate uniform random angle
-
-        # Based upon an algorithm published in: Fisher, N.I.,
-        # "Statistical Analysis of Circular Data", Cambridge
-        # University Press, 1993.
-
-        # Thanks to Magnus Kessler for a correction to the
-        # implementation of step 4.
-
-        random = self.random
-        if kappa <= 1e-6:
-            return TWOPI * random()
-
-        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
-        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
-        r = (1.0 + b * b)/(2.0 * b)
-
-        while True:
-            u1 = random()
-
-            z = _cos(_pi * u1)
-            f = (1.0 + r * z)/(r + z)
-            c = kappa * (r - f)
-
-            u2 = random()
-
-            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
-                break
-
-        u3 = random()
-        if u3 > 0.5:
-            theta = (mu % TWOPI) + _acos(f)
-        else:
-            theta = (mu % TWOPI) - _acos(f)
-
-        return theta
-
-## -------------------- gamma distribution --------------------
-
-    def gammavariate(self, alpha, beta):
-        """Gamma distribution.  Not the gamma function!
-
-        Conditions on the parameters are alpha > 0 and beta > 0.
-
-        """
-
-        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
-
-        # Warning: a few older sources define the gamma distribution in terms
-        # of alpha > -1.0
-        if alpha <= 0.0 or beta <= 0.0:
-            raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
-
-        random = self.random
-        if alpha > 1.0:
-
-            # Uses R.C.H. Cheng, "The generation of Gamma
-            # variables with non-integral shape parameters",
-            # Applied Statistics, (1977), 26, No. 1, p71-74
-
-            ainv = _sqrt(2.0 * alpha - 1.0)
-            bbb = alpha - LOG4
-            ccc = alpha + ainv
-
-            while True:
-                u1 = random()
-                if not 1e-7 < u1 < .9999999:
-                    continue
-                u2 = 1.0 - random()
-                v = _log(u1/(1.0-u1))/ainv
-                x = alpha*_exp(v)
-                z = u1*u1*u2
-                r = bbb+ccc*v-x
-                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
-                    return x * beta
-
-        elif alpha == 1.0:
-            # expovariate(1)
-            u = random()
-            while u <= 1e-7:
-                u = random()
-            return -_log(u) * beta
-
-        else:   # alpha is between 0 and 1 (exclusive)
-
-            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
-
-            while True:
-                u = random()
-                b = (_e + alpha)/_e
-                p = b*u
-                if p <= 1.0:
-                    x = pow(p, 1.0/alpha)
-                else:
-                    # p > 1
-                    x = -_log((b-p)/alpha)
-                u1 = random()
-                if not (((p <= 1.0) and (u1 > _exp(-x))) or
-                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
-                    break
-            return x * beta
-
-## -------------------- Gauss (faster alternative) --------------------
-
-    def gauss(self, mu, sigma):
-        """Gaussian distribution.
-
-        mu is the mean, and sigma is the standard deviation.  This is
-        slightly faster than the normalvariate() function.
-
-        Not thread-safe without a lock around calls.
-
-        """
-
-        # When x and y are two variables from [0, 1), uniformly
-        # distributed, then
-        #
-        #    cos(2*pi*x)*sqrt(-2*log(1-y))
-        #    sin(2*pi*x)*sqrt(-2*log(1-y))
-        #
-        # are two *independent* variables with normal distribution
-        # (mu = 0, sigma = 1).
-        # (Lambert Meertens)
-        # (corrected version; bug discovered by Mike Miller, fixed by LM)
-
-        # Multithreading note: When two threads call this function
-        # simultaneously, it is possible that they will receive the
-        # same return value.  The window is very small though.  To
-        # avoid this, you have to use a lock around all calls.  (I
-        # didn't want to slow this down in the serial case by using a
-        # lock here.)
-
-        random = self.random
-        z = self.gauss_next
-        self.gauss_next = None
-        if z is None:
-            x2pi = random() * TWOPI
-            g2rad = _sqrt(-2.0 * _log(1.0 - random()))
-            z = _cos(x2pi) * g2rad
-            self.gauss_next = _sin(x2pi) * g2rad
-
-        return mu + z*sigma
-
-## -------------------- beta --------------------
-## See
-## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
-## for Ivan Frohne's insightful analysis of why the original implementation:
-##
-##    def betavariate(self, alpha, beta):
-##        # Discrete Event Simulation in C, pp 87-88.
-##
-##        y = self.expovariate(alpha)
-##        z = self.expovariate(1.0/beta)
-##        return z/(y+z)
-##
-## was dead wrong, and how it probably got that way.
