[Python-3000-checkins] r53335 - in python/branches/p3yk: Doc/Makefile.deps Doc/lib/lib.tex Doc/lib/libsets.tex Doc/lib/libstdtypes.tex Lib/msilib/__init__.py Lib/sets.py Lib/test/test_cookielib.py Lib/test/test_set.py Lib/test/test_sets.py

Brett Cannon brett at python.org
Wed Jan 10 04:39:23 CET 2007


Should we bother with deprecating 'sets' in the 2.x series?

-Brett

On 1/9/07, guido.van.rossum <python-3000-checkins at python.org> wrote:
> Author: guido.van.rossum
> Date: Wed Jan 10 02:28:32 2007
> New Revision: 53335
>
> Removed:
>    python/branches/p3yk/Lib/sets.py
>    python/branches/p3yk/Lib/test/test_sets.py
> Modified:
>    python/branches/p3yk/Doc/Makefile.deps
>    python/branches/p3yk/Doc/lib/lib.tex
>    python/branches/p3yk/Doc/lib/libsets.tex
>    python/branches/p3yk/Doc/lib/libstdtypes.tex
>    python/branches/p3yk/Lib/msilib/__init__.py
>    python/branches/p3yk/Lib/test/test_cookielib.py
>    python/branches/p3yk/Lib/test/test_set.py
> Log:
> Excise the sets module.  SF #1500611 by Collin Winter.
>
>
> Modified: python/branches/p3yk/Doc/Makefile.deps
> ==============================================================================
> --- python/branches/p3yk/Doc/Makefile.deps      (original)
> +++ python/branches/p3yk/Doc/Makefile.deps      Wed Jan 10 02:28:32 2007
> @@ -109,7 +109,6 @@
>         lib/libplatform.tex \
>         lib/libfpectl.tex \
>         lib/libgc.tex \
> -       lib/libsets.tex \
>         lib/libweakref.tex \
>         lib/libinspect.tex \
>         lib/libpydoc.tex \
>
> Modified: python/branches/p3yk/Doc/lib/lib.tex
> ==============================================================================
> --- python/branches/p3yk/Doc/lib/lib.tex        (original)
> +++ python/branches/p3yk/Doc/lib/lib.tex        Wed Jan 10 02:28:32 2007
> @@ -104,7 +104,6 @@
>  \input{libheapq}
>  \input{libbisect}
>  \input{libarray}
> -\input{libsets}
>  \input{libsched}
>  \input{libmutex}
>  \input{libqueue}
>
> Modified: python/branches/p3yk/Doc/lib/libsets.tex
> ==============================================================================
> --- python/branches/p3yk/Doc/lib/libsets.tex    (original)
> +++ python/branches/p3yk/Doc/lib/libsets.tex    Wed Jan 10 02:28:32 2007
> @@ -1,264 +0,0 @@
> -\section{\module{sets} ---
> -         Unordered collections of unique elements}
> -
> -\declaremodule{standard}{sets}
> -\modulesynopsis{Implementation of sets of unique elements.}
> -\moduleauthor{Greg V. Wilson}{gvwilson at nevex.com}
> -\moduleauthor{Alex Martelli}{aleax at aleax.it}
> -\moduleauthor{Guido van Rossum}{guido at python.org}
> -\sectionauthor{Raymond D. Hettinger}{python at rcn.com}
> -
> -\versionadded{2.3}
> -
> -The \module{sets} module provides classes for constructing and manipulating
> -unordered collections of unique elements.  Common uses include membership
> -testing, removing duplicates from a sequence, and computing standard math
> -operations on sets such as intersection, union, difference, and symmetric
> -difference.
> -
> -Like other collections, sets support \code{\var{x} in \var{set}},
> -\code{len(\var{set})}, and \code{for \var{x} in \var{set}}.  Being an
> -unordered collection, sets do not record element position or order of
> -insertion.  Accordingly, sets do not support indexing, slicing, or
> -other sequence-like behavior.
> -
> -Most set applications use the \class{Set} class which provides every set
> -method except for \method{__hash__()}. For advanced applications requiring
> -a hash method, the \class{ImmutableSet} class adds a \method{__hash__()}
> -method but omits methods which alter the contents of the set. Both
> -\class{Set} and \class{ImmutableSet} derive from \class{BaseSet}, an
> -abstract class useful for determining whether something is a set:
> -\code{isinstance(\var{obj}, BaseSet)}.
> -
> -The set classes are implemented using dictionaries.  Accordingly, the
> -requirements for set elements are the same as those for dictionary keys;
> -namely, that the element defines both \method{__eq__} and \method{__hash__}.
> -As a result, sets
> -cannot contain mutable elements such as lists or dictionaries.
> -However, they can contain immutable collections such as tuples or
> -instances of \class{ImmutableSet}.  For convenience in implementing
> -sets of sets, inner sets are automatically converted to immutable
> -form, for example, \code{Set([Set(['dog'])])} is transformed to
> -\code{Set([ImmutableSet(['dog'])])}.
> -
> -\begin{classdesc}{Set}{\optional{iterable}}
> -Constructs a new empty \class{Set} object.  If the optional \var{iterable}
> -parameter is supplied, updates the set with elements obtained from iteration.
> -All of the elements in \var{iterable} should be immutable or be transformable
> -to an immutable using the protocol described in
> -section~\ref{immutable-transforms}.
> -\end{classdesc}
> -
> -\begin{classdesc}{ImmutableSet}{\optional{iterable}}
> -Constructs a new empty \class{ImmutableSet} object.  If the optional
> -\var{iterable} parameter is supplied, updates the set with elements obtained
> -from iteration.  All of the elements in \var{iterable} should be immutable or
> -be transformable to an immutable using the protocol described in
> -section~\ref{immutable-transforms}.
> -
> -Because \class{ImmutableSet} objects provide a \method{__hash__()} method,
> -they can be used as set elements or as dictionary keys.  \class{ImmutableSet}
> -objects do not have methods for adding or removing elements, so all of the
> -elements must be known when the constructor is called.
> -\end{classdesc}
> -
> -
> -\subsection{Set Objects \label{set-objects}}
> -
> -Instances of \class{Set} and \class{ImmutableSet} both provide
> -the following operations:
> -
> -\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
> -  \lineiii{len(\var{s})}{}{cardinality of set \var{s}}
> -
> -  \hline
> -  \lineiii{\var{x} in \var{s}}{}
> -         {test \var{x} for membership in \var{s}}
> -  \lineiii{\var{x} not in \var{s}}{}
> -         {test \var{x} for non-membership in \var{s}}
> -  \lineiii{\var{s}.issubset(\var{t})}{\code{\var{s} <= \var{t}}}
> -         {test whether every element in \var{s} is in \var{t}}
> -  \lineiii{\var{s}.issuperset(\var{t})}{\code{\var{s} >= \var{t}}}
> -         {test whether every element in \var{t} is in \var{s}}
> -
> -  \hline
> -  \lineiii{\var{s}.union(\var{t})}{\var{s} \textbar{} \var{t}}
> -         {new set with elements from both \var{s} and \var{t}}
> -  \lineiii{\var{s}.intersection(\var{t})}{\var{s} \&\ \var{t}}
> -         {new set with elements common to \var{s} and \var{t}}
> -  \lineiii{\var{s}.difference(\var{t})}{\var{s} - \var{t}}
> -         {new set with elements in \var{s} but not in \var{t}}
> -  \lineiii{\var{s}.symmetric_difference(\var{t})}{\var{s} \^\ \var{t}}
> -         {new set with elements in either \var{s} or \var{t} but not both}
> -  \lineiii{\var{s}.copy()}{}
> -         {new set with a shallow copy of \var{s}}
> -\end{tableiii}
> -
> -Note, the non-operator versions of \method{union()},
> -\method{intersection()}, \method{difference()}, and
> -\method{symmetric_difference()} will accept any iterable as an argument.
> -In contrast, their operator based counterparts require their arguments to
> -be sets.  This precludes error-prone constructions like
> -\code{Set('abc') \&\ 'cbs'} in favor of the more readable
> -\code{Set('abc').intersection('cbs')}.
> -\versionchanged[Formerly all arguments were required to be sets]{2.3.1}
> -
> -In addition, both \class{Set} and \class{ImmutableSet}
> -support set to set comparisons.  Two sets are equal if and only if
> -every element of each set is contained in the other (each is a subset
> -of the other).
> -A set is less than another set if and only if the first set is a proper
> -subset of the second set (is a subset, but is not equal).
> -A set is greater than another set if and only if the first set is a proper
> -superset of the second set (is a superset, but is not equal).
