[pypy-commit] pypy set-strategies: hg merge default

arigo noreply at buildbot.pypy.org
Mon Mar 26 19:40:32 CEST 2012


Author: Armin Rigo <arigo at tunes.org>
Branch: set-strategies
Changeset: r54003:83af076f86a8
Date: 2012-03-26 19:39 +0200
http://bitbucket.org/pypy/pypy/changeset/83af076f86a8/

Log:	hg merge default

diff --git a/lib-python/modified-2.7/test/test_set.py b/lib-python/modified-2.7/test/test_set.py
--- a/lib-python/modified-2.7/test/test_set.py
+++ b/lib-python/modified-2.7/test/test_set.py
@@ -1568,7 +1568,7 @@
             for meth in (s.union, s.intersection, s.difference, s.symmetric_difference, s.isdisjoint):
                 for g in (G, I, Ig, L, R):
                     expected = meth(data)
-                    actual = meth(G(data))
+                    actual = meth(g(data))
                     if isinstance(expected, bool):
                         self.assertEqual(actual, expected)
                     else:
diff --git a/pypy/interpreter/astcompiler/test/test_astbuilder.py b/pypy/interpreter/astcompiler/test/test_astbuilder.py
--- a/pypy/interpreter/astcompiler/test/test_astbuilder.py
+++ b/pypy/interpreter/astcompiler/test/test_astbuilder.py
@@ -10,16 +10,6 @@
 from pypy.interpreter.astcompiler import ast, consts
 
 
-try:
-    all
-except NameError:
-    def all(iterable):
-        for x in iterable:
-            if not x:
-                return False
-        return True
-
-
 class TestAstBuilder:
 
     def setup_class(cls):
diff --git a/pypy/module/micronumpy/app_numpy.py b/pypy/module/micronumpy/app_numpy.py
--- a/pypy/module/micronumpy/app_numpy.py
+++ b/pypy/module/micronumpy/app_numpy.py
@@ -16,7 +16,7 @@
         a[i][i] = 1
     return a
 
-def sum(a,axis=None):
+def sum(a,axis=None, out=None):
     '''sum(a, axis=None)
     Sum of array elements over a given axis.
 
@@ -43,17 +43,17 @@
     # TODO: add to doc (once it's implemented): cumsum : Cumulative sum of array elements.
     if not hasattr(a, "sum"):
         a = _numpypy.array(a)
-    return a.sum(axis)
+    return a.sum(axis=axis, out=out)
 
-def min(a, axis=None):
+def min(a, axis=None, out=None):
     if not hasattr(a, "min"):
         a = _numpypy.array(a)
-    return a.min(axis)
+    return a.min(axis=axis, out=out)
 
-def max(a, axis=None):
+def max(a, axis=None, out=None):
     if not hasattr(a, "max"):
         a = _numpypy.array(a)
-    return a.max(axis)
+    return a.max(axis=axis, out=out)
 
 def arange(start, stop=None, step=1, dtype=None):
     '''arange([start], stop[, step], dtype=None)
diff --git a/pypy/module/micronumpy/interp_boxes.py b/pypy/module/micronumpy/interp_boxes.py
--- a/pypy/module/micronumpy/interp_boxes.py
+++ b/pypy/module/micronumpy/interp_boxes.py
@@ -62,21 +62,24 @@
         return space.wrap(dtype.itemtype.bool(self))
 
     def _binop_impl(ufunc_name):
-        def impl(self, space, w_other):
+        def impl(self, space, w_other, w_out=None):
             from pypy.module.micronumpy import interp_ufuncs
-            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [self, w_other])
+            return getattr(interp_ufuncs.get(space), ufunc_name).call(space,
+                                                            [self, w_other, w_out])
         return func_with_new_name(impl, "binop_%s_impl" % ufunc_name)
 
     def _binop_right_impl(ufunc_name):
-        def impl(self, space, w_other):
+        def impl(self, space, w_other, w_out=None):
             from pypy.module.micronumpy import interp_ufuncs
-            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [w_other, self])
+            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, 
+                                                            [w_other, self, w_out])
         return func_with_new_name(impl, "binop_right_%s_impl" % ufunc_name)
 
     def _unaryop_impl(ufunc_name):
-        def impl(self, space):
+        def impl(self, space, w_out=None):
             from pypy.module.micronumpy import interp_ufuncs
-            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [self])
+            return getattr(interp_ufuncs.get(space), ufunc_name).call(space,
+                                                                    [self, w_out])
         return func_with_new_name(impl, "unaryop_%s_impl" % ufunc_name)
 
     descr_add = _binop_impl("add")
diff --git a/pypy/module/micronumpy/interp_iter.py b/pypy/module/micronumpy/interp_iter.py
--- a/pypy/module/micronumpy/interp_iter.py
+++ b/pypy/module/micronumpy/interp_iter.py
@@ -269,7 +269,7 @@
 
