[pypy-svn] r32423 - in pypy/dist/pypy/module/_random: . test

cfbolz at codespeak.net cfbolz at codespeak.net
Sun Sep 17 20:33:06 CEST 2006


Author: cfbolz
Date: Sun Sep 17 20:33:04 2006
New Revision: 32423

Modified:
   pypy/dist/pypy/module/_random/__init__.py
   pypy/dist/pypy/module/_random/interp_random.py
   pypy/dist/pypy/module/_random/test/test_random.py
Log:
Implementation of _random using the rpy_random mersenne twister implementation.
Needs more tests and is currently disabled, but in theory it is superior than
the current applevel implementation


Modified: pypy/dist/pypy/module/_random/__init__.py
==============================================================================
--- pypy/dist/pypy/module/_random/__init__.py	(original)
+++ pypy/dist/pypy/module/_random/__init__.py	Sun Sep 17 20:33:04 2006
@@ -1,6 +1,4 @@
-import py             # FINISHME
-py.test.skip("The _random module is not ready: it misses the post-2.2 parts of "
-             "the interface and it needs to use new Mersenne Twister algorithm.")
+import py
 
 from pypy.interpreter.mixedmodule import MixedModule
 
@@ -8,29 +6,6 @@
     appleveldefs = {}
   
     interpleveldefs = {
-        'Random'          : 'interp_random.W_Random',  
-        'seed'            : 'interp_random.get_random_method(space, "seed")',
-        'getstate'        : 'interp_random.get_random_method(space, "getstate")',
-        'setstate'        : 'interp_random.get_random_method(space, "setstate")',
-        'jumpahead'       : 'interp_random.get_random_method(space, "jumpahead")',
-        'randrange'       : 'interp_random.get_random_method(space, "randrange")',
-        'randint'         : 'interp_random.get_random_method(space, "randint")',
-        'choice'          : 'interp_random.get_random_method(space, "choice")',
-        'shuffle'         : 'interp_random.get_random_method(space, "shuffle")',
-        'sample'          : 'interp_random.get_random_method(space, "sample")',
-        'random'          : 'interp_random.get_random_method(space, "random")',
-        'uniform'         : 'interp_random.get_random_method(space, "uniform")',
-        'betavariate'     : 'interp_random.get_random_method(space, "betavariate")',
-        'expovariate'     : 'interp_random.get_random_method(space, "expovariate")',
-        'gammavariate'    : 'interp_random.get_random_method(space, "gammavariate")',
-        'jumpahead'       : 'interp_random.get_random_method(space, "jumpahead")',
-        'gauss'           : 'interp_random.get_random_method(space, "gauss")',
-        'lognormvariate'  : 'interp_random.get_random_method(space, "lognormvariate")',
-        'normalvariate'   : 'interp_random.get_random_method(space, "normalvariate")',
-        'vonmisesvariate' : 'interp_random.get_random_method(space, "vonmisesvariate")',
-        'paretovariate'   : 'interp_random.get_random_method(space, "paretovariate")',
-        'cunifvariate'    :  'interp_random.get_random_method(space, "cunifvariate")',
-        'weibullvariate'  : 'interp_random.get_random_method(space, "weibullvariate")',
-        'whseed'          : 'interp_random.get_random_method(space, "whseed")', # officially obsolete
+        'Random'          : 'interp_random.W_Random',
         }
     

Modified: pypy/dist/pypy/module/_random/interp_random.py
==============================================================================
--- pypy/dist/pypy/module/_random/interp_random.py	(original)
+++ pypy/dist/pypy/module/_random/interp_random.py	Sun Sep 17 20:33:04 2006
@@ -3,33 +3,13 @@
 from pypy.interpreter.gateway import ObjSpace, W_Root, NoneNotWrapped, interp2app
 from pypy.interpreter.baseobjspace import Wrappable
 from pypy.rpython.rarithmetic import r_uint
+from pypy.module._random import rpy_random
 
 from math import log as _log, exp as _exp, pi as _pi, e as _e
 from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
 from math import floor as _floor
 
