[pypy-svn] pypy default: Fix the math module on Windows: the external function must be properly declared,

amauryfa commits-noreply at bitbucket.org
Wed Jan 26 20:14:37 CET 2011


Author: Amaury Forgeot d'Arc <amauryfa at gmail.com>
Branch: 
Changeset: r41371:ae3d6c2236a7
Date: 2011-01-26 20:12 +0100
http://bitbucket.org/pypy/pypy/changeset/ae3d6c2236a7/

Log:	Fix the math module on Windows: the external function must be
	properly declared, otherwise the "double" return type becomes
	garbage. Also fix the atanh(inf) case.

diff --git a/pypy/translator/c/src/ll_math.h b/pypy/translator/c/src/ll_math.h
new file mode 100644
--- /dev/null
+++ b/pypy/translator/c/src/ll_math.h
@@ -0,0 +1,12 @@
+/* Definitions of some C99 math library functions, for those platforms
+   that don't implement these functions already. */
+
+int _pypy_math_isinf(double x);
+int _pypy_math_isnan(double x);
+
+double _pypy_math_acosh(double x);
+double _pypy_math_asinh(double x);
+double _pypy_math_atanh(double x);
+
+double _pypy_math_expm1(double x);
+double _pypy_math_log1p(double x);

diff --git a/pypy/translator/c/src/math.c b/pypy/translator/c/src/ll_math.c
copy from pypy/translator/c/src/math.c
copy to pypy/translator/c/src/ll_math.c
--- a/pypy/translator/c/src/math.c
+++ b/pypy/translator/c/src/ll_math.c
@@ -7,6 +7,7 @@
 
 #ifdef _MSC_VER
 #include <float.h>
+#include <math.h>
 #define PyPy_IS_NAN _isnan
 #define PyPy_IS_INFINITY(X) (!_finite(X) && !_isnan(X))
 #define copysign _copysign
@@ -15,8 +16,7 @@
 #define PyPy_IS_INFINITY(X) ((X) &&                                   \
                              (Py_FORCE_DOUBLE(X)*0.5 == Py_FORCE_DOUBLE(X)))
 #endif
-
-#undef PyPy_NAN
+#define PyPy_NAN (HUGE * 0.)
 
 int
 _pypy_math_isinf(double x)