     def apply_transformations(self, arr, transformations):
         v = BaseIterator.apply_transformations(self, arr, transformations)
-        if len(arr.shape) == 1:
+        if len(arr.shape) == 1 and len(v.res_shape) == 1:
             return OneDimIterator(self.offset, self.strides[0],
                                   self.res_shape[0])
         return v
diff --git a/pypy/module/micronumpy/interp_numarray.py b/pypy/module/micronumpy/interp_numarray.py
--- a/pypy/module/micronumpy/interp_numarray.py
+++ b/pypy/module/micronumpy/interp_numarray.py
@@ -83,8 +83,9 @@
         return space.wrap(W_NDimArray(shape[:], dtype=dtype))
 
     def _unaryop_impl(ufunc_name):
-        def impl(self, space):
-            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [self])
+        def impl(self, space, w_out=None):
+            return getattr(interp_ufuncs.get(space), ufunc_name).call(space,
+                                                                [self, w_out])
         return func_with_new_name(impl, "unaryop_%s_impl" % ufunc_name)
 
     descr_pos = _unaryop_impl("positive")
@@ -93,8 +94,9 @@
     descr_invert = _unaryop_impl("invert")
 
     def _binop_impl(ufunc_name):
-        def impl(self, space, w_other):
-            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [self, w_other])
+        def impl(self, space, w_other, w_out=None):
+            return getattr(interp_ufuncs.get(space), ufunc_name).call(space,
+                                                        [self, w_other, w_out])
         return func_with_new_name(impl, "binop_%s_impl" % ufunc_name)
 
     descr_add = _binop_impl("add")
@@ -124,12 +126,12 @@
         return space.newtuple([w_quotient, w_remainder])
 
     def _binop_right_impl(ufunc_name):
-        def impl(self, space, w_other):
+        def impl(self, space, w_other, w_out=None):
             w_other = scalar_w(space,
                 interp_ufuncs.find_dtype_for_scalar(space, w_other, self.find_dtype()),
                 w_other
             )
-            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [w_other, self])
+            return getattr(interp_ufuncs.get(space), ufunc_name).call(space, [w_other, self, w_out])
         return func_with_new_name(impl, "binop_right_%s_impl" % ufunc_name)
 
     descr_radd = _binop_right_impl("add")
@@ -152,13 +154,21 @@
         return space.newtuple([w_quotient, w_remainder])
 
     def _reduce_ufunc_impl(ufunc_name, promote_to_largest=False):
-        def impl(self, space, w_axis=None):
+        def impl(self, space, w_axis=None, w_out=None):
             if space.is_w(w_axis, space.w_None):
                 axis = -1
             else:
                 axis = space.int_w(w_axis)
+            if space.is_w(w_out, space.w_None) or not w_out:
+                out = None
+            elif not isinstance(w_out, BaseArray):
+                raise OperationError(space.w_TypeError, space.wrap( 
+                        'output must be an array'))
+            else:
+                out = w_out
             return getattr(interp_ufuncs.get(space), ufunc_name).reduce(space,
-                                        self, True, promote_to_largest, axis)
+                                        self, True, promote_to_largest, axis,
+                                                                   False, out)
         return func_with_new_name(impl, "reduce_%s_impl" % ufunc_name)
 
     descr_sum = _reduce_ufunc_impl("add")
@@ -213,6 +223,7 @@
     def descr_dot(self, space, w_other):
         other = convert_to_array(space, w_other)
         if isinstance(other, Scalar):
+            #Note: w_out is not modified, this is numpy compliant.
             return self.descr_mul(space, other)
         elif len(self.shape) < 2 and len(other.shape) < 2:
             w_res = self.descr_mul(space, other)
@@ -514,14 +525,14 @@
             )
         return w_result
 
-    def descr_mean(self, space, w_axis=None):
+    def descr_mean(self, space, w_axis=None, w_out=None):
         if space.is_w(w_axis, space.w_None):
             w_axis = space.wrap(-1)
             w_denom = space.wrap(support.product(self.shape))
         else:
             dim = space.int_w(w_axis)
             w_denom = space.wrap(self.shape[dim])
-        return space.div(self.descr_sum_promote(space, w_axis), w_denom)
+        return space.div(self.descr_sum_promote(space, w_axis, w_out), w_denom)
 
     def descr_var(self, space, w_axis=None):
         return get_appbridge_cache(space).call_method(space, '_var', self,
@@ -714,11 +725,12 @@
     """
     Class for representing virtual arrays, such as binary ops or ufuncs
     """
-    def __init__(self, name, shape, res_dtype):
+    def __init__(self, name, shape, res_dtype, out_arg=None):
         BaseArray.__init__(self, shape)
         self.forced_result = None
         self.res_dtype = res_dtype
         self.name = name
+        self.res = out_arg
         self.size = support.product(self.shape) * res_dtype.get_size()
 
     def _del_sources(self):
@@ -727,13 +739,18 @@
         raise NotImplementedError
 
     def compute(self):
-        ra = ResultArray(self, self.shape, self.res_dtype)
+        ra = ResultArray(self, self.shape, self.res_dtype, self.res)
         loop.compute(ra)
+        if self.res:
+            broadcast_dims = len(self.res.shape) - len(self.shape)
+            chunks = [Chunk(0,0,0,0)] * broadcast_dims + \
+                     [Chunk(0, i, 1, i) for i in self.shape]
+            return Chunks(chunks).apply(self.res)
         return ra.left
 
