[Python-checkins] cpython: Issue #19232: Speed up decimal import. Additionally, since _decimal is

stefan.krah python-checkins at python.org
Wed Sep 10 18:01:22 CEST 2014


http://hg.python.org/cpython/rev/8bf51cf94405
changeset:   92382:8bf51cf94405
user:        Stefan Krah <skrah at bytereef.org>
date:        Wed Sep 10 17:58:15 2014 +0200
summary:
  Issue #19232: Speed up decimal import.  Additionally, since _decimal is
self-contained, this change facilitates maintenance and the Python version
can be easily imported for experimentation.

files:
  Lib/decimal.py                     |    17 +-
  Lib/decimal.py                     |  6406 +---------------
  Lib/test/test_decimal.py           |     4 +-
  Modules/_decimal/tests/deccheck.py |     7 +-
  4 files changed, 14 insertions(+), 6420 deletions(-)


diff --git a/Lib/decimal.py b/Lib/_pydecimal.py
copy from Lib/decimal.py
copy to Lib/_pydecimal.py
--- a/Lib/decimal.py
+++ b/Lib/_pydecimal.py
@@ -144,6 +144,7 @@
     'HAVE_THREADS'
 ]
 
+__name__ = 'decimal'    # For pickling
 __version__ = '1.70'    # Highest version of the spec this complies with
                         # See http://speleotrove.com/decimal/
 __libmpdec_version__ = "2.4.1" # compatible libmpdec version
@@ -6386,19 +6387,3 @@
 # _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS
 _PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
 del sys
-
-try:
-    import _decimal
-except ImportError:
-    pass
-else:
-    s1 = set(dir())
-    s2 = set(dir(_decimal))
-    for name in s1 - s2:
-        del globals()[name]
-    del s1, s2, name
-    from _decimal import *
-
-if __name__ == '__main__':
-    import doctest, decimal
-    doctest.testmod(decimal)
diff --git a/Lib/decimal.py b/Lib/decimal.py
--- a/Lib/decimal.py
+++ b/Lib/decimal.py
@@ -1,6404 +1,14 @@
-# Copyright (c) 2004 Python Software Foundation.
-# All rights reserved.
-
-# Written by Eric Price <eprice at tjhsst.edu>
-#    and Facundo Batista <facundo at taniquetil.com.ar>
-#    and Raymond Hettinger <python at rcn.com>
-#    and Aahz <aahz at pobox.com>
-#    and Tim Peters
-
-# This module should be kept in sync with the latest updates of the
-# IBM specification as it evolves.  Those updates will be treated
-# as bug fixes (deviation from the spec is a compatibility, usability
-# bug) and will be backported.  At this point the spec is stabilizing
-# and the updates are becoming fewer, smaller, and less significant.
-
-"""
-This is an implementation of decimal floating point arithmetic based on
-the General Decimal Arithmetic Specification:
-
-    http://speleotrove.com/decimal/decarith.html
-
-and IEEE standard 854-1987:
-
-    http://en.wikipedia.org/wiki/IEEE_854-1987
-
-Decimal floating point has finite precision with arbitrarily large bounds.
-
-The purpose of this module is to support arithmetic using familiar
-"schoolhouse" rules and to avoid some of the tricky representation
-issues associated with binary floating point.  The package is especially
-useful for financial applications or for contexts where users have
-expectations that are at odds with binary floating point (for instance,
-in binary floating point, 1.00 % 0.1 gives 0.09999999999999995 instead
-of 0.0; Decimal('1.00') % Decimal('0.1') returns the expected
-Decimal('0.00')).