-def _verify(w_name, w_computed, w_expected):
-    if abs(w_computed - w_expected) > 1e-7:
-        raise OperationError(
-            space.w_ValueError,
-            space.wrap(
-            "computed value for %s deviates too much "
-            "(computed %g, expected %g)" % (w_name, w_computed, w_expected)))
-
-
-NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
-_verify('NV_MAGICCONST', NV_MAGICCONST, 1.71552776992141)
-
-TWOPI = 2.0*_pi
-_verify('TWOPI', TWOPI, 6.28318530718)
-
-LOG4 = _log(4.0)
-_verify('LOG4', LOG4, 1.38629436111989)
-
-SG_MAGICCONST = 1.0 + _log(4.5)
-_verify('SG_MAGICCONST', SG_MAGICCONST, 2.50407739677627)
-
-#del _verify
+import time
 
 def descr_new__(space, w_subtype, w_anything=NoneNotWrapped):
     x = space.allocate_instance(W_Random, w_subtype)
@@ -37,593 +17,98 @@
     return space.wrap(x)
 
 class W_Random(Wrappable):
-    """A wrappable box around an interp level md5 object."""   
-    VERSION = 1     # used by getstate/setstate
-    
-    def __init__(self, space, anything=NoneNotWrapped):
-        """Initialize an instance.
-
-        Optional argument x controls seeding, as for Random.seed().
-        """
-        self.seed(space, anything)
-        
-    
-    def seed(self, space, w_a=NoneNotWrapped):
-        """Initialize internal state from hashable object.
-
-        None or no argument seeds from current time.
-
-        If a is not None or an int or long, hash(a) is used instead.
-
-        If a is an int or long, a is used directly.  Distinct values between
-        0 and 27814431486575L inclusive are guaranteed to yield distinct
-        internal states (this guarantee is specific to the default
-        Wichmann-Hill generator).
-        """
-        if w_a is None:
-            # Initialize from current time
-            import time
-            a = int(time.time() * 256)
-        else:
-            a = space.int_w(space.hash(w_a))
-
-        a, x = divmod(a, 30268)
-        a, y = divmod(a, 30306)
-        a, z = divmod(a, 30322)
-        self._seed = int(x)+1, int(y)+1, int(z)+1
-
-        self.gauss_next = None
-    seed.unwrap_spec = ['self', ObjSpace, W_Root]
-    
+    def __init__(self, space, w_anything):
+        self._rnd = rpy_random.Random()
+        self.seed(space, w_anything)
+    __init__.unwrap_spec = ['self', ObjSpace, W_Root]
 
     def random(self, space):
-        """Get the next random number in the range [0.0, 1.0)."""
-
-        # Wichman-Hill random number generator.
-        #
-        # Wichmann, B. A. & Hill, I. D. (1982)
-        # Algorithm AS 183:
-        # An efficient and portable pseudo-random number generator
-        # Applied Statistics 31 (1982) 188-190
-        #
-        # see also:
-        #        Correction to Algorithm AS 183
-        #        Applied Statistics 33 (1984) 123
-        #
-        #        McLeod, A. I. (1985)
-        #        A remark on Algorithm AS 183
-        #        Applied Statistics 34 (1985),198-200
-
-        # This part is thread-unsafe:
-        # BEGIN CRITICAL SECTION
-        x, y, z = self._seed
-        x = (171 * x) % 30269
-        y = (172 * y) % 30307
-        z = (170 * z) % 30323
-        self._seed = x, y, z
-        # END CRITICAL SECTION
-
-        # Note:  on a platform using IEEE-754 double arithmetic, this can
-        # never return 0.0 (asserted by Tim; proof too long for a comment).
-        randf = (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
-        return space.wrap(randf)
+        return space.newfloat(self._rnd.random())
     random.unwrap_spec = ['self', ObjSpace]
 