     def force_if_needed(self):
         if self.forced_result is None:
-            self.forced_result = self.compute()
+            self.forced_result = self.compute().get_concrete()
             self._del_sources()
 
     def get_concrete(self):
@@ -773,8 +790,9 @@
 
 
 class Call1(VirtualArray):
-    def __init__(self, ufunc, name, shape, calc_dtype, res_dtype, values):
-        VirtualArray.__init__(self, name, shape, res_dtype)
+    def __init__(self, ufunc, name, shape, calc_dtype, res_dtype, values,
+                                                            out_arg=None):
+        VirtualArray.__init__(self, name, shape, res_dtype, out_arg)
         self.values = values
         self.size = values.size
         self.ufunc = ufunc
@@ -786,6 +804,12 @@
     def create_sig(self):
         if self.forced_result is not None:
             return self.forced_result.create_sig()
+        if self.shape != self.values.shape:
+            #This happens if out arg is used
+            return signature.BroadcastUfunc(self.ufunc, self.name,
+                                            self.calc_dtype,
+                                            self.values.create_sig(),
+                                            self.res.create_sig())
         return signature.Call1(self.ufunc, self.name, self.calc_dtype,
                                self.values.create_sig())
 
@@ -793,8 +817,9 @@
     """
     Intermediate class for performing binary operations.
     """
-    def __init__(self, ufunc, name, shape, calc_dtype, res_dtype, left, right):
-        VirtualArray.__init__(self, name, shape, res_dtype)
+    def __init__(self, ufunc, name, shape, calc_dtype, res_dtype, left, right,
+            out_arg=None):
+        VirtualArray.__init__(self, name, shape, res_dtype, out_arg)
         self.ufunc = ufunc
         self.left = left
         self.right = right
@@ -832,8 +857,13 @@
         Call2.__init__(self, None, 'assign', shape, dtype, dtype, res, child)
 
     def create_sig(self):
-        return signature.ResultSignature(self.res_dtype, self.left.create_sig(),
-                                         self.right.create_sig())
+        if self.left.shape != self.right.shape:
+            sig = signature.BroadcastResultSignature(self.res_dtype,
+                        self.left.create_sig(), self.right.create_sig())
+        else:
+            sig = signature.ResultSignature(self.res_dtype, 
+                        self.left.create_sig(), self.right.create_sig())
+        return sig
 
 class ToStringArray(Call1):
     def __init__(self, child):
@@ -842,9 +872,9 @@
         self.s = StringBuilder(child.size * self.item_size)
         Call1.__init__(self, None, 'tostring', child.shape, dtype, dtype,
                        child)
-        self.res = W_NDimArray([1], dtype, 'C')
-        self.res_casted = rffi.cast(rffi.CArrayPtr(lltype.Char),
-                                    self.res.storage)
+        self.res_str = W_NDimArray([1], dtype, order='C')
+        self.res_str_casted = rffi.cast(rffi.CArrayPtr(lltype.Char),
+                                    self.res_str.storage)
 
     def create_sig(self):
         return signature.ToStringSignature(self.calc_dtype,
@@ -950,7 +980,7 @@
 
     def setitem(self, item, value):
         self.invalidated()
-        self.dtype.setitem(self, item, value)
+        self.dtype.setitem(self, item, value.convert_to(self.dtype))
 
     def calc_strides(self, shape):
         dtype = self.find_dtype()
diff --git a/pypy/module/micronumpy/interp_ufuncs.py b/pypy/module/micronumpy/interp_ufuncs.py
--- a/pypy/module/micronumpy/interp_ufuncs.py
+++ b/pypy/module/micronumpy/interp_ufuncs.py
@@ -28,26 +28,38 @@
         return self.identity
 
     def descr_call(self, space, __args__):
+	from interp_numarray import BaseArray
         args_w, kwds_w = __args__.unpack()
         # it occurs to me that we don't support any datatypes that
         # require casting, change it later when we do
         kwds_w.pop('casting', None)
         w_subok = kwds_w.pop('subok', None)
         w_out = kwds_w.pop('out', space.w_None)
-        if ((w_subok is not None and space.is_true(w_subok)) or
-            not space.is_w(w_out, space.w_None)):
+        # Setup a default value for out
+        if space.is_w(w_out, space.w_None):
+            out = None
+        else:
+            out = w_out
+        if (w_subok is not None and space.is_true(w_subok)):
             raise OperationError(space.w_NotImplementedError,
                                  space.wrap("parameters unsupported"))
         if kwds_w or len(args_w) < self.argcount:
             raise OperationError(space.w_ValueError,
                 space.wrap("invalid number of arguments")
             )
-        elif len(args_w) > self.argcount:
-            # The extra arguments should actually be the output array, but we
-            # don't support that yet.
+        elif (len(args_w) > self.argcount and out is not None) or \
+             (len(args_w) > self.argcount + 1):
             raise OperationError(space.w_TypeError,
                 space.wrap("invalid number of arguments")
             )
+        # Override the default out value, if it has been provided in w_wargs
+        if len(args_w) > self.argcount:
+            out = args_w[-1]
+        else:
+            args_w = args_w[:] + [out]
+        if out is not None and not isinstance(out, BaseArray):
+            raise OperationError(space.w_TypeError, space.wrap(
+                                            'output must be an array'))
         return self.call(space, args_w)
 