-
-Here are some examples of using the decimal module:
-
->>> from decimal import *
->>> setcontext(ExtendedContext)
->>> Decimal(0)
-Decimal('0')
->>> Decimal('1')
-Decimal('1')
->>> Decimal('-.0123')
-Decimal('-0.0123')
->>> Decimal(123456)
-Decimal('123456')
->>> Decimal('123.45e12345678')
-Decimal('1.2345E+12345680')
->>> Decimal('1.33') + Decimal('1.27')
-Decimal('2.60')
->>> Decimal('12.34') + Decimal('3.87') - Decimal('18.41')
-Decimal('-2.20')
->>> dig = Decimal(1)
->>> print(dig / Decimal(3))
-0.333333333
->>> getcontext().prec = 18
->>> print(dig / Decimal(3))
-0.333333333333333333
->>> print(dig.sqrt())
-1
->>> print(Decimal(3).sqrt())
-1.73205080756887729
->>> print(Decimal(3) ** 123)
-4.85192780976896427E+58
->>> inf = Decimal(1) / Decimal(0)
->>> print(inf)
-Infinity
->>> neginf = Decimal(-1) / Decimal(0)
->>> print(neginf)
--Infinity
->>> print(neginf + inf)
-NaN
->>> print(neginf * inf)
--Infinity
->>> print(dig / 0)
-Infinity
->>> getcontext().traps[DivisionByZero] = 1
->>> print(dig / 0)
-Traceback (most recent call last):
-  ...
-  ...
-  ...
-decimal.DivisionByZero: x / 0
->>> c = Context()
->>> c.traps[InvalidOperation] = 0
->>> print(c.flags[InvalidOperation])
-0
->>> c.divide(Decimal(0), Decimal(0))
-Decimal('NaN')
->>> c.traps[InvalidOperation] = 1
->>> print(c.flags[InvalidOperation])
-1
->>> c.flags[InvalidOperation] = 0
->>> print(c.flags[InvalidOperation])
-0
->>> print(c.divide(Decimal(0), Decimal(0)))
-Traceback (most recent call last):
-  ...
-  ...
-  ...
-decimal.InvalidOperation: 0 / 0
->>> print(c.flags[InvalidOperation])
-1
->>> c.flags[InvalidOperation] = 0
->>> c.traps[InvalidOperation] = 0
->>> print(c.divide(Decimal(0), Decimal(0)))
-NaN
->>> print(c.flags[InvalidOperation])
-1
->>>
-"""
-
-__all__ = [
-    # Two major classes
-    'Decimal', 'Context',
-
-    # Named tuple representation
-    'DecimalTuple',
-
-    # Contexts
-    'DefaultContext', 'BasicContext', 'ExtendedContext',
-
-    # Exceptions
-    'DecimalException', 'Clamped', 'InvalidOperation', 'DivisionByZero',
-    'Inexact', 'Rounded', 'Subnormal', 'Overflow', 'Underflow',
-    'FloatOperation',
-
-    # Exceptional conditions that trigger InvalidOperation
-    'DivisionImpossible', 'InvalidContext', 'ConversionSyntax', 'DivisionUndefined',
-
-    # Constants for use in setting up contexts
-    'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
-    'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
-
-    # Functions for manipulating contexts
-    'setcontext', 'getcontext', 'localcontext',
-
-    # Limits for the C version for compatibility
-    'MAX_PREC',  'MAX_EMAX', 'MIN_EMIN', 'MIN_ETINY',
-
-    # C version: compile time choice that enables the thread local context
-    'HAVE_THREADS'
-]
-
-__version__ = '1.70'    # Highest version of the spec this complies with
-                        # See http://speleotrove.com/decimal/
-__libmpdec_version__ = "2.4.1" # compatible libmpdec version
-
-import math as _math
-import numbers as _numbers
-import sys
 
 try:
-    from collections import namedtuple as _namedtuple
-    DecimalTuple = _namedtuple('DecimalTuple', 'sign digits exponent')
+    from _decimal import *
+    from _decimal import __doc__
+    from _decimal import __version__
+    from _decimal import __libmpdec_version__
 except ImportError:
-    DecimalTuple = lambda *args: args
+    from _pydecimal import *
+    from _pydecimal import __doc__
+    from _pydecimal import __version__
+    from _pydecimal import __libmpdec_version__
 
-# Rounding
-ROUND_DOWN = 'ROUND_DOWN'
-ROUND_HALF_UP = 'ROUND_HALF_UP'
-ROUND_HALF_EVEN = 'ROUND_HALF_EVEN'
-ROUND_CEILING = 'ROUND_CEILING'
-ROUND_FLOOR = 'ROUND_FLOOR'
-ROUND_UP = 'ROUND_UP'
-ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
-ROUND_05UP = 'ROUND_05UP'
 
-# Compatibility with the C version
-HAVE_THREADS = True
-if sys.maxsize == 2**63-1:
-    MAX_PREC = 999999999999999999
-    MAX_EMAX = 999999999999999999
-    MIN_EMIN = -999999999999999999
-else:
-    MAX_PREC = 425000000
-    MAX_EMAX = 425000000
-    MIN_EMIN = -425000000
 
-MIN_ETINY = MIN_EMIN - (MAX_PREC-1)
-
-# Errors
-
-class DecimalException(ArithmeticError):
-    """Base exception class.