> -
> -The subset and equality comparisons do not generalize to a complete
> -ordering function.  For example, any two disjoint sets are not equal and
> -are not subsets of each other, so \emph{all} of the following return
> -\code{False}:  \code{\var{a}<\var{b}}, \code{\var{a}==\var{b}}, or
> -\code{\var{a}>\var{b}}.
> -Accordingly, sets do not implement the \method{__cmp__} method.
> -
> -Since sets only define partial ordering (subset relationships), the output
> -of the \method{list.sort()} method is undefined for lists of sets.
> -
> -The following table lists operations available in \class{ImmutableSet}
> -but not found in \class{Set}:
> -
> -\begin{tableii}{c|l}{code}{Operation}{Result}
> -  \lineii{hash(\var{s})}{returns a hash value for \var{s}}
> -\end{tableii}
> -
> -The following table lists operations available in \class{Set}
> -but not found in \class{ImmutableSet}:
> -
> -\begin{tableiii}{c|c|l}{code}{Operation}{Equivalent}{Result}
> -  \lineiii{\var{s}.update(\var{t})}
> -         {\var{s} \textbar= \var{t}}
> -         {return set \var{s} with elements added from \var{t}}
> -  \lineiii{\var{s}.intersection_update(\var{t})}
> -         {\var{s} \&= \var{t}}
> -         {return set \var{s} keeping only elements also found in \var{t}}
> -  \lineiii{\var{s}.difference_update(\var{t})}
> -         {\var{s} -= \var{t}}
> -         {return set \var{s} after removing elements found in \var{t}}
> -  \lineiii{\var{s}.symmetric_difference_update(\var{t})}
> -         {\var{s} \textasciicircum= \var{t}}
> -         {return set \var{s} with elements from \var{s} or \var{t}
> -          but not both}
> -
> -  \hline
> -  \lineiii{\var{s}.add(\var{x})}{}
> -         {add element \var{x} to set \var{s}}
> -  \lineiii{\var{s}.remove(\var{x})}{}
> -         {remove \var{x} from set \var{s}; raises \exception{KeyError}
> -         if not present}
> -  \lineiii{\var{s}.discard(\var{x})}{}
> -         {removes \var{x} from set \var{s} if present}
> -  \lineiii{\var{s}.pop()}{}
> -         {remove and return an arbitrary element from \var{s}; raises
> -         \exception{KeyError} if empty}
> -  \lineiii{\var{s}.clear()}{}
> -         {remove all elements from set \var{s}}
> -\end{tableiii}
> -
> -Note, the non-operator versions of \method{update()},
> -\method{intersection_update()}, \method{difference_update()}, and
> -\method{symmetric_difference_update()} will accept any iterable as
> -an argument.
> -\versionchanged[Formerly all arguments were required to be sets]{2.3.1}
> -
> -Also note, the module also includes a \method{union_update()} method
> -which is an alias for \method{update()}.  The method is included for
> -backwards compatibility.  Programmers should prefer the
> -\method{update()} method because it is supported by the builtin
> -\class{set()} and \class{frozenset()} types.
> -
> -\subsection{Example \label{set-example}}
> -
> -\begin{verbatim}
> ->>> from sets import Set
> ->>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
> ->>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
> ->>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
> ->>> employees = engineers | programmers | managers           # union
> ->>> engineering_management = engineers & managers            # intersection
> ->>> fulltime_management = managers - engineers - programmers # difference
> ->>> engineers.add('Marvin')                                  # add element
> ->>> print engineers
> -Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
> ->>> employees.issuperset(engineers)           # superset test
> -False
> ->>> employees.union_update(engineers)         # update from another set
> ->>> employees.issuperset(engineers)
> -True
> ->>> for group in [engineers, programmers, managers, employees]:
> -...     group.discard('Susan')                # unconditionally remove element
> -...     print group
> -...
> -Set(['Jane', 'Marvin', 'Janice', 'John', 'Jack'])
> -Set(['Janice', 'Jack', 'Sam'])
> -Set(['Jane', 'Zack', 'Jack'])
> -Set(['Jack', 'Sam', 'Jane', 'Marvin', 'Janice', 'John', 'Zack'])
> -\end{verbatim}
> -
> -
> -\subsection{Protocol for automatic conversion to immutable
> -            \label{immutable-transforms}}
> -
> -Sets can only contain immutable elements.  For convenience, mutable
> -\class{Set} objects are automatically copied to an \class{ImmutableSet}
> -before being added as a set element.
> -
> -The mechanism is to always add a hashable element, or if it is not
> -hashable, the element is checked to see if it has an
> -\method{__as_immutable__()} method which returns an immutable equivalent.
> -
> -Since \class{Set} objects have a \method{__as_immutable__()} method
> -returning an instance of \class{ImmutableSet}, it is possible to
> -construct sets of sets.
> -
> -A similar mechanism is needed by the \method{__contains__()} and
> -\method{remove()} methods which need to hash an element to check
> -for membership in a set.  Those methods check an element for hashability
> -and, if not, check for a \method{__as_temporarily_immutable__()} method
> -which returns the element wrapped by a class that provides temporary
> -methods for \method{__hash__()}, \method{__eq__()}, and \method{__ne__()}.
> -
> -The alternate mechanism spares the need to build a separate copy of
> -the original mutable object.
> -
> -\class{Set} objects implement the \method{__as_temporarily_immutable__()}
> -method which returns the \class{Set} object wrapped by a new class
> -\class{_TemporarilyImmutableSet}.
> -
> -The two mechanisms for adding hashability are normally invisible to the
> -user; however, a conflict can arise in a multi-threaded environment
> -where one thread is updating a set while another has temporarily wrapped it
> -in \class{_TemporarilyImmutableSet}.  In other words, sets of mutable sets
> -are not thread-safe.
> -
> -
> -\subsection{Comparison to the built-in \class{set} types
> -            \label{comparison-to-builtin-set}}
> -
> -The built-in \class{set} and \class{frozenset} types were designed based
> -on lessons learned from the \module{sets} module.  The key differences are:
> -
> -\begin{itemize}
> -\item \class{Set} and \class{ImmutableSet} were renamed to \class{set} and
> -      \class{frozenset}.
> -\item There is no equivalent to \class{BaseSet}.  Instead, use
> -      \code{isinstance(x, (set, frozenset))}.
> -\item The hash algorithm for the built-ins performs significantly better
> -      (fewer collisions) for most datasets.
> -\item The built-in versions have more space efficient pickles.
> -\item The built-in versions do not have a \method{union_update()} method.
> -      Instead, use the \method{update()} method which is equivalent.
> -\item The built-in versions do not have a \method{_repr(sorted=True)} method.
> -      Instead, use the built-in \function{repr()} and \function{sorted()}
> -      functions:  \code{repr(sorted(s))}.
> -\item The built-in version does not have a protocol for automatic conversion
> -      to immutable.  Many found this feature to be confusing and no one
> -      in the community reported having found real uses for it.
> -\end{itemize}
>
> Modified: python/branches/p3yk/Doc/lib/libstdtypes.tex
> ==============================================================================
> --- python/branches/p3yk/Doc/lib/libstdtypes.tex        (original)
> +++ python/branches/p3yk/Doc/lib/libstdtypes.tex        Wed Jan 10 02:28:32 2007
> @@ -1334,16 +1334,6 @@
>  \method{intersection_update()}, \method{difference_update()}, and
>  \method{symmetric_difference_update()} methods will accept any iterable
>  as an argument.
> -
> -The design of the set types was based on lessons learned from the
> -\module{sets} module.
> -
> -\begin{seealso}
> -  \seelink{comparison-to-builtin-set.html}
> -          {Comparison to the built-in set types}
> -          {Differences between the \module{sets} module and the
> -           built-in set types.}
> -\end{seealso}
>
>
>  \section{Mapping Types --- \class{dict} \label{typesmapping}}
>
> Modified: python/branches/p3yk/Lib/msilib/__init__.py
> ==============================================================================
> --- python/branches/p3yk/Lib/msilib/__init__.py (original)
> +++ python/branches/p3yk/Lib/msilib/__init__.py Wed Jan 10 02:28:32 2007
> @@ -2,7 +2,7 @@
>  # Copyright (C) 2005 Martin v. L�wis
>  # Licensed to PSF under a Contributor Agreement.