     @unwrap_spec(skipna=bool, keepdims=bool)
@@ -105,28 +117,33 @@
         array([[ 1,  5],
                [ 9, 13]])
         """
-        if not space.is_w(w_out, space.w_None):
-            raise OperationError(space.w_NotImplementedError, space.wrap(
-                "out not supported"))
+        from pypy.module.micronumpy.interp_numarray import BaseArray
         if w_axis is None:
             axis = 0
         elif space.is_w(w_axis, space.w_None):
             axis = -1
         else:
             axis = space.int_w(w_axis)
-        return self.reduce(space, w_obj, False, False, axis, keepdims)
+        if space.is_w(w_out, space.w_None):
+            out = None
+        elif not isinstance(w_out, BaseArray):
+            raise OperationError(space.w_TypeError, space.wrap(
+                                                'output must be an array'))
+        else:
+            out = w_out
+        return self.reduce(space, w_obj, False, False, axis, keepdims, out)
 
-    def reduce(self, space, w_obj, multidim, promote_to_largest, dim,
-               keepdims=False):
+    def reduce(self, space, w_obj, multidim, promote_to_largest, axis,
+               keepdims=False, out=None):
         from pypy.module.micronumpy.interp_numarray import convert_to_array, \
-                                                           Scalar, ReduceArray
+                                             Scalar, ReduceArray, W_NDimArray
         if self.argcount != 2:
             raise OperationError(space.w_ValueError, space.wrap("reduce only "
                 "supported for binary functions"))
         assert isinstance(self, W_Ufunc2)
         obj = convert_to_array(space, w_obj)
-        if dim >= len(obj.shape):
-            raise OperationError(space.w_ValueError, space.wrap("axis(=%d) out of bounds" % dim))
+        if axis >= len(obj.shape):
+            raise OperationError(space.w_ValueError, space.wrap("axis(=%d) out of bounds" % axis))
         if isinstance(obj, Scalar):
             raise OperationError(space.w_TypeError, space.wrap("cannot reduce "
                 "on a scalar"))
@@ -144,21 +161,55 @@
         if self.identity is None and size == 0:
             raise operationerrfmt(space.w_ValueError, "zero-size array to "
                     "%s.reduce without identity", self.name)
-        if shapelen > 1 and dim >= 0:
-            return self.do_axis_reduce(obj, dtype, dim, keepdims)
-        arr = ReduceArray(self.func, self.name, self.identity, obj, dtype)
-        return loop.compute(arr)
+        if shapelen > 1 and axis >= 0:
+            if keepdims:
+                shape = obj.shape[:axis] + [1] + obj.shape[axis + 1:]
+            else:
+                shape = obj.shape[:axis] + obj.shape[axis + 1:]
+            if out:
+                #Test for shape agreement
+                if len(out.shape) > len(shape):
+                    raise operationerrfmt(space.w_ValueError,
+                        'output parameter for reduction operation %s' +
+                        ' has too many dimensions', self.name)
+                elif len(out.shape) < len(shape):
+                    raise operationerrfmt(space.w_ValueError,
+                        'output parameter for reduction operation %s' +
+                        ' does not have enough dimensions', self.name)
+                elif out.shape != shape:
+                    raise operationerrfmt(space.w_ValueError,
+                        'output parameter shape mismatch, expecting [%s]' +
+                        ' , got [%s]', 
+                        ",".join([str(x) for x in shape]),
+                        ",".join([str(x) for x in out.shape]),
+                        )
+                #Test for dtype agreement, perhaps create an itermediate
+                #if out.dtype != dtype:
+                #    raise OperationError(space.w_TypeError, space.wrap(
+                #        "mismatched  dtypes"))
+                return self.do_axis_reduce(obj, out.find_dtype(), axis, out)
+            else:
+                result = W_NDimArray(shape, dtype)
+                return self.do_axis_reduce(obj, dtype, axis, result)
+        if out:
+            if len(out.shape)>0:
+                raise operationerrfmt(space.w_ValueError, "output parameter "
+                              "for reduction operation %s has too many"
+                              " dimensions",self.name)
+            arr = ReduceArray(self.func, self.name, self.identity, obj,
+                                                            out.find_dtype())
+            val = loop.compute(arr)
+            assert isinstance(out, Scalar)
+            out.value = val
+        else:
+            arr = ReduceArray(self.func, self.name, self.identity, obj, dtype)
+            val = loop.compute(arr)
+        return val 
 