diff --git a/pypy/translator/c/src/math.c b/pypy/translator/c/src/math.c
deleted file mode 100644
--- a/pypy/translator/c/src/math.c
+++ /dev/null
@@ -1,256 +0,0 @@
-/* Definitions of some C99 math library functions, for those platforms
-   that don't implement these functions already. */
-
-#include <errno.h>
-
-/* The following macros are copied from CPython header files */
-
-#ifdef _MSC_VER
-#include <float.h>
-#define PyPy_IS_NAN _isnan
-#define PyPy_IS_INFINITY(X) (!_finite(X) && !_isnan(X))
-#define copysign _copysign
-#else
-#define PyPy_IS_NAN(X) ((X) != (X))
-#define PyPy_IS_INFINITY(X) ((X) &&                                   \
-                             (Py_FORCE_DOUBLE(X)*0.5 == Py_FORCE_DOUBLE(X)))
-#endif
-
-#undef PyPy_NAN
-
-int
-_pypy_math_isinf(double x)
-{
-    return PyPy_IS_INFINITY(x);
-}
-
-int
-_pypy_math_isnan(double x)
-{
-    return PyPy_IS_NAN(x);
-}
-
-/* The following copyright notice applies to the original
-   implementations of acosh, asinh and atanh. */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-double _pypy_math_log1p(double x);
-
-static const double ln2 = 6.93147180559945286227E-01;
-static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
-static const double two_pow_p28 = 268435456.0; /* 2**28 */
-static const double zero = 0.0;
-
-/* acosh(x)
- * Method :
- *      Based on
- *            acosh(x) = log [ x + sqrt(x*x-1) ]
- *      we have
- *            acosh(x) := log(x)+ln2, if x is large; else
- *            acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- *            acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- *      acosh(x) is NaN with signal if x<1.
- *      acosh(NaN) is NaN without signal.
- */
-
-double
-_pypy_math_acosh(double x)
-{
-    if (PyPy_IS_NAN(x)) {
-        return x+x;
-    }
-    if (x < 1.) {                       /* x < 1;  return a signaling NaN */
-        errno = EDOM;
-#ifdef PyPy_NAN
-        return PyPy_NAN;
-#else
-        return (x-x)/(x-x);
-#endif
-    }
-    else if (x >= two_pow_p28) {        /* x > 2**28 */
-        if (PyPy_IS_INFINITY(x)) {
-            return x+x;
-        } else {
-            return log(x)+ln2;                  /* acosh(huge)=log(2x) */
-        }
-    }
-    else if (x == 1.) {
-        return 0.0;                             /* acosh(1) = 0 */
-    }
-    else if (x > 2.) {                          /* 2 < x < 2**28 */
-        double t = x*x;
-        return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
-    }
-    else {                              /* 1 < x <= 2 */
-        double t = x - 1.0;
-        return _pypy_math_log1p(t + sqrt(2.0*t + t*t));
-    }
-}
-
-
-/* asinh(x)
- * Method :
- *      Based on
- *              asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
- *      we have
- *      asinh(x) := x  if  1+x*x=1,
- *               := sign(x)*(log(x)+ln2)) for large |x|, else
- *               := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
- *               := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
- */
-
-double
-_pypy_math_asinh(double x)
-{
-    double w;
-    double absx = fabs(x);
-
-    if (PyPy_IS_NAN(x) || PyPy_IS_INFINITY(x)) {
-        return x+x;
-    }
-    if (absx < two_pow_m28) {           /* |x| < 2**-28 */
-        return x;               /* return x inexact except 0 */
-    }
-    if (absx > two_pow_p28) {           /* |x| > 2**28 */
-        w = log(absx)+ln2;
-    }
-    else if (absx > 2.0) {              /* 2 < |x| < 2**28 */
-        w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
-    }
-    else {                              /* 2**-28 <= |x| < 2= */
-        double t = x*x;
-        w = _pypy_math_log1p(absx + t / (1.0 + sqrt(1.0 + t)));
-    }
-    return copysign(w, x);
-
-}
-
-/* atanh(x)
- * Method :
- *    1.Reduced x to positive by atanh(-x) = -atanh(x)
- *    2.For x>=0.5
- *                1           2x                          x
- *      atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
- *                2          1 - x                    1 - x
- *
- *      For x<0.5
- *      atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
- *
- * Special cases:
- *      atanh(x) is NaN if |x| >= 1 with signal;
- *      atanh(NaN) is that NaN with no signal;
- *
- */
-
-double
-_pypy_math_atanh(double x)
-{
-    double absx;
-    double t;
-
-    if (PyPy_IS_NAN(x)) {
-        return x+x;
-    }
-    absx = fabs(x);
-    if (absx >= 1.) {                   /* |x| >= 1 */
-        errno = EDOM;
-#ifdef PyPy_NAN
-        return PyPy_NAN;
-#else
-        return x/zero;
-#endif
-    }
-    if (absx < two_pow_m28) {           /* |x| < 2**-28 */
-        return x;
-    }
-    if (absx < 0.5) {                   /* |x| < 0.5 */
-        t = absx+absx;
-        t = 0.5 * _pypy_math_log1p(t + t*absx / (1.0 - absx));
-    }
-    else {                              /* 0.5 <= |x| <= 1.0 */
-        t = 0.5 * _pypy_math_log1p((absx + absx) / (1.0 - absx));
-    }
-    return copysign(t, x);
-}
-
-/* Mathematically, expm1(x) = exp(x) - 1.  The expm1 function is designed
-   to avoid the significant loss of precision that arises from direct
-   evaluation of the expression exp(x) - 1, for x near 0. */
-
-double
-_pypy_math_expm1(double x)
-{
-    /* For abs(x) >= log(2), it's safe to evaluate exp(x) - 1 directly; this
-       also works fine for infinities and nans.
-
-       For smaller x, we can use a method due to Kahan that achieves close to
-       full accuracy.
-    */
-
-    if (fabs(x) < 0.7) {
-        double u;
-        u  = exp(x);
-        if (u == 1.0)
-            return x;
-        else
-            return (u - 1.0) * x / log(u);
-    }
-    else
-        return exp(x) - 1.0;
-}
-
-/* log1p(x) = log(1+x).  The log1p function is designed to avoid the
-   significant loss of precision that arises from direct evaluation when x is
-   small. */
-
-double
-_pypy_math_log1p(double x)
-{
-    /* For x small, we use the following approach.  Let y be the nearest float
-       to 1+x, then
-
-      1+x = y * (1 - (y-1-x)/y)
-
-       so log(1+x) = log(y) + log(1-(y-1-x)/y).  Since (y-1-x)/y is tiny, the
-       second term is well approximated by (y-1-x)/y.  If abs(x) >=
-       DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
-       then y-1-x will be exactly representable, and is computed exactly by
-       (y-1)-x.
-
-       If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
-       round-to-nearest then this method is slightly dangerous: 1+x could be
-       rounded up to 1+DBL_EPSILON instead of down to 1, and in that case
-       y-1-x will not be exactly representable any more and the result can be
-       off by many ulps.  But this is easily fixed: for a floating-point
-       number |x| < DBL_EPSILON/2., the closest floating-point number to
-       log(1+x) is exactly x.
-    */
-
-    double y;
-    if (fabs(x) < DBL_EPSILON/2.) {
-        return x;
-    } else if (-0.5 <= x && x <= 1.) {
-    /* WARNING: it's possible than an overeager compiler
-       will incorrectly optimize the following two lines
-       to the equivalent of "return log(1.+x)". If this
-       happens, then results from log1p will be inaccurate
-       for small x. */
-        y = 1.+x;
-        return log(y)-((y-1.)-x)/y;
-    } else {
-    /* NaNs and infinities should end up here */
-        return log(1.+x);
-    }
-}

