cfbolz at codespeak.net cfbolz at codespeak.net
Wed Nov 17 15:59:39 CET 2010

Author: cfbolz
Date: Wed Nov 17 15:59:38 2010
New Revision: 79199

Modified:
Log:
fix a tiny problem in the formulas: something should not be in italics

==============================================================================
+++ pypy/extradoc/talk/pepm2011/math.lyx	Wed Nov 17 15:59:38 2010
@@ -575,7 +575,7 @@
\begin_inset Text

\begin_layout Plain Layout
-\begin_inset Formula ${\displaystyle \frac{\left(S\left(v^{*}\right)_{L},S\setminus\left\{ v^{*}\mapsto S\left(v^{*}\right)\right\} \right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{L},S^{\prime}\right),\,\left(S\left(v^{*}\right)_{R},S^{\prime}\right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{R},S^{\prime\prime}\right)}{v^{*},S\overset{\mathrm{liftfields}}{=\!=\!\Longrightarrow}\mathrm{ops}_{L}::ops_{R}::\left\langle \mathtt{set}\left(v^{*},L,S\left(v^{*}\right)_{L}\right),\,\mathtt{set}\left(v^{*},R,S\left(v^{*}\right)_{R}\right)\right\rangle ,S^{\prime\prime}}}$
+\begin_inset Formula ${\displaystyle \frac{\left(S\left(v^{*}\right)_{L},S\setminus\left\{ v^{*}\mapsto S\left(v^{*}\right)\right\} \right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{L},S^{\prime}\right),\,\left(S\left(v^{*}\right)_{R},S^{\prime}\right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{R},S^{\prime\prime}\right)}{v^{*},S\overset{\mathrm{liftfields}}{=\!=\!\Longrightarrow}\mathrm{ops}_{L}::\mathrm{ops}_{R}::\left\langle \mathtt{set}\left(v^{*},L,S\left(v^{*}\right)_{L}\right),\,\mathtt{set}\left(v^{*},R,S\left(v^{*}\right)_{R}\right)\right\rangle ,S^{\prime\prime}}}$
\end_inset

==============================================================================
+++ pypy/extradoc/talk/pepm2011/paper.tex	Wed Nov 17 15:59:38 2010
@@ -832,7 +832,7 @@
& ${\displaystyle \frac{E(v)\notin\mathrm{dom}(S)\vee\mathrm{type}(S(E(v)))\neq T,\,\left(E(v),S\right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops},S^{\prime}\right)}{\mathtt{guard\_class}(v,T),E,S\overset{\mathrm{opt}}{\Longrightarrow}\mathrm{ops}::\left\langle \mathtt{guard\_class}(E\left(v\right),T)\right\rangle ,E,S^{\prime}}}$\tabularnewline[3em]
\emph{lifting} & ${\displaystyle \frac{v^{*}\notin\mathrm{dom}(S)}{v^{*},S\overset{\mathrm{lift}}{\Longrightarrow}\left\langle \,\right\rangle ,S}}$\tabularnewline[3em]
& ${\displaystyle \frac{v^{*}\in\mathrm{dom}(S),\,\left(v^{*},S\right)\overset{\mathrm{liftfields}}{=\!=\!\Longrightarrow}\left(\mathrm{ops},S^{\prime}\right)}{v^{*},S\overset{\mathrm{lift}}{\Longrightarrow}\left\langle v^{*}=\mathtt{new}\left(\mathrm{type}\left(S\left(v^{*}\right)\right)\right)\right\rangle ::ops,S^{\prime}}}$\tabularnewline[3em]
- & ${\displaystyle \frac{\left(S\left(v^{*}\right)_{L},S\setminus\left\{ v^{*}\mapsto S\left(v^{*}\right)\right\} \right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{L},S^{\prime}\right),\,\left(S\left(v^{*}\right)_{R},S^{\prime}\right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{R},S^{\prime\prime}\right)}{v^{*},S\overset{\mathrm{liftfields}}{=\!=\!\Longrightarrow}\mathrm{ops}_{L}::ops_{R}::\left\langle \mathtt{set}\left(v^{*},L,S\left(v^{*}\right)_{L}\right),\,\mathtt{set}\left(v^{*},R,S\left(v^{*}\right)_{R}\right)\right\rangle ,S^{\prime\prime}}}$\tabularnewline[3em]
+ & ${\displaystyle \frac{\left(S\left(v^{*}\right)_{L},S\setminus\left\{ v^{*}\mapsto S\left(v^{*}\right)\right\} \right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{L},S^{\prime}\right),\,\left(S\left(v^{*}\right)_{R},S^{\prime}\right)\overset{\mathrm{lift}}{\Longrightarrow}\left(\mathrm{ops}_{R},S^{\prime\prime}\right)}{v^{*},S\overset{\mathrm{liftfields}}{=\!=\!\Longrightarrow}\mathrm{ops}_{L}::\mathrm{ops}_{R}::\left\langle \mathtt{set}\left(v^{*},L,S\left(v^{*}\right)_{L}\right),\,\mathtt{set}\left(v^{*},R,S\left(v^{*}\right)_{R}\right)\right\rangle ,S^{\prime\prime}}}$\tabularnewline[3em]
\end{tabular}
\end{center}