-
-    Used exceptions derive from this.
-    If an exception derives from another exception besides this (such as
-    Underflow (Inexact, Rounded, Subnormal) that indicates that it is only
-    called if the others are present.  This isn't actually used for
-    anything, though.
-
-    handle  -- Called when context._raise_error is called and the
-               trap_enabler is not set.  First argument is self, second is the
-               context.  More arguments can be given, those being after
-               the explanation in _raise_error (For example,
-               context._raise_error(NewError, '(-x)!', self._sign) would
-               call NewError().handle(context, self._sign).)
-
-    To define a new exception, it should be sufficient to have it derive
-    from DecimalException.
-    """
-    def handle(self, context, *args):
-        pass
-
-
-class Clamped(DecimalException):
-    """Exponent of a 0 changed to fit bounds.
-
-    This occurs and signals clamped if the exponent of a result has been
-    altered in order to fit the constraints of a specific concrete
-    representation.  This may occur when the exponent of a zero result would
-    be outside the bounds of a representation, or when a large normal
-    number would have an encoded exponent that cannot be represented.  In
-    this latter case, the exponent is reduced to fit and the corresponding
-    number of zero digits are appended to the coefficient ("fold-down").
-    """
-
-class InvalidOperation(DecimalException):
-    """An invalid operation was performed.
-
-    Various bad things cause this:
-
-    Something creates a signaling NaN
-    -INF + INF
-    0 * (+-)INF
-    (+-)INF / (+-)INF
-    x % 0
-    (+-)INF % x
-    x._rescale( non-integer )
-    sqrt(-x) , x > 0
-    0 ** 0
-    x ** (non-integer)
-    x ** (+-)INF
-    An operand is invalid
-
-    The result of the operation after these is a quiet positive NaN,
-    except when the cause is a signaling NaN, in which case the result is
-    also a quiet NaN, but with the original sign, and an optional
-    diagnostic information.
-    """
-    def handle(self, context, *args):
-        if args:
-            ans = _dec_from_triple(args[0]._sign, args[0]._int, 'n', True)
-            return ans._fix_nan(context)
-        return _NaN
-
-class ConversionSyntax(InvalidOperation):
-    """Trying to convert badly formed string.
-
-    This occurs and signals invalid-operation if an string is being
-    converted to a number and it does not conform to the numeric string
-    syntax.  The result is [0,qNaN].
-    """
-    def handle(self, context, *args):
-        return _NaN
-
-class DivisionByZero(DecimalException, ZeroDivisionError):
-    """Division by 0.
-
-    This occurs and signals division-by-zero if division of a finite number
-    by zero was attempted (during a divide-integer or divide operation, or a
-    power operation with negative right-hand operand), and the dividend was
-    not zero.
-
-    The result of the operation is [sign,inf], where sign is the exclusive
-    or of the signs of the operands for divide, or is 1 for an odd power of
-    -0, for power.
-    """
-
-    def handle(self, context, sign, *args):
-        return _SignedInfinity[sign]
-
-class DivisionImpossible(InvalidOperation):
-    """Cannot perform the division adequately.
-
-    This occurs and signals invalid-operation if the integer result of a
-    divide-integer or remainder operation had too many digits (would be
-    longer than precision).  The result is [0,qNaN].
-    """
-
-    def handle(self, context, *args):
-        return _NaN
-
-class DivisionUndefined(InvalidOperation, ZeroDivisionError):
-    """Undefined result of division.
-
-    This occurs and signals invalid-operation if division by zero was
-    attempted (during a divide-integer, divide, or remainder operation), and
-    the dividend is also zero.  The result is [0,qNaN].
-    """
-
-    def handle(self, context, *args):
-        return _NaN
-
-class Inexact(DecimalException):
-    """Had to round, losing information.
-
-    This occurs and signals inexact whenever the result of an operation is
-    not exact (that is, it needed to be rounded and any discarded digits
-    were non-zero), or if an overflow or underflow condition occurs.  The
-    result in all cases is unchanged.
