[Python-checkins] r87677 - python/branches/py3k/py3rsa.py

senthil.kumaran python-checkins at python.org
Mon Jan 3 10:47:10 CET 2011


Author: senthil.kumaran
Date: Mon Jan  3 10:47:09 2011
New Revision: 87677

Log:
py3k implmentation of RSA algorithm,



Added:
   python/branches/py3k/py3rsa.py   (contents, props changed)

Added: python/branches/py3k/py3rsa.py
==============================================================================
--- (empty file)
+++ python/branches/py3k/py3rsa.py	Mon Jan  3 10:47:09 2011
@@ -0,0 +1,181 @@
+# Copyright (c) 2010 Russell Dias
+# Licensed under the MIT licence.
+# http://www.inversezen.com
+#
+# This is an implementation of the RSA public key
+# encryption written in Python by Russell Dias
+
+__author__ = 'Russell Dias // inversezen.com'
+# Py3k port done by Senthil (senthil at uthcode.com)
+__date__ = '05/12/2010'
+__version__ = '0.0.1'
+
+import random
+from math import log
+
+def gcd(u, v):
+    """ The Greatest Common Divisor, returns
+        the largest positive integer that divides
+        u with v without a remainder.
+    """
+    while v:
+        u, v = u, u % v
+    return u
+
+def eec(u, v):
+    """ The Extended Eculidean Algorithm
+        For u and v this algorithm finds (u1, u2, u3)
+        such that uu1 + vu2 = u3 = gcd(u, v)
+
+        We also use auxiliary vectors (v1, v2, v3) and
+        (tmp1, tmp2, tmp3)
+    """
+    (u1, u2, u3) = (1, 0, u)
+    (v1, v2, v3) = (0, 1, v)
+    while (v3 != 0):
+        quotient = u3 // v3
+        tmp1 = u1 - quotient * v1
+        tmp2 = u2 - quotient * v2
+        tmp3 = u3 - quotient * v3
+        (u1, u2, u3) = (v1, v2, v3)
+        (v1, v2, v3) = (tmp1, tmp2, tmp3)
+    return u3, u1, u2
+
+def stringEncode(string):
+    """ Brandon Sterne's algorithm to convert
+        string to long
+    """
+    message = 0
+    messageCount = len(string) - 1
+
+    for letter in string:
+        message += (256**messageCount) * ord(letter)
+        messageCount -= 1
+    return message
+
+def stringDecode(number):
+    """ Convert long back to string
+    """
+
+    letters = []
+    text = ''
+    integer = int(log(number, 256))
+
+    while(integer >= 0):
+        letter = number // (256**integer)
+        letters.append(chr(letter))
+        number -= letter * (256**integer)
+        integer -= 1
+    for char in letters:
+        text += char
+
+    return text
+
+def split_to_odd(n):
+    """ Return values 2 ^ k, such that 2^k*q = n;
+        or an odd integer to test for primiality
+        Let n be an odd prime. Then n-1 is even,
+        where k is a positive integer.
+    """
+    k = 0
+    while (n > 0) and (n % 2 == 0):
+        k += 1
+        n >>= 1
+    return (k, n)
+
+def prime(a, q, k, n):
+    if pow(a, q, n) == 1:
+        return True
+    elif (n - 1) in [pow(a, q*(2**j), n) for j in range(k)]:
+        return True
+    else:
+        return False
+
+def miller_rabin(n, trials):
+    """
+        There is still a small chance that n will return a
+        false positive. To reduce risk, it is recommended to use
+        more trials.
+    """
+    # 2^k * q = n - 1; q is an odd int
+    (k, q) = split_to_odd(n - 1)
+
+    for trial in range(trials):
+        a = random.randint(2, n-1)
+        if not prime(a, q, k, n):
+            return False
+    return True
+
+def get_prime(k):
+    """ Generate prime of size k bits, with 50 tests
+        to ensure accuracy.
+    """
+    prime = 0
+    while (prime == 0):
+        prime = random.randrange(pow(2,k//2-1) + 1, pow(2, k//2), 2)
+        if not miller_rabin(prime, 50):
+            prime = 0
+    return prime
+
+def modular_inverse(a, m):
+    """ To calculate the decryption exponent such that
+        (d * e) mod phi(N) = 1 OR g == 1 in our implementation.
+        Where m is Phi(n) (PHI = (p-1) * (q-1) )
+
+        s % m or d (decryption exponent) is the multiplicative inverse of
+        the encryption exponent e.
+    """
+    g, s, t = eec(a, m)
+    if g == 1:
+        return s % m
+    else:
+        return None
+
+def key_gen(bits):
+    """ The public encryption exponent e,
+        can be an artibrary prime number.
+
+        Obviously, the higher the number,
+        the more secure the key pairs are.
+    """
+    e = 17
+    p = get_prime(bits)
+    q = get_prime(bits)
+    d = modular_inverse(e, (p-1)*(q-1))
+    return p*q,d,e
+
+def write_to_file(e, d, n):
+    """ Write our public and private keys to file
+    """
+    public = open("publicKey", "w")
+    public.write(str(e))
+    public.write("\n")
+    public.write(str(n))
+    public.close()
+
+    private = open("privateKey", "w")
+    private.write(str(d))
+    private.write("\n")
+    private.write(str(n))
+    private.close()
+
+
+if __name__ == '__main__':
+    bits = input("Enter the size of your key pairs, in bits: ")
+
+    n, d, e = key_gen(int(bits))
+
+    #Write keys to file
+    write_to_file(e, d, n)
+
+    print("Your keys pairs have been saved to file")
+
+    m = input("Enter the message you would like to encrypt: ")
+
+    m = stringEncode(m)
+    encrypted = pow(m, e, n)
+
+    print("Your encrypted message is: %s" % encrypted)
+    decrypted = pow(encrypted, d, n)
+    message = stringDecode(decrypted)
+    print("You message decrypted is: %s" % message)


More information about the Python-checkins mailing list