-    def do_axis_reduce(self, obj, dtype, dim, keepdims):
-        from pypy.module.micronumpy.interp_numarray import AxisReduce,\
-             W_NDimArray
-        if keepdims:
-            shape = obj.shape[:dim] + [1] + obj.shape[dim + 1:]
-        else:
-            shape = obj.shape[:dim] + obj.shape[dim + 1:]
-        result = W_NDimArray(shape, dtype)
+    def do_axis_reduce(self, obj, dtype, axis, result):
+        from pypy.module.micronumpy.interp_numarray import AxisReduce
         arr = AxisReduce(self.func, self.name, self.identity, obj.shape, dtype,
-                         result, obj, dim)
+                         result, obj, axis)
         loop.compute(arr)
         return arr.left
 
@@ -176,24 +227,55 @@
         self.bool_result = bool_result
 
     def call(self, space, args_w):
-        from pypy.module.micronumpy.interp_numarray import (Call1,
-            convert_to_array, Scalar)
-
-        [w_obj] = args_w
+        from pypy.module.micronumpy.interp_numarray import (Call1, BaseArray,
+            convert_to_array, Scalar, shape_agreement)
+        if len(args_w)<2:
+            [w_obj] = args_w
+            out = None
+        else:
+            [w_obj, out] = args_w
+            if space.is_w(out, space.w_None):
+                out = None
         w_obj = convert_to_array(space, w_obj)
         calc_dtype = find_unaryop_result_dtype(space,
                                   w_obj.find_dtype(),
                                   promote_to_float=self.promote_to_float,
                                   promote_bools=self.promote_bools)
-        if self.bool_result:
+        if out:
+            if not isinstance(out, BaseArray):
+                raise OperationError(space.w_TypeError, space.wrap(
+                                                'output must be an array'))
+            res_dtype = out.find_dtype()
+        elif self.bool_result:
             res_dtype = interp_dtype.get_dtype_cache(space).w_booldtype
         else:
             res_dtype = calc_dtype
         if isinstance(w_obj, Scalar):
-            return space.wrap(self.func(calc_dtype, w_obj.value.convert_to(calc_dtype)))
-
-        w_res = Call1(self.func, self.name, w_obj.shape, calc_dtype, res_dtype,
-                      w_obj)
+            arr = self.func(calc_dtype, w_obj.value.convert_to(calc_dtype))
+            if isinstance(out,Scalar):
+                out.value=arr
+            elif isinstance(out, BaseArray):
+                out.fill(space, arr)
+            else:
+                out = arr
+            return space.wrap(out)
+        if out:
+            assert isinstance(out, BaseArray) # For translation
+            broadcast_shape =  shape_agreement(space, w_obj.shape, out.shape)
+            if not broadcast_shape or broadcast_shape != out.shape:
+                raise operationerrfmt(space.w_ValueError,
+                    'output parameter shape mismatch, could not broadcast [%s]' +
+                    ' to [%s]', 
+                    ",".join([str(x) for x in w_obj.shape]),
+                    ",".join([str(x) for x in out.shape]),
+                    )
+            w_res = Call1(self.func, self.name, out.shape, calc_dtype,
+                                         res_dtype, w_obj, out)
+            #Force it immediately
+            w_res.get_concrete()
+        else:
+            w_res = Call1(self.func, self.name, w_obj.shape, calc_dtype,
+                                         res_dtype, w_obj)
         w_obj.add_invalidates(w_res)
         return w_res
 
@@ -212,32 +294,61 @@
 
     def call(self, space, args_w):
         from pypy.module.micronumpy.interp_numarray import (Call2,
-            convert_to_array, Scalar, shape_agreement)
-
-        [w_lhs, w_rhs] = args_w
+            convert_to_array, Scalar, shape_agreement, BaseArray)
+        if len(args_w)>2:
+            [w_lhs, w_rhs, w_out] = args_w
+        else:
+            [w_lhs, w_rhs] = args_w
+            w_out = None
         w_lhs = convert_to_array(space, w_lhs)
         w_rhs = convert_to_array(space, w_rhs)
-        calc_dtype = find_binop_result_dtype(space,
-            w_lhs.find_dtype(), w_rhs.find_dtype(),
-            int_only=self.int_only,
-            promote_to_float=self.promote_to_float,
-            promote_bools=self.promote_bools,
-        )
+        if space.is_w(w_out, space.w_None) or w_out is None:
+            out = None
+            calc_dtype = find_binop_result_dtype(space,
+                w_lhs.find_dtype(), w_rhs.find_dtype(),
+                int_only=self.int_only,
+                promote_to_float=self.promote_to_float,
+                promote_bools=self.promote_bools,
+            )
+        elif not isinstance(w_out, BaseArray):
+            raise OperationError(space.w_TypeError, space.wrap(
+                    'output must be an array'))
+        else:
+            out = w_out
+            calc_dtype = out.find_dtype()
         if self.comparison_func:
             res_dtype = interp_dtype.get_dtype_cache(space).w_booldtype
         else:
             res_dtype = calc_dtype
         if isinstance(w_lhs, Scalar) and isinstance(w_rhs, Scalar):
-            return space.wrap(self.func(calc_dtype,
+            arr = self.func(calc_dtype,
                 w_lhs.value.convert_to(calc_dtype),
                 w_rhs.value.convert_to(calc_dtype)
-            ))
+            )
+            if isinstance(out,Scalar):
+                out.value=arr
+            elif isinstance(out, BaseArray):
+                out.fill(space, arr)
+            else:
+                out = arr
+            return space.wrap(out)
         new_shape = shape_agreement(space, w_lhs.shape, w_rhs.shape)
+        # Test correctness of out.shape
+        if out and out.shape != shape_agreement(space, new_shape, out.shape):
+            raise operationerrfmt(space.w_ValueError,
+                'output parameter shape mismatch, could not broadcast [%s]' +
+                ' to [%s]', 
+                ",".join([str(x) for x in new_shape]),
+                ",".join([str(x) for x in out.shape]),
+                )
         w_res = Call2(self.func, self.name,
                       new_shape, calc_dtype,
-                      res_dtype, w_lhs, w_rhs)
+                      res_dtype, w_lhs, w_rhs, out)
         w_lhs.add_invalidates(w_res)
         w_rhs.add_invalidates(w_res)
+        if out:
+            #out.add_invalidates(w_res) #causes a recursion loop
+            w_res.get_concrete()
         return w_res
 