+    def seed(self, space, w_n=NoneNotWrapped):
+        if w_n is None:
+            w_n = space.newint(int(time.time()))
+        else:
+            if space.is_true(space.isinstance(w_n, space.w_int)):
+                w_n = space.abs(w_n)
+            elif space.is_true(space.isinstance(w_n, space.w_long)):
+                w_n = space.abs(w_n)
+            else:
+                # XXX not perfectly like CPython
+                w_n = space.abs(space.hash(w_n))
+        key = []
+        w_one = space.newlong(1)
+        w_thirtytwo = space.newlong(32)
+        # 0xffffffff
+        w_masklower = space.sub(space.pow(w_one, w_thirtytwo, space.w_None),
+                                w_one)
+        while space.is_true(w_n):
+            w_chunk = space.and_(w_n, w_masklower)
+            chunk = r_uint(space.int_w(w_chunk))
+            key.append(chunk)
+            w_n = space.rshift(w_n, w_thirtytwo)
+        self._rnd.init_by_array(key)
+    seed.unwrap_spec = ['self', ObjSpace, W_Root]
+
     def getstate(self, space):
-        """Return internal state; can be passed to setstate() later."""
-        st = (self.VERSION, self._seed, self.gauss_next)
-        return space.wrap(st)
+        state = [None] * (rpy_random.N + 1)
+        for i in range(rpy_random.N):
+            state[i] = space.newint(int(self._rnd.state[i]))
+        state[rpy_random.N] = space.newint(self._rnd.index)
+        return space.newtuple(state)
     getstate.unwrap_spec = ['self', ObjSpace]
 
