[Python-checkins] r69917 - python/branches/release30-maint/Doc/library/itertools.rst

raymond.hettinger python-checkins at python.org
Mon Feb 23 21:48:09 CET 2009


Author: raymond.hettinger
Date: Mon Feb 23 21:48:09 2009
New Revision: 69917

Log:
Sync-up itertools docs with Py3.1 version.
* Merge 69722:  rewrite introduction and add summary table
* Merge 69740:  generalize tee() recipe
* Fix tab alignment on recipes to match other recipes



Modified:
   python/branches/release30-maint/Doc/library/itertools.rst

Modified: python/branches/release30-maint/Doc/library/itertools.rst
==============================================================================
--- python/branches/release30-maint/Doc/library/itertools.rst	(original)
+++ python/branches/release30-maint/Doc/library/itertools.rst	Mon Feb 23 21:48:09 2009
@@ -13,39 +13,59 @@
    from itertools import *
 
 
-This module implements a number of :term:`iterator` building blocks inspired by
-constructs from the Haskell and SML programming languages.  Each has been recast
-in a form suitable for Python.
+This module implements a number of :term:`iterator` building blocks inspired
+by constructs from APL, Haskell, and SML.  Each has been recast in a form
+suitable for Python.
 
 The module standardizes a core set of fast, memory efficient tools that are
-useful by themselves or in combination.  Standardization helps avoid the
-readability and reliability problems which arise when many different individuals
-create their own slightly varying implementations, each with their own quirks
-and naming conventions.
-
-The tools are designed to combine readily with one another.  This makes it easy
-to construct more specialized tools succinctly and efficiently in pure Python.
+useful by themselves or in combination.  Together, they form an "iterator
+algebra" making it possible to construct specialized tools succinctly and
+efficiently in pure Python.
 
 For instance, SML provides a tabulation tool: ``tabulate(f)`` which produces a
 sequence ``f(0), f(1), ...``.  But, this effect can be achieved in Python
 by combining :func:`map` and :func:`count` to form ``map(f, count())``.
 
-Likewise, the functional tools are designed to work well with the high-speed
-functions provided by the :mod:`operator` module.
-
-Whether cast in pure python form or compiled code, tools that use iterators are
-more memory efficient (and often faster) than their list based counterparts. Adopting
-the principles of just-in-time manufacturing, they create data when and where
-needed instead of consuming memory with the computer equivalent of "inventory".
-
-
-.. seealso::
-
-   The Standard ML Basis Library, `The Standard ML Basis Library
-   <http://www.standardml.org/Basis/>`_.
-
-   Haskell, A Purely Functional Language, `Definition of Haskell and the Standard
-   Libraries <http://www.haskell.org/definition/>`_.
+The tools also work well with the high-speed functions in the :mod:`operator`
+module.  For example, the plus-operator can be mapped across two vectors to
+form an efficient dot-product: ``sum(map(operator.add, vector1, vector2))``.
+
+
+**Infinite Iterators:**
+
+    ==================  =================       =================================================
+    Iterator            Arguments               Results
+    ==================  =================       =================================================
+    :func:`count`       start                   start, start+1, start+2*1, ...
+    :func:`cycle`       p                       p0, p1, ... plast, p0, p1, ...
+    :func:`repeat`      elem [,n]               elem, elem, elem, ... endlessly or up to n times
+    ==================  =================       =================================================
+
+**Iterators terminating on the shortest input sequence:**
+
+    ====================    ============================    =================================================
+    Iterator                Arguments                       Results
+    ====================    ============================    =================================================
+    :func:`chain`           p, q, ...                       p0, p1, ... plast, q0, q1, ...
+    :func:`dropwhile`       pred, seq                       seq[n], seq[n+1], starting when pred fails
+    :func:`filterfalse`     pred, seq                       elements of seq where pred(elem) is False
+    :func:`groupby`         iterable[, keyfunc]             sub-iterators grouped by value of keyfunc(v)
+    :func:`islice`          seq, [start,] stop [, step]     elements from seq[start:stop:step]
+    :func:`starmap`         func, seq                       func(\*seq[0]), fun(\*seq[1]), ...
+    :func:`tee`             it, n                           it1, it2 , ... itn  splits one iterator into n
+    :func:`takewhile`       pred, seq                       seq[0], seq[1], until pred fails
+    :func:`zip_longest`     p, q, ...                       (p[0], q[0]), (p[1], q[1]), ...
+    ====================    ============================    =================================================
+
+**Combinatoric generators:**
+
+    =====================================   ====================       =================================================
+    Iterator                                Arguments                  Results
+    =====================================   ====================       =================================================
+    :func:`product`                         p, q, ... [repeat=1]       cartesian product
+    :func:`permutations`                    p[, r]                     r-length permutations (without repeated elements)
+    :func:`combinations`                    p[, r]                     r-length combinations (sorted and no repeats)
+    =====================================   ====================       =================================================
 