>  from _msi import *
> -import sets, os, string, re
> +import os, string, re
>
>  Win64=0
>
> @@ -184,7 +184,7 @@
>      def __init__(self, name):
>          self.name = name
>          self.files = []
> -        self.filenames = sets.Set()
> +        self.filenames = set()
>          self.index = 0
>
>      def gen_id(self, file):
> @@ -215,7 +215,7 @@
>          os.unlink(filename)
>          db.Commit()
>
> -_directories = sets.Set()
> +_directories = set()
>  class Directory:
>      def __init__(self, db, cab, basedir, physical, _logical, default, componentflags=None):
>          """Create a new directory in the Directory table. There is a current component
> @@ -239,8 +239,8 @@
>          self.physical = physical
>          self.logical = logical
>          self.component = None
> -        self.short_names = sets.Set()
> -        self.ids = sets.Set()
> +        self.short_names = set()
> +        self.ids = set()
>          self.keyfiles = {}
>          self.componentflags = componentflags
>          if basedir:
>
> Deleted: /python/branches/p3yk/Lib/sets.py
> ==============================================================================
> --- /python/branches/p3yk/Lib/sets.py   Wed Jan 10 02:28:32 2007
> +++ (empty file)
> @@ -1,577 +0,0 @@
> -"""Classes to represent arbitrary sets (including sets of sets).
> -
> -This module implements sets using dictionaries whose values are
> -ignored.  The usual operations (union, intersection, deletion, etc.)
> -are provided as both methods and operators.
> -
> -Important: sets are not sequences!  While they support 'x in s',
> -'len(s)', and 'for x in s', none of those operations are unique for
> -sequences; for example, mappings support all three as well.  The
> -characteristic operation for sequences is subscripting with small
> -integers: s[i], for i in range(len(s)).  Sets don't support
> -subscripting at all.  Also, sequences allow multiple occurrences and
> -their elements have a definite order; sets on the other hand don't
> -record multiple occurrences and don't remember the order of element
> -insertion (which is why they don't support s[i]).
> -
> -The following classes are provided:
> -
> -BaseSet -- All the operations common to both mutable and immutable
> -    sets. This is an abstract class, not meant to be directly
> -    instantiated.
> -
> -Set -- Mutable sets, subclass of BaseSet; not hashable.
> -
> -ImmutableSet -- Immutable sets, subclass of BaseSet; hashable.
> -    An iterable argument is mandatory to create an ImmutableSet.
> -
> -_TemporarilyImmutableSet -- A wrapper around a Set, hashable,
> -    giving the same hash value as the immutable set equivalent
> -    would have.  Do not use this class directly.
> -
> -Only hashable objects can be added to a Set. In particular, you cannot
> -really add a Set as an element to another Set; if you try, what is
> -actually added is an ImmutableSet built from it (it compares equal to
> -the one you tried adding).
> -
> -When you ask if `x in y' where x is a Set and y is a Set or
> -ImmutableSet, x is wrapped into a _TemporarilyImmutableSet z, and
> -what's tested is actually `z in y'.
> -
> -"""
> -
> -# Code history:
> -#
> -# - Greg V. Wilson wrote the first version, using a different approach
> -#   to the mutable/immutable problem, and inheriting from dict.
> -#
> -# - Alex Martelli modified Greg's version to implement the current
> -#   Set/ImmutableSet approach, and make the data an attribute.
> -#
> -# - Guido van Rossum rewrote much of the code, made some API changes,
> -#   and cleaned up the docstrings.
> -#
> -# - Raymond Hettinger added a number of speedups and other
> -#   improvements.
> -
> -from __future__ import generators
> -try:
> -    from itertools import ifilter, ifilterfalse
> -except ImportError:
> -    # Code to make the module run under Py2.2
> -    def ifilter(predicate, iterable):
> -        if predicate is None:
> -            def predicate(x):
> -                return x
> -        for x in iterable:
> -            if predicate(x):
> -                yield x
> -    def ifilterfalse(predicate, iterable):
> -        if predicate is None:
> -            def predicate(x):
> -                return x
> -        for x in iterable:
> -            if not predicate(x):
> -                yield x
> -    try:
> -        True, False
> -    except NameError:
> -        True, False = (0==0, 0!=0)
> -
> -__all__ = ['BaseSet', 'Set', 'ImmutableSet']
> -
> -class BaseSet(object):
> -    """Common base class for mutable and immutable sets."""
> -
> -    __slots__ = ['_data']
> -
> -    # Constructor
> -
> -    def __init__(self):
> -        """This is an abstract class."""
> -        # Don't call this from a concrete subclass!
> -        if self.__class__ is BaseSet:
> -            raise TypeError, ("BaseSet is an abstract class.  "
> -                              "Use Set or ImmutableSet.")
> -
> -    # Standard protocols: __len__, __repr__, __str__, __iter__
> -
> -    def __len__(self):
> -        """Return the number of elements of a set."""
> -        return len(self._data)
> -
> -    def __repr__(self):
> -        """Return string representation of a set.
> -
> -        This looks like 'Set([<list of elements>])'.
> -        """
> -        return self._repr()
> -
> -    # __str__ is the same as __repr__
> -    __str__ = __repr__
> -
> -    def _repr(self, sorted=False):
> -        elements = self._data.keys()
> -        if sorted:
> -            elements.sort()
> -        return '%s(%r)' % (self.__class__.__name__, elements)
> -
> -    def __iter__(self):
> -        """Return an iterator over the elements or a set.
> -
> -        This is the keys iterator for the underlying dict.
> -        """
> -        return self._data.iterkeys()
> -
> -    # Three-way comparison is not supported.  However, because __eq__ is
> -    # tried before __cmp__, if Set x == Set y, x.__eq__(y) returns True and
> -    # then cmp(x, y) returns 0 (Python doesn't actually call __cmp__ in this
> -    # case).
> -
> -    def __cmp__(self, other):
> -        raise TypeError, "can't compare sets using cmp()"
> -
> -    # Equality comparisons using the underlying dicts.  Mixed-type comparisons
> -    # are allowed here, where Set == z for non-Set z always returns False,
> -    # and Set != z always True.  This allows expressions like "x in y" to
> -    # give the expected result when y is a sequence of mixed types, not
> -    # raising a pointless TypeError just because y contains a Set, or x is
> -    # a Set and y contain's a non-set ("in" invokes only __eq__).
> -    # Subtle:  it would be nicer if __eq__ and __ne__ could return
> -    # NotImplemented instead of True or False.  Then the other comparand
> -    # would get a chance to determine the result, and if the other comparand
> -    # also returned NotImplemented then it would fall back to object address
> -    # comparison (which would always return False for __eq__ and always
> -    # True for __ne__).  However, that doesn't work, because this type
> -    # *also* implements __cmp__:  if, e.g., __eq__ returns NotImplemented,
> -    # Python tries __cmp__ next, and the __cmp__ here then raises TypeError.
> -
> -    def __eq__(self, other):
> -        if isinstance(other, BaseSet):
> -            return self._data == other._data
> -        else:
> -            return False
> -
> -    def __ne__(self, other):
> -        if isinstance(other, BaseSet):
> -            return self._data != other._data
> -        else:
> -            return True
> -
> -    # Copying operations
> -
> -    def copy(self):
> -        """Return a shallow copy of a set."""
> -        result = self.__class__()
> -        result._data.update(self._data)
> -        return result
> -
> -    __copy__ = copy # For the copy module
> -
> -    def __deepcopy__(self, memo):
> -        """Return a deep copy of a set; used by copy module."""
> -        # This pre-creates the result and inserts it in the memo
> -        # early, in case the deep copy recurses into another reference
> -        # to this same set.  A set can't be an element of itself, but
> -        # it can certainly contain an object that has a reference to
> -        # itself.
> -        from copy import deepcopy
> -        result = self.__class__()
> -        memo[id(self)] = result
> -        data = result._data
> -        value = True
> -        for elt in self:
> -            data[deepcopy(elt, memo)] = value
> -        return result
> -
> -    # Standard set operations: union, intersection, both differences.
> -    # Each has an operator version (e.g. __or__, invoked with |) and a
> -    # method version (e.g. union).
> -    # Subtle:  Each pair requires distinct code so that the outcome is
> -    # correct when the type of other isn't suitable.  For example, if
> -    # we did "union = __or__" instead, then Set().union(3) would return
> -    # NotImplemented instead of raising TypeError (albeit that *why* it
> -    # raises TypeError as-is is also a bit subtle).
> -
> -    def __or__(self, other):
> -        """Return the union of two sets as a new set.
> -
> -        (I.e. all elements that are in either set.)
> -        """
> -        if not isinstance(other, BaseSet):
> -            return NotImplemented
> -        return self.union(other)
> -
> -    def union(self, other):
> -        """Return the union of two sets as a new set.
> -
> -        (I.e. all elements that are in either set.)
> -        """
> -        result = self.__class__(self)
> -        result._update(other)
> -        return result
> -
> -    def __and__(self, other):
> -        """Return the intersection of two sets as a new set.
> -
> -        (I.e. all elements that are in both sets.)