     def setstate(self, space, w_state):
-        """Restore internal state from object returned by getstate()."""
-        u_state = space.unwrap(w_state)
-        print u_state
-        version = u_state[0]
-        if version == 1:
-            self._seed = u_state[1]
-            self.gauss_next = u_state[2]
-        else:
-            raise OperationError(space.w_ValueError,
-                space.wrap("state with version %s passed to "
-                             "Random.setstate() of version %s" %
-                             (version, self.VERSION)))
+        if not space.is_true(space.isinstance(w_state, space.w_tuple)):
+            errstring = space.wrap("state vector must be tuple")
+            raise OperationError(space.w_TypeError, errstring)
+        if space.int_w(space.len(w_state)) != rpy_random.N + 1:
+            errstring = space.wrap("state vector is the wrong size")
+            raise OperationError(space.w_TypeError, errstring)
+        for i in range(rpy_random.N):
+            w_item = space.getitem(w_state, space.newint(i))
+            self._rnd.state[i] = r_uint(space.int_w(w_item))
+        w_item = space.getitem(w_state, space.newint(i))
+        self._rnd.index = r_uint(space.int_w(w_item))
     setstate.unwrap_spec = ['self', ObjSpace, W_Root]
-    
-    def jumpahead(self, space, w_n):
-        """Act as if n calls to random() were made, but quickly.
-
-        n is an int, greater than or equal to 0.
-
-        Example use:  If you have 2 threads and know that each will
-        consume no more than a million random numbers, create two Random
-        objects r1 and r2, then do
-            r2.setstate(r1.getstate())
-            r2.jumpahead(1000000)
-        Then r1 and r2 will use guaranteed-disjoint segments of the full
-        period.
-        """
-
-        if not space.is_true(space.ge(w_n, space.wrap(0))):
-            raise OperationError(space.w_ValueError,
-                                 space.wrap("n must be >= 0"))
-        x, y, z = self._seed
-        x = (x * space.int_w(space.pow(space.wrap(171), w_n, space.wrap(30269)))) % 30269
-        y = (y * space.int_w(space.pow(space.wrap(172), w_n, space.wrap(30307)))) % 30307
-        z = (z * space.int_w(space.pow(space.wrap(170), w_n, space.wrap(30323)))) % 30323
-        self._seed = x, y, z
-    jumpahead.unwrap_spec = ['self', ObjSpace, W_Root]
-
-
-    def _whseed(self, space, x=0, y=0, z=0):
-        """Set the Wichmann-Hill seed from (x, y, z).
-
-        These must be integers in the range [0, 256).
-        """
-        if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
-            raise OperationError(space.w_ValueError,
-                                 space.wrap('seeds must be in range(0, 256)'))
-        if 0 == x == y == z:
-            # Initialize from current time
-            import time
-            t = (int(time.time()) &0x7fffff) * 256
-            t = (t&0xffffff) ^ (t>>24)
-            t, x = divmod(t, 256)
-            t, y = divmod(t, 256)
-            t, z = divmod(t, 256)
-        # Zero is a poor seed, so substitute 1
-        self._seed = (x or 1, y or 1, z or 1)
-
-        self.gauss_next = None
-    _whseed.unwrap_spec = ['self', ObjSpace, int, int, int]
-        
-    def whseed(self, space, w_a=NoneNotWrapped):
-        """Seed from hashable object's hash code.
-
-        None or no argument seeds from current time.  It is not guaranteed
-        that objects with distinct hash codes lead to distinct internal
-        states.
-
-        This is obsolete, provided for compatibility with the seed routine
-        used prior to Python 2.1.  Use the .seed() method instead.
-        """
-
-        if w_a is None:
-            self._whseed(ObjSpace)
-            return
-        else:
-            a = space.int_w(space.hash(w_a))
-            a, x = divmod(a, 256)
-            a, y = divmod(a, 256)
-            a, z = divmod(a, 256)
-            x = (x + a) % 256 or 1
-            y = (y + a) % 256 or 1
-            z = (z + a) % 256 or 1
-            self._whseed(ObjSpace, x, y, z)
-    whseed.unwrap_spec = ['self', ObjSpace, W_Root]
-        
-## -------------------- pickle support  -------------------
-
-    def __getstate__(self, space): # for pickle
-        return self.getstate()
-
-    def __setstate__(self, space, state):  # for pickle
-        self.setstate(state)
-        
-    def randrange(self, space, start, w_stop=NoneNotWrapped, step=1):
-        """Choose a random item from range(start, stop[, step]).
-
-        This fixes the problem with randint() which includes the
-        endpoint; in Python this is usually not what you want.
-        Do not supply the 'int' and 'default' arguments.
-        """
-        # This code is a bit messy to make it fast for the
-        # common case while still doing adequate error checking.
-        if w_stop is None:
-            if start > 0:
-                return space.wrap(int(self.random() * start))
-            raise OperationError(space.w_ValueError, 
-                                 space.wrap("empty range for randrange()"))
-
-        # stop argument supplied.
-        istop = space.int_w(w_stop)
-        if step == 1 and start < istop:
-            fl = _floor(space.unwrap(self.random(space))*(istop - start))
-            return space.wrap(int(start + fl))
-        
-        if step == 1:
-            raise OperationError(space.w_ValueError, 
-                                 space.wrap("empty range for randrange()"))
-
-        # Non-unit step argument supplied.
-        if step > 0:
-            n = ((istop - start) + step - 1) / step
-        elif step < 0:
-            n = ((istop - start) + step + 1) / step
-        else:
-            raise OperationError(space.w_ValueError, 
-                                 space.wrap("zero step for randrange()"))
-
-        if n <= 0:
-            raise OperationError(space.w_ValueError, 
-                                 space.wrap("empty range for randrange()"))
-        
-        res = start + step*int(space.unwrap(self.random(space)) * n)
-        return space.wrap(int(res))
-    randrange.unwrap_spec = ['self', ObjSpace, int, W_Root, int]
-
-    def randint(self, space, a, b):
-        """Return random integer in range [a, b], including both end points.
-        """
-        return self.randrange(space, a, space.wrap(b+1))
-    randint.unwrap_spec = ['self', ObjSpace, int, int]
-
-    def choice(self, space, w_seq):
-        """Choose a random element from a non-empty sequence."""
-        length = space.int_w(space.len(w_seq))
-        ind = int(space.unwrap(self.random(space)) * length)
-        return space.getitem(w_seq, space.wrap(ind))
-    choice.unwrap_spec = ['self', ObjSpace, W_Root]
-
-    def shuffle(self, space, w_x, w_random=NoneNotWrapped):
-        """x, random=random.random -> shuffle list x in place; return None.
-
-        Optional arg random is a 0-argument function returning a random
-        float in [0.0, 1.0); by default, the standard random.random.
-
-        Note that for even rather small len(x), the total number of
-        permutations of x is larger than the period of most random number
-        generators; this implies that "most" permutations of a long
-        sequence can never be generated.
-        """
-
-        if w_random is None:
-            w_random = space.getattr(space.wrap(self), space.wrap('random'))
-        length = space.unwrap(space.len(w_x))
-            
-        for i in xrange(length-1, 0, -1):
-            # pick an element in x[:i+1] with which to exchange x[i]
-            j = int(space.float_w(space.call_function(w_random)) * (i+1))
-            w_i = space.wrap(i)
-            w_j = space.wrap(j)
-            w_xi = space.getitem(w_x, w_i)
-            w_xj = space.getitem(w_x, w_j)
-            space.setitem(w_x, w_i, w_xj)
-            space.setitem(w_x, w_j, w_xi)
-    shuffle.unwrap_spec = ['self', ObjSpace, W_Root, W_Root]
-    
-    def uniform(self, space, a, b):
-        """Get a random number in the range [a, b)."""
-        return space.wrap(a + (b-a) * space.unwrap(self.random(space)))    
-    uniform.unwrap_spec = ['self', ObjSpace, int, int]
-
-    def normalvariate(self, space, mu, sigma):
-        """Normal distribution.
-
-        mu is the mean, and sigma is the standard deviation.
-
-        """
-        # mu = mean, sigma = standard deviation
-
-        # Uses Kinderman and Monahan method. Reference: Kinderman,
-        # A.J. and Monahan, J.F., "Computer generation of random
-        # variables using the ratio of uniform deviates", ACM Trans
-        # Math Software, 3, (1977), pp257-260.
-        while 1:
-            u1 = space.unwrap(self.random(space))
-            u2 = 1.0 - space.unwrap(self.random(space))
-            z = NV_MAGICCONST*(u1-0.5)/u2
-            zz = z*z/4.0
-            if zz <= -_log(u2):
-                break
-        return space.wrap(mu + z*sigma)
-    normalvariate.unwrap_spec = ['self', ObjSpace, float, float]
-    
-    
-    def lognormvariate(self, space, mu, sigma):
-        """Log normal distribution.
-
-        If you take the natural logarithm of this distribution, you'll get a
-        normal distribution with mean mu and standard deviation sigma.
-        mu can have any value, and sigma must be greater than zero.
-
-        """
-        return space.wrap(_exp(space.unwrap(self.normalvariate(space, mu, sigma))))
-    lognormvariate.unwrap_spec = ['self', ObjSpace, float, float]
-
-    def cunifvariate(self, space, mean, arc):
-        """Circular uniform distribution.
-
-        mean is the mean angle, and arc is the range of the distribution,
-        centered around the mean angle.  Both values must be expressed in
-        radians.  Returned values range between mean - arc/2 and
-        mean + arc/2 and are normalized to between 0 and pi.
-
-        Deprecated in version 2.3.  Use:
-            (mean + arc * (Random.random() - 0.5)) % Math.pi
-
-        """
-        # mean: mean angle (in radians between 0 and pi)
-        # arc:  range of distribution (in radians between 0 and pi)
-
-        return space.wrap((mean + arc * (space.unwrap(self.random(space)) - 0.5)) % _pi)
-    cunifvariate.unwrap_spec = ['self', ObjSpace, float, float]
-
-    def expovariate(self, space, lambd):
-        """Exponential distribution.
-
-        lambd is 1.0 divided by the desired mean.  (The parameter would be
-        called "lambda", but that is a reserved word in Python.)  Returned
-        values range from 0 to positive infinity.
-
-        """
-        # lambd: rate lambd = 1/mean
-        # ('lambda' is a Python reserved word)
-
-        random = self.random
-        u = space.unwrap(random(space))
-        while u <= 1e-7:
-            u = space.unwrap(random(space))
-        return space.wrap(-_log(u)/lambd)
-    expovariate.unwrap_spec = ['self', ObjSpace, float]
-    
-    def vonmisesvariate(self, space, mu, kappa):
-        """Circular data distribution.
-
-        mu is the mean angle, expressed in radians between 0 and 2*pi, and
-        kappa is the concentration parameter, which must be greater than or
-        equal to zero.  If kappa is equal to zero, this distribution reduces
-        to a uniform random angle over the range 0 to 2*pi.
-
-        """
-        # mu:    mean angle (in radians between 0 and 2*pi)
-        # kappa: concentration parameter kappa (>= 0)
-        # if kappa = 0 generate uniform random angle
-
-        # Based upon an algorithm published in: Fisher, N.I.,
-        # "Statistical Analysis of Circular Data", Cambridge
-        # University Press, 1993.
-
-        # Thanks to Magnus Kessler for a correction to the
-        # implementation of step 4.
-
-        random = self.random
-        if kappa <= 1e-6:
-            return TWOPI * space.unwrap(random(space))
-
-        a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
-        b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
-        r = (1.0 + b * b)/(2.0 * b)
-
-        while 1:
-            u1 = space.unwrap(random(space))
-
-            z = _cos(_pi * u1)
-            f = (1.0 + r * z)/(r + z)
-            c = kappa * (r - f)
-
-            u2 = space.unwrap(random(space))
-
-            if not (u2 >= c * (2.0 - c) and u2 > c * _exp(1.0 - c)):
-                break
-
-        u3 = space.unwrap(random(space))
-        if u3 > 0.5:
-            theta = (mu % TWOPI) + _acos(f)
-        else:
-            theta = (mu % TWOPI) - _acos(f)
 