-
-    The inexact signal may be tested (or trapped) to determine if a given
-    operation (or sequence of operations) was inexact.
-    """
-
-class InvalidContext(InvalidOperation):
-    """Invalid context.  Unknown rounding, for example.
-
-    This occurs and signals invalid-operation if an invalid context was
-    detected during an operation.  This can occur if contexts are not checked
-    on creation and either the precision exceeds the capability of the
-    underlying concrete representation or an unknown or unsupported rounding
-    was specified.  These aspects of the context need only be checked when
-    the values are required to be used.  The result is [0,qNaN].
-    """
-
-    def handle(self, context, *args):
-        return _NaN
-
-class Rounded(DecimalException):
-    """Number got rounded (not  necessarily changed during rounding).
-
-    This occurs and signals rounded whenever the result of an operation is
-    rounded (that is, some zero or non-zero digits were discarded from the
-    coefficient), or if an overflow or underflow condition occurs.  The
-    result in all cases is unchanged.
-
-    The rounded signal may be tested (or trapped) to determine if a given
-    operation (or sequence of operations) caused a loss of precision.
-    """
-
-class Subnormal(DecimalException):
-    """Exponent < Emin before rounding.
-
-    This occurs and signals subnormal whenever the result of a conversion or
-    operation is subnormal (that is, its adjusted exponent is less than
-    Emin, before any rounding).  The result in all cases is unchanged.
-
-    The subnormal signal may be tested (or trapped) to determine if a given
-    or operation (or sequence of operations) yielded a subnormal result.
-    """
-
-class Overflow(Inexact, Rounded):
-    """Numerical overflow.
-
-    This occurs and signals overflow if the adjusted exponent of a result
-    (from a conversion or from an operation that is not an attempt to divide
-    by zero), after rounding, would be greater than the largest value that
-    can be handled by the implementation (the value Emax).
-
-    The result depends on the rounding mode:
-
-    For round-half-up and round-half-even (and for round-half-down and
-    round-up, if implemented), the result of the operation is [sign,inf],
-    where sign is the sign of the intermediate result.  For round-down, the
-    result is the largest finite number that can be represented in the
-    current precision, with the sign of the intermediate result.  For
-    round-ceiling, the result is the same as for round-down if the sign of
-    the intermediate result is 1, or is [0,inf] otherwise.  For round-floor,
-    the result is the same as for round-down if the sign of the intermediate
-    result is 0, or is [1,inf] otherwise.  In all cases, Inexact and Rounded
-    will also be raised.
-    """
-
-    def handle(self, context, sign, *args):
-        if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
-                                ROUND_HALF_DOWN, ROUND_UP):
-            return _SignedInfinity[sign]
-        if sign == 0:
-            if context.rounding == ROUND_CEILING:
-                return _SignedInfinity[sign]
-            return _dec_from_triple(sign, '9'*context.prec,
-                            context.Emax-context.prec+1)
-        if sign == 1:
-            if context.rounding == ROUND_FLOOR:
-                return _SignedInfinity[sign]
-            return _dec_from_triple(sign, '9'*context.prec,
-                             context.Emax-context.prec+1)
-
-
-class Underflow(Inexact, Rounded, Subnormal):
-    """Numerical underflow with result rounded to 0.
-
-    This occurs and signals underflow if a result is inexact and the
-    adjusted exponent of the result would be smaller (more negative) than
-    the smallest value that can be handled by the implementation (the value
-    Emin).  That is, the result is both inexact and subnormal.
-
-    The result after an underflow will be a subnormal number rounded, if
-    necessary, so that its exponent is not less than Etiny.  This may result
-    in 0 with the sign of the intermediate result and an exponent of Etiny.
-
-    In all cases, Inexact, Rounded, and Subnormal will also be raised.
-    """
-
-class FloatOperation(DecimalException, TypeError):
-    """Enable stricter semantics for mixing floats and Decimals.
-
-    If the signal is not trapped (default), mixing floats and Decimals is
-    permitted in the Decimal() constructor, context.create_decimal() and
-    all comparison operators. Both conversion and comparisons are exact.
-    Any occurrence of a mixed operation is silently recorded by setting
-    FloatOperation in the context flags.  Explicit conversions with
-    Decimal.from_float() or context.create_decimal_from_float() do not
-    set the flag.