 
 .. _itertools-functions:
@@ -108,7 +128,7 @@
                 return
             indices = list(range(r))
             yield tuple(pool[i] for i in indices)
-            while 1:
+            while True:
                 for i in reversed(range(r)):
                     if indices[i] != i + n - r:
                         break
@@ -415,28 +435,28 @@
 
 .. function:: tee(iterable[, n=2])
 
-   Return *n* independent iterators from a single iterable. The case where ``n==2``
-   is equivalent to::
+   Return *n* independent iterators from a single iterable.  Equivalent to::
 
-      def tee(iterable):
-          def gen(next, data={}):
-              for i in count():
-                  if i in data:
-                      yield data.pop(i)
-                  else:
-                      data[i] = next()
-                      yield data[i]
-          it = iter(iterable)
-          return (gen(it.__next__), gen(it.__next__))
-
-   Note, once :func:`tee` has made a split, the original *iterable* should not be
-   used anywhere else; otherwise, the *iterable* could get advanced without the tee
-   objects being informed.
-
-   Note, this member of the toolkit may require significant auxiliary storage
-   (depending on how much temporary data needs to be stored). In general, if one
-   iterator is going to use most or all of the data before the other iterator, it
-   is faster to use :func:`list` instead of :func:`tee`.
+        def tee(iterable, n=2):
+            it = iter(iterable)
+            deques = [collections.deque() for i in range(n)]
+            def gen(mydeque):
+                while True:
+                    if not mydeque:             # when the local deque is empty
+                        newval = next(it)       # fetch a new value and
+                        for d in deques:        # load it to all the deques
+                            d.append(newval)
+                    yield mydeque.popleft()
+            return tuple(gen(d) for d in deques)
+
+   Once :func:`tee` has made a split, the original *iterable* should not be
+   used anywhere else; otherwise, the *iterable* could get advanced without
+   the tee objects being informed.
+
+   This itertool may require significant auxiliary storage (depending on how
+   much temporary data needs to be stored). In general, if one iterator uses
+   most or all of the data before another iterator starts, it is faster to use
+   :func:`list` instead of :func:`tee`.
 
 
 .. function:: zip_longest(*iterables[, fillvalue])
@@ -612,26 +632,26 @@
            indices[i:] = [indices[i] + 1] * (r - i)
            yield tuple(pool[i] for i in indices)
 
-    def unique_everseen(iterable, key=None):
-        "List unique elements, preserving order. Remember all elements ever seen."
-        # unique_everseen('AAAABBBCCDAABBB') --> A B C D
-        # unique_everseen('ABBCcAD', str.lower) --> A B C D
-        seen = set()
-        seen_add = seen.add
-        if key is None:
-            for element in iterable:
-                if element not in seen:
-                    seen_add(element)
-                    yield element
-        else:
-            for element in iterable:
-                k = key(element)
-                if k not in seen:
-                    seen_add(k)
-                    yield element
-
-    def unique_justseen(iterable, key=None):
-        "List unique elements, preserving order. Remember only the element just seen."
-        # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
-        # unique_justseen('ABBCcAD', str.lower) --> A B C A D
-        return map(next, map(itemgetter(1), groupby(iterable, key)))
+   def unique_everseen(iterable, key=None):
+       "List unique elements, preserving order. Remember all elements ever seen."
+       # unique_everseen('AAAABBBCCDAABBB') --> A B C D
+       # unique_everseen('ABBCcAD', str.lower) --> A B C D
+       seen = set()
+       seen_add = seen.add
+       if key is None:
+           for element in iterable:
+               if element not in seen:
+                   seen_add(element)
+                   yield element
+       else:
+           for element in iterable:
+               k = key(element)
+               if k not in seen:
+                   seen_add(k)
+                   yield element
+
+   def unique_justseen(iterable, key=None):
+       "List unique elements, preserving order. Remember only the element just seen."
+       # unique_justseen('AAAABBBCCDAABBB') --> A B C D A B
+       # unique_justseen('ABBCcAD', str.lower) --> A B C A D
+       return map(next, imap(itemgetter(1), groupby(iterable, key)))


More information about the Python-checkins mailing list