> -        """
> -        if not isinstance(other, BaseSet):
> -            return NotImplemented
> -        return self.intersection(other)
> -
> -    def intersection(self, other):
> -        """Return the intersection of two sets as a new set.
> -
> -        (I.e. all elements that are in both sets.)
> -        """
> -        if not isinstance(other, BaseSet):
> -            other = Set(other)
> -        if len(self) <= len(other):
> -            little, big = self, other
> -        else:
> -            little, big = other, self
> -        common = ifilter(big._data.__contains__, little)
> -        return self.__class__(common)
> -
> -    def __xor__(self, other):
> -        """Return the symmetric difference of two sets as a new set.
> -
> -        (I.e. all elements that are in exactly one of the sets.)
> -        """
> -        if not isinstance(other, BaseSet):
> -            return NotImplemented
> -        return self.symmetric_difference(other)
> -
> -    def symmetric_difference(self, other):
> -        """Return the symmetric difference of two sets as a new set.
> -
> -        (I.e. all elements that are in exactly one of the sets.)
> -        """
> -        result = self.__class__()
> -        data = result._data
> -        value = True
> -        selfdata = self._data
> -        try:
> -            otherdata = other._data
> -        except AttributeError:
> -            otherdata = Set(other)._data
> -        for elt in ifilterfalse(otherdata.__contains__, selfdata):
> -            data[elt] = value
> -        for elt in ifilterfalse(selfdata.__contains__, otherdata):
> -            data[elt] = value
> -        return result
> -
> -    def  __sub__(self, other):
> -        """Return the difference of two sets as a new Set.
> -
> -        (I.e. all elements that are in this set and not in the other.)
> -        """
> -        if not isinstance(other, BaseSet):
> -            return NotImplemented
> -        return self.difference(other)
> -
> -    def difference(self, other):
> -        """Return the difference of two sets as a new Set.
> -
> -        (I.e. all elements that are in this set and not in the other.)
> -        """
> -        result = self.__class__()
> -        data = result._data
> -        try:
> -            otherdata = other._data
> -        except AttributeError:
> -            otherdata = Set(other)._data
> -        value = True
> -        for elt in ifilterfalse(otherdata.__contains__, self):
> -            data[elt] = value
> -        return result
> -
> -    # Membership test
> -
> -    def __contains__(self, element):
> -        """Report whether an element is a member of a set.
> -
> -        (Called in response to the expression `element in self'.)
> -        """
> -        try:
> -            return element in self._data
> -        except TypeError:
> -            transform = getattr(element, "__as_temporarily_immutable__", None)
> -            if transform is None:
> -                raise # re-raise the TypeError exception we caught
> -            return transform() in self._data
> -
> -    # Subset and superset test
> -
> -    def issubset(self, other):
> -        """Report whether another set contains this set."""
> -        self._binary_sanity_check(other)
> -        if len(self) > len(other):  # Fast check for obvious cases
> -            return False
> -        for elt in ifilterfalse(other._data.__contains__, self):
> -            return False
> -        return True
> -
> -    def issuperset(self, other):
> -        """Report whether this set contains another set."""
> -        self._binary_sanity_check(other)
> -        if len(self) < len(other):  # Fast check for obvious cases
> -            return False
> -        for elt in ifilterfalse(self._data.__contains__, other):
> -            return False
> -        return True
> -
> -    # Inequality comparisons using the is-subset relation.
> -    __le__ = issubset
> -    __ge__ = issuperset
> -
> -    def __lt__(self, other):
> -        self._binary_sanity_check(other)
> -        return len(self) < len(other) and self.issubset(other)
> -
> -    def __gt__(self, other):
> -        self._binary_sanity_check(other)
> -        return len(self) > len(other) and self.issuperset(other)
> -
> -    # Assorted helpers
> -
> -    def _binary_sanity_check(self, other):
> -        # Check that the other argument to a binary operation is also
> -        # a set, raising a TypeError otherwise.
> -        if not isinstance(other, BaseSet):
> -            raise TypeError, "Binary operation only permitted between sets"
> -
> -    def _compute_hash(self):
> -        # Calculate hash code for a set by xor'ing the hash codes of
> -        # the elements.  This ensures that the hash code does not depend
> -        # on the order in which elements are added to the set.  This is
> -        # not called __hash__ because a BaseSet should not be hashable;
> -        # only an ImmutableSet is hashable.
> -        result = 0
> -        for elt in self:
> -            result ^= hash(elt)
> -        return result
> -
> -    def _update(self, iterable):
> -        # The main loop for update() and the subclass __init__() methods.
> -        data = self._data
> -
> -        # Use the fast update() method when a dictionary is available.
> -        if isinstance(iterable, BaseSet):
> -            data.update(iterable._data)
> -            return
> -
> -        value = True
> -
> -        if type(iterable) in (list, tuple, xrange):
> -            # Optimized: we know that __iter__() and next() can't
> -            # raise TypeError, so we can move 'try:' out of the loop.
> -            it = iter(iterable)
> -            while True:
> -                try:
> -                    for element in it:
> -                        data[element] = value
> -                    return
> -                except TypeError:
> -                    transform = getattr(element, "__as_immutable__", None)
> -                    if transform is None:
> -                        raise # re-raise the TypeError exception we caught
> -                    data[transform()] = value
> -        else:
> -            # Safe: only catch TypeError where intended
> -            for element in iterable:
> -                try:
> -                    data[element] = value
> -                except TypeError:
> -                    transform = getattr(element, "__as_immutable__", None)
> -                    if transform is None:
> -                        raise # re-raise the TypeError exception we caught
> -                    data[transform()] = value
> -
> -
> -class ImmutableSet(BaseSet):
> -    """Immutable set class."""
> -
> -    __slots__ = ['_hashcode']
> -
> -    # BaseSet + hashing
> -
> -    def __init__(self, iterable=None):
> -        """Construct an immutable set from an optional iterable."""
> -        self._hashcode = None
> -        self._data = {}
> -        if iterable is not None:
> -            self._update(iterable)
> -
> -    def __hash__(self):
> -        if self._hashcode is None:
> -            self._hashcode = self._compute_hash()
> -        return self._hashcode
> -
> -    def __getstate__(self):
> -        return self._data, self._hashcode
> -
> -    def __setstate__(self, state):
> -        self._data, self._hashcode = state
> -
> -class Set(BaseSet):
> -    """ Mutable set class."""
> -
> -    __slots__ = []
> -
> -    # BaseSet + operations requiring mutability; no hashing
> -
> -    def __init__(self, iterable=None):
> -        """Construct a set from an optional iterable."""
> -        self._data = {}
> -        if iterable is not None:
> -            self._update(iterable)
> -
> -    def __getstate__(self):
> -        # getstate's results are ignored if it is not
> -        return self._data,
> -
> -    def __setstate__(self, data):
> -        self._data, = data
> -
> -    def __hash__(self):
> -        """A Set cannot be hashed."""
> -        # We inherit object.__hash__, so we must deny this explicitly
> -        raise TypeError, "Can't hash a Set, only an ImmutableSet."
> -
> -    # In-place union, intersection, differences.
> -    # Subtle:  The xyz_update() functions deliberately return None,
> -    # as do all mutating operations on built-in container types.
> -    # The __xyz__ spellings have to return self, though.
> -
> -    def __ior__(self, other):
> -        """Update a set with the union of itself and another."""
> -        self._binary_sanity_check(other)
> -        self._data.update(other._data)
> -        return self
> -
> -    def union_update(self, other):
> -        """Update a set with the union of itself and another."""
> -        self._update(other)
> -
> -    def __iand__(self, other):
> -        """Update a set with the intersection of itself and another."""
> -        self._binary_sanity_check(other)
> -        self._data = (self & other)._data
> -        return self
> -
> -    def intersection_update(self, other):
> -        """Update a set with the intersection of itself and another."""
> -        if isinstance(other, BaseSet):
> -            self &= other
> -        else:
> -            self._data = (self.intersection(other))._data
> -
> -    def __ixor__(self, other):
> -        """Update a set with the symmetric difference of itself and another."""
> -        self._binary_sanity_check(other)
> -        self.symmetric_difference_update(other)
> -        return self
> -
> -    def symmetric_difference_update(self, other):
> -        """Update a set with the symmetric difference of itself and another."""
> -        data = self._data
> -        value = True
> -        if not isinstance(other, BaseSet):
> -            other = Set(other)
> -        if self is other:
> -            self.clear()
> -        for elt in other:
> -            if elt in data:
> -                del data[elt]
> -            else:
> -                data[elt] = value
> -
> -    def __isub__(self, other):
> -        """Remove all elements of another set from this set."""