-        return space.wrap(theta)
-    vonmisesvariate.unwrap_spec = ['self', ObjSpace, float, float]
+    def jumpahead(self, n):
+        self._rnd.jumpahead(n)
+    jumpahead.unwrap_spec = ['self', int]
+
+    def getrandbits(self, space, k):
+        if k <= 0:
+            strerror = space.wrap("number of bits must be greater than zero")
+            raise OperationError(space.w_ValueError, strerror)
+        bytes = ((k - 1) // 32 + 1) * 4
+        bytesarray = [0] * bytes
+        for i in range(0, bytes, 4):
+            k -= 32
+            r = self._rnd.genrand32()
+            if k < 0:
+                r >>= (32 - k)
+            bytesarray[i + 0] = r & r_uint(0xff)
+            bytesarray[i + 1] = (r >> 8) & r_uint(0xff)
+            bytesarray[i + 2] = (r >> 16) & r_uint(0xff)
+            bytesarray[i + 3] = (r >> 24) & r_uint(0xff)
+
+        # XXX so far this is quadratic
+        w_result = space.newlong(0)
+        w_eight = space.newlong(8)
+        for byte in bytesarray:
+            w_result = space.lshift(
+                    space.and_(w_result, space.newlong(int(byte))), w_eight)
+        return w_result
+    getrandbits.unwrap_spec = ['self', ObjSpace, int]
 
