[Python-checkins] r65299 - python/trunk/Modules/mathmodule.c
mark.dickinson
python-checkins at python.org
Wed Jul 30 14:01:41 CEST 2008
Author: mark.dickinson
Date: Wed Jul 30 14:01:41 2008
New Revision: 65299
Log:
Fix special-value handling for math.sum.
Also minor cleanups to the code: fix tabbing, remove
trailing whitespace, and reformat to fit into 80
columns.
Modified:
python/trunk/Modules/mathmodule.c
Modified: python/trunk/Modules/mathmodule.c
==============================================================================
--- python/trunk/Modules/mathmodule.c (original)
+++ python/trunk/Modules/mathmodule.c Wed Jul 30 14:01:41 2008
@@ -414,6 +414,7 @@
PyObject *item, *iter, *sum = NULL;
Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
double x, y, t, ps[NUM_PARTIALS], *p = ps;
+ double xsave, special_sum = 0.0, inf_sum = 0.0;
volatile double hi, yr, lo;
iter = PyObject_GetIter(seq);
@@ -438,10 +439,11 @@
if (PyErr_Occurred())
goto _sum_error;
+ xsave = x;
for (i = j = 0; j < n; j++) { /* for y in partials */
y = p[j];
if (fabs(x) < fabs(y)) {
- t = x; x = y; y = t;
+ t = x; x = y; y = t;
}
hi = x + y;
yr = hi - x;
@@ -450,54 +452,68 @@
p[i++] = lo;
x = hi;
}
-
- n = i; /* ps[i:] = [x] */
+
+ n = i; /* ps[i:] = [x] */
if (x != 0.0) {
- /* If non-finite, reset partials, effectively
- adding subsequent items without roundoff
- and yielding correct non-finite results,
- provided IEEE 754 rules are observed */
- if (! Py_IS_FINITE(x))
+ if (! Py_IS_FINITE(x)) {
+ /* a nonfinite x could arise either as
+ a result of intermediate overflow, or
+ as a result of a nan or inf in the
+ summands */
+ if (Py_IS_FINITE(xsave)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "intermediate overflow in sum");
+ goto _sum_error;
+ }
+ if (Py_IS_INFINITY(xsave))
+ inf_sum += xsave;
+ special_sum += xsave;
+ /* reset partials */
n = 0;
+ }
else if (n >= m && _sum_realloc(&p, n, ps, &m))
goto _sum_error;
- p[n++] = x;
+ else
+ p[n++] = x;
}
}
+ if (special_sum != 0.0) {
+ if (Py_IS_NAN(inf_sum))
+ PyErr_SetString(PyExc_ValueError,
+ "-inf + inf in sum");
+ else
+ sum = PyFloat_FromDouble(special_sum);
+ goto _sum_error;
+ }
+
hi = 0.0;
if (n > 0) {
hi = p[--n];
- if (Py_IS_FINITE(hi)) {
- /* sum_exact(ps, hi) from the top, stop when the sum becomes inexact. */
- while (n > 0) {
- x = hi;
- y = p[--n];
- assert(fabs(y) < fabs(x));
- hi = x + y;
- yr = hi - x;
- lo = y - yr;
- if (lo != 0.0)
- break;
- }
- /* Make half-even rounding work across multiple partials. Needed
- so that sum([1e-16, 1, 1e16]) will round-up the last digit to
- two instead of down to zero (the 1e-16 makes the 1 slightly
- closer to two). With a potential 1 ULP rounding error fixed-up,
- math.sum() can guarantee commutativity. */
- if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
- (lo > 0.0 && p[n-1] > 0.0))) {
- y = lo * 2.0;
- x = hi + y;
- yr = x - hi;
- if (y == yr)
- hi = x;
- }
+ /* sum_exact(ps, hi) from the top, stop when the sum becomes
+ inexact. */
+ while (n > 0) {
+ x = hi;
+ y = p[--n];
+ assert(fabs(y) < fabs(x));
+ hi = x + y;
+ yr = hi - x;
+ lo = y - yr;
+ if (lo != 0.0)
+ break;
}
- else { /* raise exception corresponding to a special value */
- errno = Py_IS_NAN(hi) ? EDOM : ERANGE;
- if (is_error(hi))
- goto _sum_error;
+ /* Make half-even rounding work across multiple partials.
+ Needed so that sum([1e-16, 1, 1e16]) will round-up the last
+ digit to two instead of down to zero (the 1e-16 makes the 1
+ slightly closer to two). With a potential 1 ULP rounding
+ error fixed-up, math.sum() can guarantee commutativity. */
+ if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
+ (lo > 0.0 && p[n-1] > 0.0))) {
+ y = lo * 2.0;
+ x = hi + y;
+ yr = x - hi;
+ if (y == yr)
+ hi = x;
}
}
sum = PyFloat_FromDouble(hi);
More information about the Python-checkins
mailing list