-
-    Otherwise (the signal is trapped), only equality comparisons and explicit
-    conversions are silent. All other mixed operations raise FloatOperation.
-    """
-
-# List of public traps and flags
-_signals = [Clamped, DivisionByZero, Inexact, Overflow, Rounded,
-            Underflow, InvalidOperation, Subnormal, FloatOperation]
-
-# Map conditions (per the spec) to signals
-_condition_map = {ConversionSyntax:InvalidOperation,
-                  DivisionImpossible:InvalidOperation,
-                  DivisionUndefined:InvalidOperation,
-                  InvalidContext:InvalidOperation}
-
-# Valid rounding modes
-_rounding_modes = (ROUND_DOWN, ROUND_HALF_UP, ROUND_HALF_EVEN, ROUND_CEILING,
-                   ROUND_FLOOR, ROUND_UP, ROUND_HALF_DOWN, ROUND_05UP)
-
-##### Context Functions ##################################################
-
-# The getcontext() and setcontext() function manage access to a thread-local
-# current context.  Py2.4 offers direct support for thread locals.  If that
-# is not available, use threading.current_thread() which is slower but will
-# work for older Pythons.  If threads are not part of the build, create a
-# mock threading object with threading.local() returning the module namespace.
-
-try:
-    import threading
-except ImportError:
-    # Python was compiled without threads; create a mock object instead
-    class MockThreading(object):
-        def local(self, sys=sys):
-            return sys.modules[__name__]
-    threading = MockThreading()
-    del MockThreading
-
-try:
-    threading.local
-
-except AttributeError:
-
-    # To fix reloading, force it to create a new context
-    # Old contexts have different exceptions in their dicts, making problems.
-    if hasattr(threading.current_thread(), '__decimal_context__'):
-        del threading.current_thread().__decimal_context__
-
-    def setcontext(context):
-        """Set this thread's context to context."""
-        if context in (DefaultContext, BasicContext, ExtendedContext):
-            context = context.copy()
-            context.clear_flags()
-        threading.current_thread().__decimal_context__ = context
-
-    def getcontext():
-        """Returns this thread's context.
-
-        If this thread does not yet have a context, returns
-        a new context and sets this thread's context.
-        New contexts are copies of DefaultContext.
-        """
-        try:
-            return threading.current_thread().__decimal_context__
-        except AttributeError:
-            context = Context()
-            threading.current_thread().__decimal_context__ = context
-            return context
-
-else:
-
-    local = threading.local()
-    if hasattr(local, '__decimal_context__'):
-        del local.__decimal_context__
-
-    def getcontext(_local=local):
-        """Returns this thread's context.
-
-        If this thread does not yet have a context, returns
-        a new context and sets this thread's context.
-        New contexts are copies of DefaultContext.
-        """
-        try:
-            return _local.__decimal_context__
-        except AttributeError:
-            context = Context()
-            _local.__decimal_context__ = context
-            return context
-
-    def setcontext(context, _local=local):
-        """Set this thread's context to context."""
-        if context in (DefaultContext, BasicContext, ExtendedContext):
-            context = context.copy()
-            context.clear_flags()
-        _local.__decimal_context__ = context
-
-    del threading, local        # Don't contaminate the namespace
-
-def localcontext(ctx=None):
-    """Return a context manager for a copy of the supplied context
-
-    Uses a copy of the current context if no context is specified
-    The returned context manager creates a local decimal context
-    in a with statement:
-        def sin(x):
-             with localcontext() as ctx:
-                 ctx.prec += 2
-                 # Rest of sin calculation algorithm
-                 # uses a precision 2 greater than normal
-             return +s  # Convert result to normal precision
-
-         def sin(x):
-             with localcontext(ExtendedContext):
-                 # Rest of sin calculation algorithm
-                 # uses the Extended Context from the
-                 # General Decimal Arithmetic Specification
-             return +s  # Convert result to normal context
-
-    >>> setcontext(DefaultContext)
-    >>> print(getcontext().prec)
-    28
-    >>> with localcontext():
-    ...     ctx = getcontext()
-    ...     ctx.prec += 2
-    ...     print(ctx.prec)
-    ...
-    30
-    >>> with localcontext(ExtendedContext):
-    ...     print(getcontext().prec)
-    ...