 
diff --git a/pypy/module/micronumpy/signature.py b/pypy/module/micronumpy/signature.py
--- a/pypy/module/micronumpy/signature.py
+++ b/pypy/module/micronumpy/signature.py
@@ -216,13 +216,14 @@
         return self.child.eval(frame, arr.child)
 
 class Call1(Signature):
-    _immutable_fields_ = ['unfunc', 'name', 'child', 'dtype']
+    _immutable_fields_ = ['unfunc', 'name', 'child', 'res', 'dtype']
 
-    def __init__(self, func, name, dtype, child):
+    def __init__(self, func, name, dtype, child, res=None):
         self.unfunc = func
         self.child = child
         self.name = name
         self.dtype = dtype
+        self.res  = res
 
     def hash(self):
         return compute_hash(self.name) ^ intmask(self.child.hash() << 1)
@@ -256,6 +257,29 @@
         v = self.child.eval(frame, arr.values).convert_to(arr.calc_dtype)
         return self.unfunc(arr.calc_dtype, v)
 
+
+class BroadcastUfunc(Call1):
+    def _invent_numbering(self, cache, allnumbers):
+        self.res._invent_numbering(cache, allnumbers)
+        self.child._invent_numbering(new_cache(), allnumbers)
+
+    def debug_repr(self):
+        return 'BroadcastUfunc(%s, %s)' % (self.name, self.child.debug_repr())
+
+    def _create_iter(self, iterlist, arraylist, arr, transforms):
+        from pypy.module.micronumpy.interp_numarray import Call1
+
+        assert isinstance(arr, Call1)
+        vtransforms = transforms + [BroadcastTransform(arr.values.shape)]
+        self.child._create_iter(iterlist, arraylist, arr.values, vtransforms)
+        self.res._create_iter(iterlist, arraylist, arr.res, transforms)
+
+    def eval(self, frame, arr):
+        from pypy.module.micronumpy.interp_numarray import Call1
+        assert isinstance(arr, Call1)
+        v = self.child.eval(frame, arr.values).convert_to(arr.calc_dtype)
+        return self.unfunc(arr.calc_dtype, v)
+
 class Call2(Signature):
     _immutable_fields_ = ['binfunc', 'name', 'calc_dtype', 'left', 'right']
 
@@ -316,7 +340,17 @@
 
         assert isinstance(arr, ResultArray)
         offset = frame.get_final_iter().offset
-        arr.left.setitem(offset, self.right.eval(frame, arr.right))
+        val = self.right.eval(frame, arr.right)
+        arr.left.setitem(offset, val)
+
+class BroadcastResultSignature(ResultSignature):
+    def _create_iter(self, iterlist, arraylist, arr, transforms):
+        from pypy.module.micronumpy.interp_numarray import ResultArray
+
+        assert isinstance(arr, ResultArray)
+        rtransforms = transforms + [BroadcastTransform(arr.left.shape)]
+        self.left._create_iter(iterlist, arraylist, arr.left, transforms)
+        self.right._create_iter(iterlist, arraylist, arr.right, rtransforms)
 
 class ToStringSignature(Call1):
     def __init__(self, dtype, child):
@@ -327,10 +361,10 @@
         from pypy.module.micronumpy.interp_numarray import ToStringArray
 
         assert isinstance(arr, ToStringArray)
-        arr.res.setitem(0, self.child.eval(frame, arr.values).convert_to(
+        arr.res_str.setitem(0, self.child.eval(frame, arr.values).convert_to(
             self.dtype))
         for i in range(arr.item_size):
-            arr.s.append(arr.res_casted[i])
+            arr.s.append(arr.res_str_casted[i])
 