> -        self._binary_sanity_check(other)
> -        self.difference_update(other)
> -        return self
> -
> -    def difference_update(self, other):
> -        """Remove all elements of another set from this set."""
> -        data = self._data
> -        if not isinstance(other, BaseSet):
> -            other = Set(other)
> -        if self is other:
> -            self.clear()
> -        for elt in ifilter(data.__contains__, other):
> -            del data[elt]
> -
> -    # Python dict-like mass mutations: update, clear
> -
> -    def update(self, iterable):
> -        """Add all values from an iterable (such as a list or file)."""
> -        self._update(iterable)
> -
> -    def clear(self):
> -        """Remove all elements from this set."""
> -        self._data.clear()
> -
> -    # Single-element mutations: add, remove, discard
> -
> -    def add(self, element):
> -        """Add an element to a set.
> -
> -        This has no effect if the element is already present.
> -        """
> -        try:
> -            self._data[element] = True
> -        except TypeError:
> -            transform = getattr(element, "__as_immutable__", None)
> -            if transform is None:
> -                raise # re-raise the TypeError exception we caught
> -            self._data[transform()] = True
> -
> -    def remove(self, element):
> -        """Remove an element from a set; it must be a member.
> -
> -        If the element is not a member, raise a KeyError.
> -        """
> -        try:
> -            del self._data[element]
> -        except TypeError:
> -            transform = getattr(element, "__as_temporarily_immutable__", None)
> -            if transform is None:
> -                raise # re-raise the TypeError exception we caught
> -            del self._data[transform()]
> -
> -    def discard(self, element):
> -        """Remove an element from a set if it is a member.
> -
> -        If the element is not a member, do nothing.
> -        """
> -        try:
> -            self.remove(element)
> -        except KeyError:
> -            pass
> -
> -    def pop(self):
> -        """Remove and return an arbitrary set element."""
> -        return self._data.popitem()[0]
> -
> -    def __as_immutable__(self):
> -        # Return a copy of self as an immutable set
> -        return ImmutableSet(self)
> -
> -    def __as_temporarily_immutable__(self):
> -        # Return self wrapped in a temporarily immutable set
> -        return _TemporarilyImmutableSet(self)
> -
> -
> -class _TemporarilyImmutableSet(BaseSet):
> -    # Wrap a mutable set as if it was temporarily immutable.
> -    # This only supplies hashing and equality comparisons.
> -
> -    def __init__(self, set):
> -        self._set = set
> -        self._data = set._data  # Needed by ImmutableSet.__eq__()
> -
> -    def __hash__(self):
> -        return self._set._compute_hash()
>
> Modified: python/branches/p3yk/Lib/test/test_cookielib.py
> ==============================================================================
> --- python/branches/p3yk/Lib/test/test_cookielib.py     (original)
> +++ python/branches/p3yk/Lib/test/test_cookielib.py     Wed Jan 10 02:28:32 2007
> @@ -1723,7 +1723,6 @@
>
>
>  def test_main(verbose=None):
> -    from test import test_sets
>      test_support.run_unittest(
>          DateTimeTests,
>          HeaderTests,
>
> Modified: python/branches/p3yk/Lib/test/test_set.py
> ==============================================================================
> --- python/branches/p3yk/Lib/test/test_set.py   (original)
> +++ python/branches/p3yk/Lib/test/test_set.py   Wed Jan 10 02:28:32 2007
> @@ -1451,7 +1451,6 @@
>  #==============================================================================
>
>  def test_main(verbose=None):
> -    from test import test_sets
>      test_classes = (
>          TestSet,
>          TestSetSubclass,
>
> Deleted: /python/branches/p3yk/Lib/test/test_sets.py
> ==============================================================================
> --- /python/branches/p3yk/Lib/test/test_sets.py Wed Jan 10 02:28:32 2007
> +++ (empty file)
> @@ -1,853 +0,0 @@
> -#!/usr/bin/env python
> -
> -import unittest, operator, copy, pickle, random
> -from sets import Set, ImmutableSet
> -from test import test_support
> -
> -empty_set = Set()
> -
> -#==============================================================================
> -
> -class TestBasicOps(unittest.TestCase):
> -
> -    def test_repr(self):
> -        if self.repr is not None:
> -            self.assertEqual(repr(self.set), self.repr)
> -
> -    def test_length(self):
> -        self.assertEqual(len(self.set), self.length)
> -
> -    def test_self_equality(self):
> -        self.assertEqual(self.set, self.set)
> -
> -    def test_equivalent_equality(self):
> -        self.assertEqual(self.set, self.dup)
> -
> -    def test_copy(self):
> -        self.assertEqual(self.set.copy(), self.dup)
> -
> -    def test_self_union(self):
> -        result = self.set | self.set
> -        self.assertEqual(result, self.dup)
> -
> -    def test_empty_union(self):
> -        result = self.set | empty_set
> -        self.assertEqual(result, self.dup)
> -
> -    def test_union_empty(self):
> -        result = empty_set | self.set
> -        self.assertEqual(result, self.dup)
> -
> -    def test_self_intersection(self):
> -        result = self.set & self.set
> -        self.assertEqual(result, self.dup)
> -
> -    def test_empty_intersection(self):
> -        result = self.set & empty_set
> -        self.assertEqual(result, empty_set)
> -
> -    def test_intersection_empty(self):
> -        result = empty_set & self.set
> -        self.assertEqual(result, empty_set)
> -
> -    def test_self_symmetric_difference(self):
> -        result = self.set ^ self.set
> -        self.assertEqual(result, empty_set)
> -
> -    def checkempty_symmetric_difference(self):
> -        result = self.set ^ empty_set
> -        self.assertEqual(result, self.set)
> -
> -    def test_self_difference(self):
> -        result = self.set - self.set
> -        self.assertEqual(result, empty_set)
> -
> -    def test_empty_difference(self):
> -        result = self.set - empty_set
> -        self.assertEqual(result, self.dup)
> -
> -    def test_empty_difference_rev(self):
> -        result = empty_set - self.set
> -        self.assertEqual(result, empty_set)
> -
> -    def test_iteration(self):
> -        for v in self.set:
> -            self.assert_(v in self.values)
> -
> -    def test_pickling(self):
> -        p = pickle.dumps(self.set)
> -        copy = pickle.loads(p)
> -        self.assertEqual(self.set, copy,
> -                         "%s != %s" % (self.set, copy))
> -
> -#------------------------------------------------------------------------------
> -
> -class TestBasicOpsEmpty(TestBasicOps):
> -    def setUp(self):
> -        self.case   = "empty set"
> -        self.values = []
> -        self.set    = Set(self.values)
> -        self.dup    = Set(self.values)
> -        self.length = 0
> -        self.repr   = "Set([])"
> -
> -#------------------------------------------------------------------------------
> -
> -class TestBasicOpsSingleton(TestBasicOps):
> -    def setUp(self):
> -        self.case   = "unit set (number)"
> -        self.values = [3]
> -        self.set    = Set(self.values)
> -        self.dup    = Set(self.values)
> -        self.length = 1
> -        self.repr   = "Set([3])"
> -
> -    def test_in(self):
> -        self.failUnless(3 in self.set)
> -
> -    def test_not_in(self):
> -        self.failUnless(2 not in self.set)
> -
> -#------------------------------------------------------------------------------
> -
> -class TestBasicOpsTuple(TestBasicOps):
> -    def setUp(self):
> -        self.case   = "unit set (tuple)"
> -        self.values = [(0, "zero")]
> -        self.set    = Set(self.values)
> -        self.dup    = Set(self.values)
> -        self.length = 1
> -        self.repr   = "Set([(0, 'zero')])"
> -
> -    def test_in(self):
> -        self.failUnless((0, "zero") in self.set)
> -
> -    def test_not_in(self):
> -        self.failUnless(9 not in self.set)
> -
> -#------------------------------------------------------------------------------
> -
> -class TestBasicOpsTriple(TestBasicOps):
> -    def setUp(self):
> -        self.case   = "triple set"
> -        self.values = [0, "zero", operator.add]
> -        self.set    = Set(self.values)
> -        self.dup    = Set(self.values)
> -        self.length = 3
> -        self.repr   = None
> -
> -#==============================================================================
> -
> -def baditer():
> -    raise TypeError
> -    yield True
> -
> -def gooditer():
> -    yield True
> -
> -class TestExceptionPropagation(unittest.TestCase):
> -    """SF 628246:  Set constructor should not trap iterator TypeErrors"""
> -
> -    def test_instanceWithException(self):
> -        self.assertRaises(TypeError, Set, baditer())
> -
> -    def test_instancesWithoutException(self):
> -        # All of these iterables should load without exception.