-    9
-    >>> print(getcontext().prec)
-    28
-    """
-    if ctx is None: ctx = getcontext()
-    return _ContextManager(ctx)
-
-
-##### Decimal class #######################################################
-
-# Do not subclass Decimal from numbers.Real and do not register it as such
-# (because Decimals are not interoperable with floats).  See the notes in
-# numbers.py for more detail.
-
-class Decimal(object):
-    """Floating point class for decimal arithmetic."""
-
-    __slots__ = ('_exp','_int','_sign', '_is_special')
-    # Generally, the value of the Decimal instance is given by
-    #  (-1)**_sign * _int * 10**_exp
-    # Special values are signified by _is_special == True
-
-    # We're immutable, so use __new__ not __init__
-    def __new__(cls, value="0", context=None):
-        """Create a decimal point instance.
-
-        >>> Decimal('3.14')              # string input
-        Decimal('3.14')
-        >>> Decimal((0, (3, 1, 4), -2))  # tuple (sign, digit_tuple, exponent)
-        Decimal('3.14')
-        >>> Decimal(314)                 # int
-        Decimal('314')
-        >>> Decimal(Decimal(314))        # another decimal instance
-        Decimal('314')
-        >>> Decimal('  3.14  \\n')        # leading and trailing whitespace okay
-        Decimal('3.14')
-        """
-
-        # Note that the coefficient, self._int, is actually stored as
-        # a string rather than as a tuple of digits.  This speeds up
-        # the "digits to integer" and "integer to digits" conversions
-        # that are used in almost every arithmetic operation on
-        # Decimals.  This is an internal detail: the as_tuple function
-        # and the Decimal constructor still deal with tuples of
-        # digits.
-
-        self = object.__new__(cls)
-
-        # From a string
-        # REs insist on real strings, so we can too.
-        if isinstance(value, str):
-            m = _parser(value.strip())
-            if m is None:
-                if context is None:
-                    context = getcontext()
-                return context._raise_error(ConversionSyntax,
-                                "Invalid literal for Decimal: %r" % value)
-
-            if m.group('sign') == "-":
-                self._sign = 1
-            else:
-                self._sign = 0
-            intpart = m.group('int')
-            if intpart is not None:
-                # finite number
-                fracpart = m.group('frac') or ''
-                exp = int(m.group('exp') or '0')
-                self._int = str(int(intpart+fracpart))
-                self._exp = exp - len(fracpart)
-                self._is_special = False
-            else:
-                diag = m.group('diag')
-                if diag is not None:
-                    # NaN
-                    self._int = str(int(diag or '0')).lstrip('0')
-                    if m.group('signal'):
-                        self._exp = 'N'
-                    else:
-                        self._exp = 'n'
-                else:
-                    # infinity
-                    self._int = '0'
-                    self._exp = 'F'
-                self._is_special = True
-            return self
-
-        # From an integer
-        if isinstance(value, int):
-            if value >= 0:
-                self._sign = 0
-            else:
-                self._sign = 1
-            self._exp = 0
-            self._int = str(abs(value))
-            self._is_special = False
-            return self
-
-        # From another decimal
-        if isinstance(value, Decimal):
-            self._exp  = value._exp
-            self._sign = value._sign
-            self._int  = value._int
-            self._is_special  = value._is_special
-            return self
-
-        # From an internal working value
-        if isinstance(value, _WorkRep):
-            self._sign = value.sign
-            self._int = str(value.int)
-            self._exp = int(value.exp)
-            self._is_special = False
-            return self
-
-        # tuple/list conversion (possibly from as_tuple())
-        if isinstance(value, (list,tuple)):
-            if len(value) != 3:
-                raise ValueError('Invalid tuple size in creation of Decimal '
-                                 'from list or tuple.  The list or tuple '
-                                 'should have exactly three elements.')
-            # process sign.  The isinstance test rejects floats
-            if not (isinstance(value[0], int) and value[0] in (0,1)):
-                raise ValueError("Invalid sign.  The first value in the tuple "
-                                 "should be an integer; either 0 for a "
-                                 "positive number or 1 for a negative number.")
-            self._sign = value[0]
-            if value[2] == 'F':
-                # infinity: value[1] is ignored
-                self._int = '0'
-                self._exp = value[2]
-                self._is_special = True
-            else:
-                # process and validate the digits in value[1]
-                digits = []
-                for digit in value[1]:
-                    if isinstance(digit, int) and 0 <= digit <= 9:
-                        # skip leading zeros
-                        if digits or digit != 0:
-                            digits.append(digit)
-                    else:
-                        raise ValueError("The second value in the tuple must "
-                                         "be composed of integers in the range "
-                                         "0 through 9.")