-
-    def betavariate(self, alpha, beta):
-        """Beta distribution.
-
-        Conditions on the parameters are alpha > -1 and beta} > -1.
-        Returned values range between 0 and 1.
-
-        """
-
-        # This version due to Janne Sinkkonen, and matches all the std
-        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
-        y = self.gammavariate(alpha, 1.)
-        if y == 0:
-            return 0.0
-        else:
-            return y / (y + self.gammavariate(beta, 1.))
-
-## -------------------- Pareto --------------------
-
-    def paretovariate(self, alpha):
-        """Pareto distribution.  alpha is the shape parameter."""
-        # Jain, pg. 495
-
-        u = 1.0 - self.random()
-        return 1.0 / pow(u, 1.0/alpha)
-
-## -------------------- Weibull --------------------
-
-    def weibullvariate(self, alpha, beta):
-        """Weibull distribution.
-
-        alpha is the scale parameter and beta is the shape parameter.
-
-        """
-        # Jain, pg. 499; bug fix courtesy Bill Arms
-
-        u = 1.0 - self.random()
-        return alpha * pow(-_log(u), 1.0/beta)
-
-## -------------------- Wichmann-Hill -------------------
-
-class WichmannHill(Random):
-
-    VERSION = 1     # used by getstate/setstate
-
-    def seed(self, a=None):
-        """Initialize internal state from hashable object.
-
-        None or no argument seeds from current time.
-
-        If a is not None or an int or long, hash(a) is used instead.
-
-        If a is an int or long, a is used directly.  Distinct values between
-        0 and 27814431486575L inclusive are guaranteed to yield distinct
-        internal states (this guarantee is specific to the default
-        Wichmann-Hill generator).
-        """
-
-        if a is None:
-            # Initialize from current time
-            import time
-            a = long(time.time() * 256)
-
-        if not isinstance(a, (int, long)):
-            a = hash(a)
-
-        a, x = divmod(a, 30268)
-        a, y = divmod(a, 30306)
-        a, z = divmod(a, 30322)
-        self._seed = int(x)+1, int(y)+1, int(z)+1
-
-        self.gauss_next = None
-
-    def random(self):
-        """Get the next random number in the range [0.0, 1.0)."""
-
-        # Wichman-Hill random number generator.
-        #
-        # Wichmann, B. A. & Hill, I. D. (1982)
-        # Algorithm AS 183:
-        # An efficient and portable pseudo-random number generator
-        # Applied Statistics 31 (1982) 188-190
-        #
-        # see also:
-        #        Correction to Algorithm AS 183
-        #        Applied Statistics 33 (1984) 123
-        #
-        #        McLeod, A. I. (1985)
-        #        A remark on Algorithm AS 183
-        #        Applied Statistics 34 (1985),198-200
-
-        # This part is thread-unsafe:
-        # BEGIN CRITICAL SECTION
-        x, y, z = self._seed
-        x = (171 * x) % 30269
-        y = (172 * y) % 30307
-        z = (170 * z) % 30323
-        self._seed = x, y, z
-        # END CRITICAL SECTION
-
-        # Note:  on a platform using IEEE-754 double arithmetic, this can
-        # never return 0.0 (asserted by Tim; proof too long for a comment).
-        return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
-
-    def getstate(self):
-        """Return internal state; can be passed to setstate() later."""
-        return self.VERSION, self._seed, self.gauss_next
-
-    def setstate(self, state):
-        """Restore internal state from object returned by getstate()."""
-        version = state[0]
-        if version == 1:
-            version, self._seed, self.gauss_next = state
-        else:
-            raise ValueError("state with version %s passed to "
-                             "Random.setstate() of version %s" %
-                             (version, self.VERSION))
-
-    def jumpahead(self, n):
-        """Act as if n calls to random() were made, but quickly.
-
-        n is an int, greater than or equal to 0.
-
-        Example use:  If you have 2 threads and know that each will
-        consume no more than a million random numbers, create two Random
-        objects r1 and r2, then do
-            r2.setstate(r1.getstate())
-            r2.jumpahead(1000000)
-        Then r1 and r2 will use guaranteed-disjoint segments of the full
-        period.
-        """
-
-        if not n >= 0:
-            raise ValueError("n must be >= 0")
-        x, y, z = self._seed
-        x = int(x * pow(171, n, 30269)) % 30269
-        y = int(y * pow(172, n, 30307)) % 30307
-        z = int(z * pow(170, n, 30323)) % 30323
-        self._seed = x, y, z
-
-    def __whseed(self, x=0, y=0, z=0):
-        """Set the Wichmann-Hill seed from (x, y, z).