> -        Set([1,2,3])
> -        Set((1,2,3))
> -        Set({'one':1, 'two':2, 'three':3})
> -        Set(xrange(3))
> -        Set('abc')
> -        Set(gooditer())
> -
> -#==============================================================================
> -
> -class TestSetOfSets(unittest.TestCase):
> -    def test_constructor(self):
> -        inner = Set([1])
> -        outer = Set([inner])
> -        element = outer.pop()
> -        self.assertEqual(type(element), ImmutableSet)
> -        outer.add(inner)        # Rebuild set of sets with .add method
> -        outer.remove(inner)
> -        self.assertEqual(outer, Set())   # Verify that remove worked
> -        outer.discard(inner)    # Absence of KeyError indicates working fine
> -
> -#==============================================================================
> -
> -class TestBinaryOps(unittest.TestCase):
> -    def setUp(self):
> -        self.set = Set((2, 4, 6))
> -
> -    def test_eq(self):              # SF bug 643115
> -        self.assertEqual(self.set, Set({2:1,4:3,6:5}))
> -
> -    def test_union_subset(self):
> -        result = self.set | Set([2])
> -        self.assertEqual(result, Set((2, 4, 6)))
> -
> -    def test_union_superset(self):
> -        result = self.set | Set([2, 4, 6, 8])
> -        self.assertEqual(result, Set([2, 4, 6, 8]))
> -
> -    def test_union_overlap(self):
> -        result = self.set | Set([3, 4, 5])
> -        self.assertEqual(result, Set([2, 3, 4, 5, 6]))
> -
> -    def test_union_non_overlap(self):
> -        result = self.set | Set([8])
> -        self.assertEqual(result, Set([2, 4, 6, 8]))
> -
> -    def test_intersection_subset(self):
> -        result = self.set & Set((2, 4))
> -        self.assertEqual(result, Set((2, 4)))
> -
> -    def test_intersection_superset(self):
> -        result = self.set & Set([2, 4, 6, 8])
> -        self.assertEqual(result, Set([2, 4, 6]))
> -
> -    def test_intersection_overlap(self):
> -        result = self.set & Set([3, 4, 5])
> -        self.assertEqual(result, Set([4]))
> -
> -    def test_intersection_non_overlap(self):
> -        result = self.set & Set([8])
> -        self.assertEqual(result, empty_set)
> -
> -    def test_sym_difference_subset(self):
> -        result = self.set ^ Set((2, 4))
> -        self.assertEqual(result, Set([6]))
> -
> -    def test_sym_difference_superset(self):
> -        result = self.set ^ Set((2, 4, 6, 8))
> -        self.assertEqual(result, Set([8]))
> -
> -    def test_sym_difference_overlap(self):
> -        result = self.set ^ Set((3, 4, 5))
> -        self.assertEqual(result, Set([2, 3, 5, 6]))
> -
> -    def test_sym_difference_non_overlap(self):
> -        result = self.set ^ Set([8])
> -        self.assertEqual(result, Set([2, 4, 6, 8]))
> -
> -    def test_cmp(self):
> -        a, b = Set('a'), Set('b')
> -        self.assertRaises(TypeError, cmp, a, b)
> -
> -        # In py3k, this works!
> -        self.assertRaises(TypeError, cmp, a, a)
> -
> -        self.assertRaises(TypeError, cmp, a, 12)
> -        self.assertRaises(TypeError, cmp, "abc", a)
> -
> -    def test_inplace_on_self(self):
> -        t = self.set.copy()
> -        t |= t
> -        self.assertEqual(t, self.set)
> -        t &= t
> -        self.assertEqual(t, self.set)
> -        t -= t
> -        self.assertEqual(len(t), 0)
> -        t = self.set.copy()
> -        t ^= t
> -        self.assertEqual(len(t), 0)
> -
> -
> -#==============================================================================
> -
> -class TestUpdateOps(unittest.TestCase):
> -    def setUp(self):
> -        self.set = Set((2, 4, 6))
> -
> -    def test_union_subset(self):
> -        self.set |= Set([2])
> -        self.assertEqual(self.set, Set((2, 4, 6)))
> -
> -    def test_union_superset(self):
> -        self.set |= Set([2, 4, 6, 8])
> -        self.assertEqual(self.set, Set([2, 4, 6, 8]))
> -
> -    def test_union_overlap(self):
> -        self.set |= Set([3, 4, 5])
> -        self.assertEqual(self.set, Set([2, 3, 4, 5, 6]))
> -
> -    def test_union_non_overlap(self):
> -        self.set |= Set([8])
> -        self.assertEqual(self.set, Set([2, 4, 6, 8]))
> -
> -    def test_union_method_call(self):
> -        self.set.union_update(Set([3, 4, 5]))
> -        self.assertEqual(self.set, Set([2, 3, 4, 5, 6]))
> -
> -    def test_intersection_subset(self):
> -        self.set &= Set((2, 4))
> -        self.assertEqual(self.set, Set((2, 4)))
> -
> -    def test_intersection_superset(self):
> -        self.set &= Set([2, 4, 6, 8])
> -        self.assertEqual(self.set, Set([2, 4, 6]))
> -
> -    def test_intersection_overlap(self):
> -        self.set &= Set([3, 4, 5])
> -        self.assertEqual(self.set, Set([4]))
> -
> -    def test_intersection_non_overlap(self):
> -        self.set &= Set([8])
> -        self.assertEqual(self.set, empty_set)
> -
> -    def test_intersection_method_call(self):
> -        self.set.intersection_update(Set([3, 4, 5]))
> -        self.assertEqual(self.set, Set([4]))
> -
> -    def test_sym_difference_subset(self):
> -        self.set ^= Set((2, 4))
> -        self.assertEqual(self.set, Set([6]))
> -
> -    def test_sym_difference_superset(self):
> -        self.set ^= Set((2, 4, 6, 8))
> -        self.assertEqual(self.set, Set([8]))
> -
> -    def test_sym_difference_overlap(self):
> -        self.set ^= Set((3, 4, 5))
> -        self.assertEqual(self.set, Set([2, 3, 5, 6]))
> -
> -    def test_sym_difference_non_overlap(self):
> -        self.set ^= Set([8])
> -        self.assertEqual(self.set, Set([2, 4, 6, 8]))
> -
> -    def test_sym_difference_method_call(self):
> -        self.set.symmetric_difference_update(Set([3, 4, 5]))
> -        self.assertEqual(self.set, Set([2, 3, 5, 6]))
> -
> -    def test_difference_subset(self):
> -        self.set -= Set((2, 4))
> -        self.assertEqual(self.set, Set([6]))
> -
> -    def test_difference_superset(self):
> -        self.set -= Set((2, 4, 6, 8))
> -        self.assertEqual(self.set, Set([]))
> -
> -    def test_difference_overlap(self):
> -        self.set -= Set((3, 4, 5))
> -        self.assertEqual(self.set, Set([2, 6]))
> -
> -    def test_difference_non_overlap(self):
> -        self.set -= Set([8])
> -        self.assertEqual(self.set, Set([2, 4, 6]))
> -
> -    def test_difference_method_call(self):
> -        self.set.difference_update(Set([3, 4, 5]))
> -        self.assertEqual(self.set, Set([2, 6]))
> -
> -#==============================================================================
> -
> -class TestMutate(unittest.TestCase):
> -    def setUp(self):
> -        self.values = ["a", "b", "c"]
> -        self.set = Set(self.values)
> -
> -    def test_add_present(self):
> -        self.set.add("c")
> -        self.assertEqual(self.set, Set("abc"))
> -
> -    def test_add_absent(self):
> -        self.set.add("d")
> -        self.assertEqual(self.set, Set("abcd"))
> -
> -    def test_add_until_full(self):
> -        tmp = Set()
> -        expected_len = 0
> -        for v in self.values:
> -            tmp.add(v)
> -            expected_len += 1
> -            self.assertEqual(len(tmp), expected_len)
> -        self.assertEqual(tmp, self.set)
> -
> -    def test_remove_present(self):
> -        self.set.remove("b")
> -        self.assertEqual(self.set, Set("ac"))
> -
> -    def test_remove_absent(self):
> -        try:
> -            self.set.remove("d")
> -            self.fail("Removing missing element should have raised LookupError")
> -        except LookupError:
> -            pass
> -
> -    def test_remove_until_empty(self):
> -        expected_len = len(self.set)
> -        for v in self.values:
> -            self.set.remove(v)
> -            expected_len -= 1
> -            self.assertEqual(len(self.set), expected_len)
> -
> -    def test_discard_present(self):
> -        self.set.discard("c")
> -        self.assertEqual(self.set, Set("ab"))
> -
> -    def test_discard_absent(self):
> -        self.set.discard("d")
> -        self.assertEqual(self.set, Set("abc"))
> -
> -    def test_clear(self):
> -        self.set.clear()
> -        self.assertEqual(len(self.set), 0)
> -
> -    def test_pop(self):
> -        popped = {}
> -        while self.set:
> -            popped[self.set.pop()] = None
> -        self.assertEqual(len(popped), len(self.values))
> -        for v in self.values:
> -            self.failUnless(v in popped)
> -
> -    def test_update_empty_tuple(self):
> -        self.set.union_update(())
> -        self.assertEqual(self.set, Set(self.values))
> -
> -    def test_update_unit_tuple_overlap(self):
> -        self.set.union_update(("a",))
> -        self.assertEqual(self.set, Set(self.values))
> -
> -    def test_update_unit_tuple_non_overlap(self):
> -        self.set.union_update(("a", "z"))
> -        self.assertEqual(self.set, Set(self.values + ["z"]))
> -
> -#==============================================================================
> -
> -class TestSubsets(unittest.TestCase):
> -
> -    case2method = {"<=": "issubset",
> -                   ">=": "issuperset",
> -                  }
> -
> -    reverse = {"==": "==",
> -               "!=": "!=",
> -               "<":  ">",
> -               ">":  "<",
> -               "<=": ">=",
> -               ">=": "<=",
> -              }
> -
> -    def test_issubset(self):
> -        x = self.left
> -        y = self.right
> -        for case in "!=", "==", "<", "<=", ">", ">=":
> -            expected = case in self.cases
> -            # Test the binary infix spelling.