-    def gammavariate(self, space, alpha, beta):
-        """Gamma distribution.  Not the gamma function!
-
-        Conditions on the parameters are alpha > 0 and beta > 0.
-
-        """
-
-        # alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
-
-        # Warning: a few older sources define the gamma distribution in terms
-        # of alpha > -1.0
-        if alpha <= 0.0 or beta <= 0.0:
-            raise OperationError(space.w_ValueError, 
-                                 space.wrap('gammavariate: alpha and beta must be > 0.0'))
-
-        random = self.random
-        if alpha > 1.0:
-
-            # Uses R.C.H. Cheng, "The generation of Gamma
-            # variables with non-integral shape parameters",
-            # Applied Statistics, (1977), 26, No. 1, p71-74
-
-            ainv = _sqrt(2.0 * alpha - 1.0)
-            bbb = alpha - LOG4
-            ccc = alpha + ainv
-
-            while 1:
-                u1 = space.unwrap(random(space))
-                if not 1e-7 < u1 < .9999999:
-                    continue
-                u2 = 1.0 - space.unwrap(random(space))
-                v = _log(u1/(1.0-u1))/ainv
-                x = alpha*_exp(v)
-                z = u1*u1*u2
-                r = bbb+ccc*v-x
-                if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
-                    return space.wrap(x * beta)
-
-        elif alpha == 1.0:
-            # expovariate(1)
-            u = space.unwrap(random(space))
-            while u <= 1e-7:
-                u = space.unwrap(random(space))
-            return space.wrap(-_log(u) * beta)
-
-        else:   # alpha is between 0 and 1 (exclusive)
-
-            # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
-
-            while 1:
-                u = space.unwrap(random(space))
-                b = (_e + alpha)/_e
-                p = b*u
-                if p <= 1.0:
-                    x = pow(p, 1.0/alpha)
-                else:
-                    # p > 1
-                    x = -_log((b-p)/alpha)
-                u1 = space.unwrap(random(space))
-                if not (((p <= 1.0) and (u1 > _exp(-x))) or
-                          ((p > 1)  and  (u1 > pow(x, alpha - 1.0)))):
-                    break
-            return space.wrap(x * beta)
-    gammavariate.unwrap_spec = ['self', ObjSpace, float, float]
-
-    def stdgamma(self, space, alpha, ainv, bbb, ccc):
-        # This method was (and shall remain) undocumented.
-        # This method is deprecated
-        # for the following reasons:
-        # 1. Returns same as .gammavariate(alpha, 1.0)
-        # 2. Requires caller to provide 3 extra arguments
-        #    that are functions of alpha anyway
-        # 3. Can't be used for alpha < 0.5
-
-        # ainv = sqrt(2 * alpha - 1)
-        # bbb = alpha - log(4)
-        # ccc = alpha + ainv
-        
-        # XXX there is no warning support in pypy !
-        print "The stdgamma function is deprecated; use gammavariate() instead"
-
-        return self.gammavariate(space, alpha, 1.0)
-    stdgamma.unwrap_spec = ['self', ObjSpace, float, float, float, float]
-        
-    def gauss(self, space, mu, sigma):
-        """Gaussian distribution.
-
-        mu is the mean, and sigma is the standard deviation.  This is
-        slightly faster than the normalvariate() function.
-
-        Not thread-safe without a lock around calls.
-
-        """
-
-        # When x and y are two variables from [0, 1), uniformly
-        # distributed, then
-        #
-        #    cos(2*pi*x)*sqrt(-2*log(1-y))
-        #    sin(2*pi*x)*sqrt(-2*log(1-y))
-        #
-        # are two *independent* variables with normal distribution
-        # (mu = 0, sigma = 1).
-        # (Lambert Meertens)
-        # (corrected version; bug discovered by Mike Miller, fixed by LM)
-
-        # Multithreading note: When two threads call this function
-        # simultaneously, it is possible that they will receive the
-        # same return value.  The window is very small though.  To
-        # avoid this, you have to use a lock around all calls.  (I
-        # didn't want to slow this down in the serial case by using a
-        # lock here.)
-
-        random = self.random
-        z = self.gauss_next
-        self.gauss_next = None
-        if z is None:
-            x2pi = space.unwrap(random(space)) * TWOPI
-            g2rad = _sqrt(-2.0 * _log(1.0 - space.unwrap(random(space))))
-            z = _cos(x2pi) * g2rad
-            self.gauss_next = _sin(x2pi) * g2rad
-
-        return space.wrap(mu + z*sigma)
-    gauss.unwrap_spec = ['self', ObjSpace, float, float]
-
-## -------------------- beta --------------------
-## See
-## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
-## for Ivan Frohne's insightful analysis of why the original implementation:
-##
-##    def betavariate(self, alpha, beta):
-##        # Discrete Event Simulation in C, pp 87-88.
-##
-##        y = self.expovariate(alpha)
-##        z = self.expovariate(1.0/beta)
-##        return z/(y+z)
-##
-## was dead wrong, and how it probably got that way.
-
-    def betavariate(self, space, alpha, beta):
-        """Beta distribution.
-
-        Conditions on the parameters are alpha > -1 and beta} > -1.
-        Returned values range between 0 and 1.
-
-        """
-
-        # This version due to Janne Sinkkonen, and matches all the std
-        # texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
-        y = space.unwrap(self.gammavariate(space, alpha, 1.))
-        if y == 0:
-            return space.wrap(0.0)
-        else:
-            return space.wrap(y / (y + space.unwrap(self.gammavariate(space, beta, 1.))))
-    betavariate.unwrap_spec = ['self', ObjSpace, float, float]
-
-    def paretovariate(self, space, alpha):
-        """Pareto distribution.  alpha is the shape parameter."""
-        # Jain, pg. 495
-
-        u = 1.0 - space.unwrap(self.random(space))
-        return space.wrap(1.0 / pow(u, 1.0/alpha))
-    paretovariate.unwrap_spec = ['self', ObjSpace, float]
-    
-    def weibullvariate(self, space, alpha, beta):
-        """Weibull distribution.
-
-        alpha is the scale parameter and beta is the shape parameter.
-
-        """
-        # Jain, pg. 499; bug fix courtesy Bill Arms
-
-        u = 1.0 - space.unwrap(self.random(space))
-        return space.wrap(alpha * pow(-_log(u), 1.0/beta))
-    weibullvariate.unwrap_spec = ['self', ObjSpace, float, float]
-    
 