 class BroadcastLeft(Call2):
     def _invent_numbering(self, cache, allnumbers):
@@ -455,6 +489,5 @@
             cur = arr.left.getitem(iterator.offset)
             value = self.binfunc(self.calc_dtype, cur, v)
         arr.left.setitem(iterator.offset, value)
-    
     def debug_repr(self):
         return 'AxisReduceSig(%s, %s)' % (self.name, self.right.debug_repr())
diff --git a/pypy/module/micronumpy/test/test_numarray.py b/pypy/module/micronumpy/test/test_numarray.py
--- a/pypy/module/micronumpy/test/test_numarray.py
+++ b/pypy/module/micronumpy/test/test_numarray.py
@@ -995,6 +995,10 @@
         assert a.sum() == 5
 
         raises(TypeError, 'a.sum(2, 3)')
+        d = array(0.)
+        b = a.sum(out=d)
+        assert b == d
+        assert isinstance(b, float)
 
     def test_reduce_nd(self):
         from numpypy import arange, array, multiply
@@ -1495,8 +1499,6 @@
         a = array([[1, 2], [3, 4], [5, 6], [7, 8],
                    [9, 10], [11, 12], [13, 14]])
         b = a[::2]
-        print a
-        print b
         assert (b == [[1, 2], [5, 6], [9, 10], [13, 14]]).all()
         c = b + b
         assert c[1][1] == 12
diff --git a/pypy/module/micronumpy/test/test_outarg.py b/pypy/module/micronumpy/test/test_outarg.py
new file mode 100644
--- /dev/null
+++ b/pypy/module/micronumpy/test/test_outarg.py
@@ -0,0 +1,126 @@
+import py
+from pypy.module.micronumpy.test.test_base import BaseNumpyAppTest
+
+class AppTestOutArg(BaseNumpyAppTest):
+    def test_reduce_out(self):
+        from numpypy import arange, zeros, array
+        a = arange(15).reshape(5, 3)
+        b = arange(12).reshape(4,3)
+        c = a.sum(0, out=b[1])
+        assert (c == [30, 35, 40]).all()
+        assert (c == b[1]).all()
+        raises(ValueError, 'a.prod(0, out=arange(10))')
+        a=arange(12).reshape(3,2,2)
+        raises(ValueError, 'a.sum(0, out=arange(12).reshape(3,2,2))')
+        raises(ValueError, 'a.sum(0, out=arange(3))')
+        c = array([-1, 0, 1]).sum(out=zeros([], dtype=bool))
+        #You could argue that this should product False, but
+        # that would require an itermediate result. Cpython numpy
+        # gives True.
+        assert c == True
+        a = array([[-1, 0, 1], [1, 0, -1]])
+        c = a.sum(0, out=zeros((3,), dtype=bool))
+        assert (c == [True, False, True]).all()
+        c = a.sum(1, out=zeros((2,), dtype=bool))
+        assert (c == [True, True]).all()
+
+    def test_reduce_intermediary(self):
+        from numpypy import arange, array
+        a = arange(15).reshape(5, 3)
+        b = array(range(3), dtype=bool)
+        c = a.prod(0, out=b)
+        assert(b == [False,  True,  True]).all()
+
+    def test_ufunc_out(self):
+        from _numpypy import array, negative, zeros, sin
+        from math import sin as msin
+        a = array([[1, 2], [3, 4]])
+        c = zeros((2,2,2))
+        b = negative(a + a, out=c[1])
+        #test for view, and also test that forcing out also forces b
+        assert (c[:, :, 1] == [[0, 0], [-4, -8]]).all()
+        assert (b == [[-2, -4], [-6, -8]]).all()
+        #Test broadcast, type promotion
+        b = negative(3, out=a)
+        assert (a == -3).all()
+        c = zeros((2, 2), dtype=float)
+        b = negative(3, out=c)
+        assert b.dtype.kind == c.dtype.kind
+        assert b.shape == c.shape
+        a = array([1, 2])
+        b = sin(a, out=c)
+        assert(c == [[msin(1), msin(2)]] * 2).all()
+        b = sin(a, out=c+c)
+        assert (c == b).all()
+
+        #Test shape agreement
+        a = zeros((3,4))
+        b = zeros((3,5))
+        raises(ValueError, 'negative(a, out=b)')
+        b = zeros((1,4))
+        raises(ValueError, 'negative(a, out=b)')
+
+    def test_binfunc_out(self):
+        from _numpypy import array, add
+        a = array([[1, 2], [3, 4]])
+        out = array([[1, 2], [3, 4]])
+        c = add(a, a, out=out)
+        assert (c == out).all()
+        assert c.shape == a.shape
+        assert c.dtype is a.dtype
+        c[0,0] = 100
+        assert out[0, 0] == 100
+        out[:] = 100
+        raises(ValueError, 'c = add(a, a, out=out[1])')
+        c = add(a[0], a[1], out=out[1])
+        assert (c == out[1]).all()
+        assert (c == [4, 6]).all()
+        assert (out[0] == 100).all()
+        c = add(a[0], a[1], out=out)
+        assert (c == out[1]).all()
+        assert (c == out[0]).all()
+        out = array(16, dtype=int)
+        b = add(10, 10, out=out)
+        assert b==out
+        assert b.dtype == out.dtype
+        
+    def test_applevel(self):
+        from _numpypy import array, sum, max, min
+        a = array([[1, 2], [3, 4]])