-                if value[2] in ('n', 'N'):
-                    # NaN: digits form the diagnostic
-                    self._int = ''.join(map(str, digits))
-                    self._exp = value[2]
-                    self._is_special = True
-                elif isinstance(value[2], int):
-                    # finite number: digits give the coefficient
-                    self._int = ''.join(map(str, digits or [0]))
-                    self._exp = value[2]
-                    self._is_special = False
-                else:
-                    raise ValueError("The third value in the tuple must "
-                                     "be an integer, or one of the "
-                                     "strings 'F', 'n', 'N'.")
-            return self
-
-        if isinstance(value, float):
-            if context is None:
-                context = getcontext()
-            context._raise_error(FloatOperation,
-                "strict semantics for mixing floats and Decimals are "
-                "enabled")
-            value = Decimal.from_float(value)
-            self._exp  = value._exp
-            self._sign = value._sign
-            self._int  = value._int
-            self._is_special  = value._is_special
-            return self
-
-        raise TypeError("Cannot convert %r to Decimal" % value)
-
-    @classmethod
-    def from_float(cls, f):
-        """Converts a float to a decimal number, exactly.
-
-        Note that Decimal.from_float(0.1) is not the same as Decimal('0.1').
-        Since 0.1 is not exactly representable in binary floating point, the
-        value is stored as the nearest representable value which is
-        0x1.999999999999ap-4.  The exact equivalent of the value in decimal
-        is 0.1000000000000000055511151231257827021181583404541015625.
-
-        >>> Decimal.from_float(0.1)
-        Decimal('0.1000000000000000055511151231257827021181583404541015625')
-        >>> Decimal.from_float(float('nan'))
-        Decimal('NaN')
-        >>> Decimal.from_float(float('inf'))
-        Decimal('Infinity')
-        >>> Decimal.from_float(-float('inf'))
-        Decimal('-Infinity')
-        >>> Decimal.from_float(-0.0)
-        Decimal('-0')
-
-        """
-        if isinstance(f, int):                # handle integer inputs
-            return cls(f)
-        if not isinstance(f, float):
-            raise TypeError("argument must be int or float.")
-        if _math.isinf(f) or _math.isnan(f):
-            return cls(repr(f))
-        if _math.copysign(1.0, f) == 1.0:
-            sign = 0
-        else:
-            sign = 1
-        n, d = abs(f).as_integer_ratio()
-        k = d.bit_length() - 1
-        result = _dec_from_triple(sign, str(n*5**k), -k)
-        if cls is Decimal:
-            return result
-        else:
-            return cls(result)
-
-    def _isnan(self):
-        """Returns whether the number is not actually one.
-
-        0 if a number
-        1 if NaN
-        2 if sNaN
-        """
-        if self._is_special:
-            exp = self._exp
-            if exp == 'n':
-                return 1
-            elif exp == 'N':
-                return 2
-        return 0
-
-    def _isinfinity(self):
-        """Returns whether the number is infinite
-
-        0 if finite or not a number
-        1 if +INF
-        -1 if -INF
-        """
-        if self._exp == 'F':
-            if self._sign:
-                return -1
-            return 1
-        return 0
-
-    def _check_nans(self, other=None, context=None):
-        """Returns whether the number is not actually one.
-
-        if self, other are sNaN, signal
-        if self, other are NaN return nan
-        return 0
-
-        Done before operations.
-        """
-
-        self_is_nan = self._isnan()
-        if other is None:
-            other_is_nan = False
-        else:
-            other_is_nan = other._isnan()
-
-        if self_is_nan or other_is_nan:
-            if context is None:
-                context = getcontext()
-
-            if self_is_nan == 2:
-                return context._raise_error(InvalidOperation, 'sNaN',
-                                        self)
-            if other_is_nan == 2:
-                return context._raise_error(InvalidOperation, 'sNaN',
-                                        other)
-            if self_is_nan:
-                return self._fix_nan(context)
-
-            return other._fix_nan(context)
-        return 0
-
-    def _compare_check_nans(self, other, context):
-        """Version of _check_nans used for the signaling comparisons
-        compare_signal, __le__, __lt__, __ge__, __gt__.