-
-        These must be integers in the range [0, 256).
-        """
-
-        if not type(x) == type(y) == type(z) == int:
-            raise TypeError('seeds must be integers')
-        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
-            raise ValueError('seeds must be in range(0, 256)')
-        if 0 == x == y == z:
-            # Initialize from current time
-            import time
-            t = long(time.time() * 256)
-            t = int((t&0xffffff) ^ (t>>24))
-            t, x = divmod(t, 256)
-            t, y = divmod(t, 256)
-            t, z = divmod(t, 256)
-        # Zero is a poor seed, so substitute 1
-        self._seed = (x or 1, y or 1, z or 1)
-
-        self.gauss_next = None
-
-    def whseed(self, a=None):
-        """Seed from hashable object's hash code.
-
-        None or no argument seeds from current time.  It is not guaranteed
-        that objects with distinct hash codes lead to distinct internal
-        states.
-
-        This is obsolete, provided for compatibility with the seed routine
-        used prior to Python 2.1.  Use the .seed() method instead.
-        """
-
-        if a is None:
-            self.__whseed()
-            return
-        a = hash(a)
-        a, x = divmod(a, 256)
-        a, y = divmod(a, 256)
-        a, z = divmod(a, 256)
-        x = (x + a) % 256 or 1
-        y = (y + a) % 256 or 1
-        z = (z + a) % 256 or 1
-        self.__whseed(x, y, z)
-
-## -------------------- test program --------------------
-
-def _test_generator(n, func, args):
-    import time
-    print n, 'times', func.__name__
-    total = 0.0
-    sqsum = 0.0
-    smallest = 1e10
-    largest = -1e10
-    t0 = time.time()
-    for i in range(n):
-        x = func(*args)
-        total += x
-        sqsum = sqsum + x*x
-        smallest = min(x, smallest)
-        largest = max(x, largest)
-    t1 = time.time()
-    print round(t1-t0, 3), 'sec,',
-    avg = total/n
-    stddev = _sqrt(sqsum/n - avg*avg)
-    print 'avg %g, stddev %g, min %g, max %g' % \
-              (avg, stddev, smallest, largest)
-
-
-def _test(N=2000):
-    _test_generator(N, random, ())
-    _test_generator(N, normalvariate, (0.0, 1.0))
-    _test_generator(N, lognormvariate, (0.0, 1.0))
-    _test_generator(N, vonmisesvariate, (0.0, 1.0))
-    _test_generator(N, gammavariate, (0.01, 1.0))
-    _test_generator(N, gammavariate, (0.1, 1.0))
-    _test_generator(N, gammavariate, (0.1, 2.0))
-    _test_generator(N, gammavariate, (0.5, 1.0))
-    _test_generator(N, gammavariate, (0.9, 1.0))
-    _test_generator(N, gammavariate, (1.0, 1.0))
-    _test_generator(N, gammavariate, (2.0, 1.0))
-    _test_generator(N, gammavariate, (20.0, 1.0))
-    _test_generator(N, gammavariate, (200.0, 1.0))
-    _test_generator(N, gauss, (0.0, 1.0))
-    _test_generator(N, betavariate, (3.0, 3.0))
-
-# Create one instance, seeded from current time, and export its methods
-# as module-level functions.  The functions share state across all uses
-#(both in the user's code and in the Python libraries), but that's fine
-# for most programs and is easier for the casual user than making them
-# instantiate their own Random() instance.
-
-_inst = Random()
-seed = _inst.seed
-random = _inst.random
-uniform = _inst.uniform
-randint = _inst.randint
-choice = _inst.choice
-randrange = _inst.randrange
-sample = _inst.sample
-shuffle = _inst.shuffle
-normalvariate = _inst.normalvariate
-lognormvariate = _inst.lognormvariate
-expovariate = _inst.expovariate
-vonmisesvariate = _inst.vonmisesvariate
-gammavariate = _inst.gammavariate
-gauss = _inst.gauss
-betavariate = _inst.betavariate
-paretovariate = _inst.paretovariate
-weibullvariate = _inst.weibullvariate
-getstate = _inst.getstate
-setstate = _inst.setstate
-jumpahead = _inst.jumpahead
-getrandbits = _inst.getrandbits
-
-if __name__ == '__main__':
-    _test()


More information about the Pypy-commit mailing list