 W_Random.typedef = TypeDef("W_Random",
     __new__ = interp2app(descr_new__),
-    seed = interp2app(W_Random.seed),
     random = interp2app(W_Random.random),
+    seed = interp2app(W_Random.seed),
     getstate = interp2app(W_Random.getstate),
     setstate = interp2app(W_Random.setstate),
     jumpahead = interp2app(W_Random.jumpahead),
-    _whseed = interp2app(W_Random._whseed),
-    whseed = interp2app(W_Random.whseed),
-    randrange = interp2app(W_Random.randrange),
-    randint = interp2app(W_Random.randint),
-    choice = interp2app(W_Random.choice),
-    shuffle = interp2app(W_Random.shuffle),
-    uniform = interp2app(W_Random.uniform),
-    normalvariate = interp2app(W_Random.normalvariate),
-    lognormvariate = interp2app(W_Random.lognormvariate),
-    cunifvariate = interp2app(W_Random.cunifvariate),
-    expovariate = interp2app(W_Random.expovariate),
-    vonmisesvariate = interp2app(W_Random.vonmisesvariate),
-    gammavariate = interp2app(W_Random.gammavariate),
-    gauss = interp2app(W_Random.gauss),
-    betavariate = interp2app(W_Random.betavariate),
-    paretovariate = interp2app(W_Random.paretovariate),
-    weibullvariate = interp2app(W_Random.weibullvariate),
-    stdgamma = interp2app(W_Random.stdgamma),
-                            )
-_inst_map = {}
-
-def get_random_method(space, attrname):
-    try:
-        w_self = _inst_map[space]
-    except KeyError:
-        _inst_map[space] = w_self = W_Random(space, None)
-    w_method = space.getattr(w_self,space.wrap(attrname))
-    return w_method
+    getrandbits = interp2app(W_Random.getrandbits),
+)