diff --git a/pypy/module/math/test/test_direct.py b/pypy/module/math/test/test_direct.py
--- a/pypy/module/math/test/test_direct.py
+++ b/pypy/module/math/test/test_direct.py
@@ -75,6 +75,8 @@
         ('asin', (-INFINITY,), ValueError),
         ('atan', (INFINITY,), math.pi / 2),
         ('atan', (-INFINITY,), -math.pi / 2),
+        ('atanh', (INFINITY,), ValueError),
+        ('atanh', (-INFINITY,), ValueError),
         ('ceil', (INFINITY,), positiveinf),
         ('ceil', (-INFINITY,), negativeinf),
         ('cos', (INFINITY,), ValueError),

diff --git a/pypy/rpython/lltypesystem/module/ll_math.py b/pypy/rpython/lltypesystem/module/ll_math.py
--- a/pypy/rpython/lltypesystem/module/ll_math.py
+++ b/pypy/rpython/lltypesystem/module/ll_math.py
@@ -13,9 +13,11 @@
 if sys.platform == "win32":
     eci = ExternalCompilationInfo()
     # Some math functions are C99 and not defined by the Microsoft compiler
-    srcdir = py.path.local(pypydir).join('translator', 'c', 'src')
+    cdir = py.path.local(pypydir).join('translator', 'c')
     math_eci = ExternalCompilationInfo(
-        separate_module_files=[srcdir.join('math.c')],
+        include_dirs = [cdir],
+        includes = ['src/ll_math.h'],
+        separate_module_files=[cdir.join('src', 'll_math.c')],
         export_symbols=['_pypy_math_acosh', '_pypy_math_asinh',
                         '_pypy_math_atanh',
                         '_pypy_math_expm1', '_pypy_math_log1p',


More information about the Pypy-commit mailing list