+        out = array([[0, 0], [0, 0]])
+        c = sum(a, axis=0, out=out[0])
+        assert (c == [4, 6]).all()
+        assert (c == out[0]).all()
+        assert (c != out[1]).all()
+        c = max(a, axis=1, out=out[0])
+        assert (c == [2, 4]).all()
+        assert (c == out[0]).all()
+        assert (c != out[1]).all()
+        
+    def test_ufunc_cast(self):
+        from _numpypy import array, negative, add, sum
+        a = array(16, dtype = int)
+        c = array(0, dtype = float)
+        b = negative(a, out=c)
+        assert b == c
+        b = add(a, a, out=c)
+        assert b == c
+        d = array([16, 16], dtype=int)
+        b = sum(d, out=c)
+        assert b == c
+        try:
+            from _numpypy import version
+            v = version.version.split('.')
+        except:
+            v = ['1', '6', '0'] # numpypy is api compatable to what version?
+        if v[0]<'2':
+            b = negative(c, out=a)
+            assert b == a
+            b = add(c, c, out=a)
+            assert b == a
+            b = sum(array([16, 16], dtype=float), out=a)
+            assert b == a
+        else:
+            cast_error = raises(TypeError, negative, c, a)
+            assert str(cast_error.value) == \
+            "Cannot cast ufunc negative output from dtype('float64') to dtype('int64') with casting rule 'same_kind'"
diff --git a/pypy/module/micronumpy/test/test_zjit.py b/pypy/module/micronumpy/test/test_zjit.py
--- a/pypy/module/micronumpy/test/test_zjit.py
+++ b/pypy/module/micronumpy/test/test_zjit.py
@@ -131,7 +131,7 @@
         #            bogus. We need to improve the situation somehow.
         self.check_simple_loop({'getinteriorfield_raw': 2,
                                 'setinteriorfield_raw': 1,
-                                'arraylen_gc': 1,
+                                'arraylen_gc': 2,
                                 'guard_true': 1,
                                 'int_lt': 1,
                                 'jump': 1,
diff --git a/pypy/objspace/flow/test/test_objspace.py b/pypy/objspace/flow/test/test_objspace.py
--- a/pypy/objspace/flow/test/test_objspace.py
+++ b/pypy/objspace/flow/test/test_objspace.py
@@ -1,6 +1,6 @@
 from __future__ import with_statement
 import new
-import py
+import py, sys
 from pypy.objspace.flow.model import Constant, Block, Link, Variable
 from pypy.objspace.flow.model import mkentrymap, c_last_exception
 from pypy.interpreter.argument import Arguments
@@ -893,6 +893,8 @@
         """ Tests code generated by pypy-c compiled with BUILD_LIST_FROM_ARG
         bytecode
         """
+        if sys.version_info < (2, 7):
+            py.test.skip("2.7 only test")
         self.patch_opcodes('BUILD_LIST_FROM_ARG')
         try:
             def f():
diff --git a/pypy/tool/release/package.py b/pypy/tool/release/package.py
--- a/pypy/tool/release/package.py
+++ b/pypy/tool/release/package.py
@@ -58,33 +58,13 @@
     binaries = [(pypy_c, rename_pypy_c)]
     #
     if sys.platform == 'win32':
-        #What runtime do we need?
-        msvc_runtime = 'msvcr80.dll' #default is studio 2005 vc8
-        try:
-            import subprocess
-            out,err = subprocess.Popen([str(pypy_c), '-c', 
-                        'import sys; print sys.version'],
-                        stdout=subprocess.PIPE).communicate()
-            indx=out.find('MSC v.') + 6
-            if indx> 10:
-                if out[indx:].startswith('1600'):
-                    msvc_runtime = 'msvcr100.dll' #studio 2010 vc10
-                elif out[indx:].startwith('1500'):
-                    msvc_runtime = 'msvcr90.dll' #studio 2009 vc9
-                elif out[indx:].startswith('1400'):
-                    msvc_runtime = 'msvcr80.dll' #studio 2005 vc8
-                else:
-                    print 'Cannot determine runtime dll for pypy' \
-                                ' version "%s"'%out
-            else:                    
-                print 'Cannot determine runtime dll for pypy' \
-                                ' version "%s"'%out
-        except :
-            pass
+        #Don't include a mscvrXX.dll, users should get their own.
+        #Instructions are provided on the website.
+
         # Can't rename a DLL: it is always called 'libpypy-c.dll'
         
         for extra in ['libpypy-c.dll',
-                      'libexpat.dll', 'sqlite3.dll', msvc_runtime,
+                      'libexpat.dll', 'sqlite3.dll', 
                       'libeay32.dll', 'ssleay32.dll']:
             p = pypy_c.dirpath().join(extra)
             if not p.check():


More information about the pypy-commit mailing list