[Python-checkins] r87677 - python/branches/py3k/py3rsa.py
senthil.kumaran
python-checkins at python.org
Mon Jan 3 10:47:10 CET 2011
Author: senthil.kumaran
Date: Mon Jan 3 10:47:09 2011
New Revision: 87677
Log:
py3k implmentation of RSA algorithm,
Added:
python/branches/py3k/py3rsa.py (contents, props changed)
Added: python/branches/py3k/py3rsa.py
==============================================================================
--- (empty file)
+++ python/branches/py3k/py3rsa.py Mon Jan 3 10:47:09 2011
@@ -0,0 +1,181 @@
+# Copyright (c) 2010 Russell Dias
+# Licensed under the MIT licence.
+# http://www.inversezen.com
+#
+# This is an implementation of the RSA public key
+# encryption written in Python by Russell Dias
+
+__author__ = 'Russell Dias // inversezen.com'
+# Py3k port done by Senthil (senthil at uthcode.com)
+__date__ = '05/12/2010'
+__version__ = '0.0.1'
+
+import random
+from math import log
+
+def gcd(u, v):
+ """ The Greatest Common Divisor, returns
+ the largest positive integer that divides
+ u with v without a remainder.
+ """
+ while v:
+ u, v = u, u % v
+ return u
+
+def eec(u, v):
+ """ The Extended Eculidean Algorithm
+ For u and v this algorithm finds (u1, u2, u3)
+ such that uu1 + vu2 = u3 = gcd(u, v)
+
+ We also use auxiliary vectors (v1, v2, v3) and
+ (tmp1, tmp2, tmp3)
+ """
+ (u1, u2, u3) = (1, 0, u)
+ (v1, v2, v3) = (0, 1, v)
+ while (v3 != 0):
+ quotient = u3 // v3
+ tmp1 = u1 - quotient * v1
+ tmp2 = u2 - quotient * v2
+ tmp3 = u3 - quotient * v3
+ (u1, u2, u3) = (v1, v2, v3)
+ (v1, v2, v3) = (tmp1, tmp2, tmp3)
+ return u3, u1, u2
+
+def stringEncode(string):
+ """ Brandon Sterne's algorithm to convert
+ string to long
+ """
+ message = 0
+ messageCount = len(string) - 1
+
+ for letter in string:
+ message += (256**messageCount) * ord(letter)
+ messageCount -= 1
+ return message
+
+def stringDecode(number):
+ """ Convert long back to string
+ """
+
+ letters = []
+ text = ''
+ integer = int(log(number, 256))
+
+ while(integer >= 0):
+ letter = number // (256**integer)
+ letters.append(chr(letter))
+ number -= letter * (256**integer)
+ integer -= 1
+ for char in letters:
+ text += char
+
+ return text
+
+def split_to_odd(n):
+ """ Return values 2 ^ k, such that 2^k*q = n;
+ or an odd integer to test for primiality
+ Let n be an odd prime. Then n-1 is even,
+ where k is a positive integer.
+ """
+ k = 0
+ while (n > 0) and (n % 2 == 0):
+ k += 1
+ n >>= 1
+ return (k, n)
+
+def prime(a, q, k, n):
+ if pow(a, q, n) == 1:
+ return True
+ elif (n - 1) in [pow(a, q*(2**j), n) for j in range(k)]:
+ return True
+ else:
+ return False
+
+def miller_rabin(n, trials):
+ """
+ There is still a small chance that n will return a
+ false positive. To reduce risk, it is recommended to use
+ more trials.
+ """
+ # 2^k * q = n - 1; q is an odd int
+ (k, q) = split_to_odd(n - 1)
+
+ for trial in range(trials):
+ a = random.randint(2, n-1)
+ if not prime(a, q, k, n):
+ return False
+ return True
+
+def get_prime(k):
+ """ Generate prime of size k bits, with 50 tests
+ to ensure accuracy.
+ """
+ prime = 0
+ while (prime == 0):
+ prime = random.randrange(pow(2,k//2-1) + 1, pow(2, k//2), 2)
+ if not miller_rabin(prime, 50):
+ prime = 0
+ return prime
+
+def modular_inverse(a, m):
+ """ To calculate the decryption exponent such that
+ (d * e) mod phi(N) = 1 OR g == 1 in our implementation.
+ Where m is Phi(n) (PHI = (p-1) * (q-1) )
+
+ s % m or d (decryption exponent) is the multiplicative inverse of
+ the encryption exponent e.
+ """
+ g, s, t = eec(a, m)
+ if g == 1:
+ return s % m
+ else:
+ return None
+
+def key_gen(bits):
+ """ The public encryption exponent e,
+ can be an artibrary prime number.
+
+ Obviously, the higher the number,
+ the more secure the key pairs are.
+ """
+ e = 17
+ p = get_prime(bits)
+ q = get_prime(bits)
+ d = modular_inverse(e, (p-1)*(q-1))
+ return p*q,d,e
+
+def write_to_file(e, d, n):
+ """ Write our public and private keys to file
+ """
+ public = open("publicKey", "w")
+ public.write(str(e))
+ public.write("\n")
+ public.write(str(n))
+ public.close()
+
+ private = open("privateKey", "w")
+ private.write(str(d))
+ private.write("\n")
+ private.write(str(n))
+ private.close()
+
+
+if __name__ == '__main__':
+ bits = input("Enter the size of your key pairs, in bits: ")
+
+ n, d, e = key_gen(int(bits))
+
+ #Write keys to file
+ write_to_file(e, d, n)
+
+ print("Your keys pairs have been saved to file")
+
+ m = input("Enter the message you would like to encrypt: ")
+
+ m = stringEncode(m)
+ encrypted = pow(m, e, n)
+
+ print("Your encrypted message is: %s" % encrypted)
+ decrypted = pow(encrypted, d, n)
+ message = stringDecode(decrypted)
+ print("You message decrypted is: %s" % message)
More information about the Python-checkins
mailing list