Modified: pypy/dist/pypy/module/_random/test/test_random.py
==============================================================================
--- pypy/dist/pypy/module/_random/test/test_random.py	(original)
+++ pypy/dist/pypy/module/_random/test/test_random.py	Sun Sep 17 20:33:04 2006
@@ -1,8 +1,6 @@
 import py
 from pypy.conftest import gettestobjspace
 
-py.test.skip("XXX missing _random.sample()")
-
 class AppTestRandom:
     def setup_class(cls):
         cls.space = gettestobjspace(usemodules=['_random'])
@@ -11,6 +9,41 @@
         import _random
         _random.__dict__  # crashes if entries in __init__.py can't be resolved
 
-    # XXX MISSING TESTS XXX
-    # XXX MISSING TESTs XXX
-    # XXX MISSING TESTS XXX
+    def test_random(self):
+        import _random
+        # XXX quite a bad test
+        rnd = _random.Random(1)
+        lst1 = [rnd.random() for i in range(100)]
+        rnd.seed(1)
+        lst2 = [rnd.random() for i in range(100)]
+        assert lst1 == lst2
+        smaller = 0
+        for elt in lst1:
+            assert 0 <= elt <= 1
+            if elt < 0.5:
+                smaller += 1
+        # quite unlikely to fail, but well
+        assert smaller > 10
+
+    def test_getstate_setstate(self):
+        import _random
+        rnd1 = _random.Random()
+        rnd1.random()
+        rnd2 = _random.Random()
+        assert rnd1.getstate() != rnd2.getstate()
+        rnd1.setstate(rnd2.getstate())
+        assert [rnd1.random() for i in range(100)] == [
+                    rnd2.random() for i in range(100)]
+
+    def test_seed(self):
+        import _random
+        rnd = _random.Random()
+        rnd.seed()
+        obj = "spam and eggs"
+        nums = []
+        for o in [obj, hash(obj), -hash(obj)]:
+            rnd.seed(o)
+            nums.append([rnd.random() for i in range(100)])
+        n1 = nums[0]
+        for n2 in nums[1:]:
+            assert n1 == n2



More information about the Pypy-commit mailing list