> -            result = eval("x" + case + "y", locals())
> -            self.assertEqual(result, expected)
> -            # Test the "friendly" method-name spelling, if one exists.
> -            if case in TestSubsets.case2method:
> -                method = getattr(x, TestSubsets.case2method[case])
> -                result = method(y)
> -                self.assertEqual(result, expected)
> -
> -            # Now do the same for the operands reversed.
> -            rcase = TestSubsets.reverse[case]
> -            result = eval("y" + rcase + "x", locals())
> -            self.assertEqual(result, expected)
> -            if rcase in TestSubsets.case2method:
> -                method = getattr(y, TestSubsets.case2method[rcase])
> -                result = method(x)
> -                self.assertEqual(result, expected)
> -#------------------------------------------------------------------------------
> -
> -class TestSubsetEqualEmpty(TestSubsets):
> -    left  = Set()
> -    right = Set()
> -    name  = "both empty"
> -    cases = "==", "<=", ">="
> -
> -#------------------------------------------------------------------------------
> -
> -class TestSubsetEqualNonEmpty(TestSubsets):
> -    left  = Set([1, 2])
> -    right = Set([1, 2])
> -    name  = "equal pair"
> -    cases = "==", "<=", ">="
> -
> -#------------------------------------------------------------------------------
> -
> -class TestSubsetEmptyNonEmpty(TestSubsets):
> -    left  = Set()
> -    right = Set([1, 2])
> -    name  = "one empty, one non-empty"
> -    cases = "!=", "<", "<="
> -
> -#------------------------------------------------------------------------------
> -
> -class TestSubsetPartial(TestSubsets):
> -    left  = Set([1])
> -    right = Set([1, 2])
> -    name  = "one a non-empty proper subset of other"
> -    cases = "!=", "<", "<="
> -
> -#------------------------------------------------------------------------------
> -
> -class TestSubsetNonOverlap(TestSubsets):
> -    left  = Set([1])
> -    right = Set([2])
> -    name  = "neither empty, neither contains"
> -    cases = "!="
> -
> -#==============================================================================
> -
> -class TestOnlySetsInBinaryOps(unittest.TestCase):
> -
> -    def test_eq_ne(self):
> -        # Unlike the others, this is testing that == and != *are* allowed.
> -        self.assertEqual(self.other == self.set, False)
> -        self.assertEqual(self.set == self.other, False)
> -        self.assertEqual(self.other != self.set, True)
> -        self.assertEqual(self.set != self.other, True)
> -
> -    def test_ge_gt_le_lt(self):
> -        self.assertRaises(TypeError, lambda: self.set < self.other)
> -        self.assertRaises(TypeError, lambda: self.set <= self.other)
> -        self.assertRaises(TypeError, lambda: self.set > self.other)
> -        self.assertRaises(TypeError, lambda: self.set >= self.other)
> -
> -        self.assertRaises(TypeError, lambda: self.other < self.set)
> -        self.assertRaises(TypeError, lambda: self.other <= self.set)
> -        self.assertRaises(TypeError, lambda: self.other > self.set)
> -        self.assertRaises(TypeError, lambda: self.other >= self.set)
> -
> -    def test_union_update_operator(self):
> -        try:
> -            self.set |= self.other
> -        except TypeError:
> -            pass
> -        else:
> -            self.fail("expected TypeError")
> -
> -    def test_union_update(self):
> -        if self.otherIsIterable:
> -            self.set.union_update(self.other)
> -        else:
> -            self.assertRaises(TypeError, self.set.union_update, self.other)
> -
> -    def test_union(self):
> -        self.assertRaises(TypeError, lambda: self.set | self.other)
> -        self.assertRaises(TypeError, lambda: self.other | self.set)
> -        if self.otherIsIterable:
> -            self.set.union(self.other)
> -        else:
> -            self.assertRaises(TypeError, self.set.union, self.other)
> -
> -    def test_intersection_update_operator(self):
> -        try:
> -            self.set &= self.other
> -        except TypeError:
> -            pass
> -        else:
> -            self.fail("expected TypeError")
> -
> -    def test_intersection_update(self):
> -        if self.otherIsIterable:
> -            self.set.intersection_update(self.other)
> -        else:
> -            self.assertRaises(TypeError,
> -                              self.set.intersection_update,
> -                              self.other)
> -
> -    def test_intersection(self):
> -        self.assertRaises(TypeError, lambda: self.set & self.other)
> -        self.assertRaises(TypeError, lambda: self.other & self.set)
> -        if self.otherIsIterable:
> -            self.set.intersection(self.other)
> -        else:
> -            self.assertRaises(TypeError, self.set.intersection, self.other)
> -
> -    def test_sym_difference_update_operator(self):
> -        try:
> -            self.set ^= self.other
> -        except TypeError:
> -            pass
> -        else:
> -            self.fail("expected TypeError")
> -
> -    def test_sym_difference_update(self):
> -        if self.otherIsIterable:
> -            self.set.symmetric_difference_update(self.other)
> -        else:
> -            self.assertRaises(TypeError,
> -                              self.set.symmetric_difference_update,
> -                              self.other)
> -
> -    def test_sym_difference(self):
> -        self.assertRaises(TypeError, lambda: self.set ^ self.other)
> -        self.assertRaises(TypeError, lambda: self.other ^ self.set)
> -        if self.otherIsIterable:
> -            self.set.symmetric_difference(self.other)
> -        else:
> -            self.assertRaises(TypeError, self.set.symmetric_difference, self.other)
> -
> -    def test_difference_update_operator(self):
> -        try:
> -            self.set -= self.other
> -        except TypeError:
> -            pass
> -        else:
> -            self.fail("expected TypeError")
> -
> -    def test_difference_update(self):
> -        if self.otherIsIterable:
> -            self.set.difference_update(self.other)
> -        else:
> -            self.assertRaises(TypeError,
> -                              self.set.difference_update,
> -                              self.other)
> -
> -    def test_difference(self):
> -        self.assertRaises(TypeError, lambda: self.set - self.other)
> -        self.assertRaises(TypeError, lambda: self.other - self.set)
> -        if self.otherIsIterable:
> -            self.set.difference(self.other)
> -        else:
> -            self.assertRaises(TypeError, self.set.difference, self.other)
> -
> -#------------------------------------------------------------------------------
> -
> -class TestOnlySetsNumeric(TestOnlySetsInBinaryOps):
> -    def setUp(self):
> -        self.set   = Set((1, 2, 3))
> -        self.other = 19
> -        self.otherIsIterable = False
> -
> -#------------------------------------------------------------------------------
> -
> -class TestOnlySetsDict(TestOnlySetsInBinaryOps):
> -    def setUp(self):
> -        self.set   = Set((1, 2, 3))
> -        self.other = {1:2, 3:4}
> -        self.otherIsIterable = True
> -
> -#------------------------------------------------------------------------------
> -
> -class TestOnlySetsOperator(TestOnlySetsInBinaryOps):
> -    def setUp(self):
> -        self.set   = Set((1, 2, 3))
> -        self.other = operator.add
> -        self.otherIsIterable = False
> -
> -#------------------------------------------------------------------------------
> -
> -class TestOnlySetsTuple(TestOnlySetsInBinaryOps):
> -    def setUp(self):
> -        self.set   = Set((1, 2, 3))
> -        self.other = (2, 4, 6)
> -        self.otherIsIterable = True
> -
> -#------------------------------------------------------------------------------
> -
> -class TestOnlySetsString(TestOnlySetsInBinaryOps):
> -    def setUp(self):
> -        self.set   = Set((1, 2, 3))
> -        self.other = 'abc'
> -        self.otherIsIterable = True
> -
> -#------------------------------------------------------------------------------
> -
> -class TestOnlySetsGenerator(TestOnlySetsInBinaryOps):
> -    def setUp(self):
> -        def gen():
> -            for i in xrange(0, 10, 2):
> -                yield i
> -        self.set   = Set((1, 2, 3))
> -        self.other = gen()
> -        self.otherIsIterable = True
> -
> -#------------------------------------------------------------------------------
> -
> -class TestOnlySetsofSets(TestOnlySetsInBinaryOps):
> -    def setUp(self):
> -        self.set   = Set((1, 2, 3))
> -        self.other = [Set('ab'), ImmutableSet('cd')]
> -        self.otherIsIterable = True
> -
> -#==============================================================================
> -
> -class TestCopying(unittest.TestCase):
> -
> -    def test_copy(self):
> -        dup = self.set.copy()
> -        dup_list = sorted(dup, key=repr)
> -        set_list = sorted(self.set, key=repr)
> -        self.assertEqual(len(dup_list), len(set_list))
> -        for i in range(len(dup_list)):
> -            self.failUnless(dup_list[i] is set_list[i])
> -
> -    def test_deep_copy(self):
> -        dup = copy.deepcopy(self.set)
> -        ##print type(dup), repr(dup)
> -        dup_list = sorted(dup, key=repr)
> -        set_list = sorted(self.set, key=repr)
> -        self.assertEqual(len(dup_list), len(set_list))
> -        for i in range(len(dup_list)):
> -            self.assertEqual(dup_list[i], set_list[i])
> -
> -#------------------------------------------------------------------------------
> -
> -class TestCopyingEmpty(TestCopying):
> -    def setUp(self):
> -        self.set = Set()
> -
> -#------------------------------------------------------------------------------
> -
> -class TestCopyingSingleton(TestCopying):
> -    def setUp(self):
> -        self.set = Set(["hello"])
> -
> -#------------------------------------------------------------------------------
> -
> -class TestCopyingTriple(TestCopying):
> -    def setUp(self):
> -        self.set = Set(["zero", 0, None])
> -
> -#------------------------------------------------------------------------------
> -
> -class TestCopyingTuple(TestCopying):
> -    def setUp(self):
> -        self.set = Set([(1, 2)])
> -
> -#------------------------------------------------------------------------------
> -
> -class TestCopyingNested(TestCopying):
> -    def setUp(self):
> -        self.set = Set([((1, 2), (3, 4))])
> -
> -#==============================================================================
> -
> -class TestIdentities(unittest.TestCase):
> -    def setUp(self):
> -        self.a = Set([random.randrange(100) for i in xrange(50)])
> -        self.b = Set([random.randrange(100) for i in xrange(50)])
> -
> -    def test_binopsVsSubsets(self):
> -        a, b = self.a, self.b
> -        self.assert_(a - b <= a)
> -        self.assert_(b - a <= b)
> -        self.assert_(a & b <= a)
> -        self.assert_(a & b <= b)
> -        self.assert_(a | b >= a)
> -        self.assert_(a | b >= b)
> -        self.assert_(a ^ b <= a | b)
> -
> -    def test_commutativity(self):
> -        a, b = self.a, self.b
> -        self.assertEqual(a&b, b&a)
> -        self.assertEqual(a|b, b|a)
> -        self.assertEqual(a^b, b^a)
> -        if a != b:
> -            self.assertNotEqual(a-b, b-a)
> -
> -    def test_reflexsive_relations(self):
> -        a, zero = self.a, Set()
> -        self.assertEqual(a ^ a, zero)
> -        self.assertEqual(a - a, zero)
> -        self.assertEqual(a | a, a)
> -        self.assertEqual(a & a, a)
> -        self.assert_(a <= a)
> -        self.assert_(a >= a)
> -        self.assert_(a == a)
> -
> -    def test_summations(self):
> -        # check that sums of parts equal the whole
> -        a, b = self.a, self.b
> -        self.assertEqual((a-b)|(a&b)|(b-a), a|b)
> -        self.assertEqual((a&b)|(a^b), a|b)
> -        self.assertEqual(a|(b-a), a|b)
> -        self.assertEqual((a-b)|b, a|b)
> -        self.assertEqual((a-b)|(a&b), a)
> -        self.assertEqual((b-a)|(a&b), b)
> -        self.assertEqual((a-b)|(b-a), a^b)
> -
> -    def test_exclusion(self):
> -        # check that inverse operations do not overlap
> -        a, b, zero = self.a, self.b, Set()
> -        self.assertEqual((a-b)&b, zero)
> -        self.assertEqual((b-a)&a, zero)
> -        self.assertEqual((a&b)&(a^b), zero)
> -
> -    def test_cardinality_relations(self):
> -        a, b = self.a, self.b
> -        self.assertEqual(len(a), len(a-b) + len(a&b))
> -        self.assertEqual(len(b), len(b-a) + len(a&b))
> -        self.assertEqual(len(a^b), len(a-b) + len(b-a))
> -        self.assertEqual(len(a|b), len(a-b) + len(a&b) + len(b-a))
> -        self.assertEqual(len(a^b) + len(a&b), len(a|b))
> -
> -#==============================================================================
> -
> -libreftest = """
> -Example from the Library Reference:  Doc/lib/libsets.tex
> -
> ->>> from sets import Set as Base  # override _repr to get sorted output
> ->>> class Set(Base):
> -...     def _repr(self):
> -...         return Base._repr(self, sorted=True)
> ->>> engineers = Set(['John', 'Jane', 'Jack', 'Janice'])
> ->>> programmers = Set(['Jack', 'Sam', 'Susan', 'Janice'])
> ->>> managers = Set(['Jane', 'Jack', 'Susan', 'Zack'])
> ->>> employees = engineers | programmers | managers           # union
> ->>> engineering_management = engineers & managers            # intersection
> ->>> fulltime_management = managers - engineers - programmers # difference
> ->>> engineers.add('Marvin')
> ->>> print engineers
> -Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin'])
> ->>> employees.issuperset(engineers)           # superset test
> -False
> ->>> employees.union_update(engineers)         # update from another set
> ->>> employees.issuperset(engineers)
> -True
> ->>> for group in [engineers, programmers, managers, employees]:
> -...     group.discard('Susan')                # unconditionally remove element
> -...     print group
> -...
> -Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin'])
> -Set(['Jack', 'Janice', 'Sam'])
> -Set(['Jack', 'Jane', 'Zack'])
> -Set(['Jack', 'Jane', 'Janice', 'John', 'Marvin', 'Sam', 'Zack'])
> -"""
> -
> -#==============================================================================
> -
> -__test__ = {'libreftest' : libreftest}
> -
> -def test_main(verbose=None):
> -    import doctest
> -    from test import test_sets
> -    test_support.run_unittest(
> -        TestSetOfSets,
> -        TestExceptionPropagation,
> -        TestBasicOpsEmpty,
> -        TestBasicOpsSingleton,
> -        TestBasicOpsTuple,
> -        TestBasicOpsTriple,
> -        TestBinaryOps,
> -        TestUpdateOps,
> -        TestMutate,
> -        TestSubsetEqualEmpty,
> -        TestSubsetEqualNonEmpty,
> -        TestSubsetEmptyNonEmpty,
> -        TestSubsetPartial,
> -        TestSubsetNonOverlap,
> -        TestOnlySetsNumeric,
> -        TestOnlySetsDict,
> -        TestOnlySetsOperator,
> -        TestOnlySetsTuple,
> -        TestOnlySetsString,
> -        TestOnlySetsGenerator,
> -        TestOnlySetsofSets,
> -        TestCopyingEmpty,
> -        TestCopyingSingleton,
> -        TestCopyingTriple,
> -        TestCopyingTuple,
> -        TestCopyingNested,
> -        TestIdentities,
> -        doctest.DocTestSuite(test_sets),
> -    )
> -
> -if __name__ == "__main__":
> -    test_main(verbose=True)
>
>
> _______________________________________________
> Python-3000-checkins mailing list
> Python-3000-checkins at python.org
> http://mail.python.org/mailman/listinfo/python-3000-checkins
>
>
>


More information about the Python-3000-checkins mailing list