-
-        Signal InvalidOperation if either self or other is a (quiet
-        or signaling) NaN.  Signaling NaNs take precedence over quiet
-        NaNs.
-
-        Return 0 if neither operand is a NaN.
-
-        """
-        if context is None:
-            context = getcontext()
-
-        if self._is_special or other._is_special:
-            if self.is_snan():
-                return context._raise_error(InvalidOperation,
-                                            'comparison involving sNaN',
-                                            self)
-            elif other.is_snan():
-                return context._raise_error(InvalidOperation,
-                                            'comparison involving sNaN',
-                                            other)
-            elif self.is_qnan():
-                return context._raise_error(InvalidOperation,
-                                            'comparison involving NaN',
-                                            self)
-            elif other.is_qnan():
-                return context._raise_error(InvalidOperation,
-                                            'comparison involving NaN',
-                                            other)
-        return 0
-
-    def __bool__(self):
-        """Return True if self is nonzero; otherwise return False.
-
-        NaNs and infinities are considered nonzero.
-        """
-        return self._is_special or self._int != '0'
-
-    def _cmp(self, other):
-        """Compare the two non-NaN decimal instances self and other.
-
-        Returns -1 if self < other, 0 if self == other and 1
-        if self > other.  This routine is for internal use only."""
-
-        if self._is_special or other._is_special:
-            self_inf = self._isinfinity()
-            other_inf = other._isinfinity()
-            if self_inf == other_inf:
-                return 0
-            elif self_inf < other_inf:
-                return -1
-            else:
-                return 1
-
-        # check for zeros;  Decimal('0') == Decimal('-0')
-        if not self:
-            if not other:
-                return 0
-            else:
-                return -((-1)**other._sign)
-        if not other:
-            return (-1)**self._sign
-
-        # If different signs, neg one is less
-        if other._sign < self._sign:
-            return -1
-        if self._sign < other._sign:
-            return 1
-
-        self_adjusted = self.adjusted()
-        other_adjusted = other.adjusted()
-        if self_adjusted == other_adjusted:
-            self_padded = self._int + '0'*(self._exp - other._exp)
-            other_padded = other._int + '0'*(other._exp - self._exp)
-            if self_padded == other_padded:
-                return 0
-            elif self_padded < other_padded:
-                return -(-1)**self._sign
-            else:
-                return (-1)**self._sign
-        elif self_adjusted > other_adjusted:
-            return (-1)**self._sign
-        else: # self_adjusted < other_adjusted
-            return -((-1)**self._sign)
-
-    # Note: The Decimal standard doesn't cover rich comparisons for
-    # Decimals.  In particular, the specification is silent on the
-    # subject of what should happen for a comparison involving a NaN.
-    # We take the following approach:
-    #
-    #   == comparisons involving a quiet NaN always return False
-    #   != comparisons involving a quiet NaN always return True
-    #   == or != comparisons involving a signaling NaN signal
-    #      InvalidOperation, and return False or True as above if the
-    #      InvalidOperation is not trapped.
-    #   <, >, <= and >= comparisons involving a (quiet or signaling)
-    #      NaN signal InvalidOperation, and return False if the
-    #      InvalidOperation is not trapped.
-    #
-    # This behavior is designed to conform as closely as possible to
-    # that specified by IEEE 754.
-
-    def __eq__(self, other, context=None):
-        self, other = _convert_for_comparison(self, other, equality_op=True)
-        if other is NotImplemented:
-            return other
-        if self._check_nans(other, context):
-            return False
-        return self._cmp(other) == 0
-
-    def __ne__(self, other, context=None):
-        self, other = _convert_for_comparison(self, other, equality_op=True)
-        if other is NotImplemented:
-            return other
-        if self._check_nans(other, context):
-            return True
-        return self._cmp(other) != 0
-
-
-    def __lt__(self, other, context=None):
-        self, other = _convert_for_comparison(self, other)
-        if other is NotImplemented:
-            return other
-        ans = self._compare_check_nans(other, context)
-        if ans:
-            return False
-        return self._cmp(other) < 0
-
-    def __le__(self, other, context=None):
-        self, other = _convert_for_comparison(self, other)
-        if other is NotImplemented:
-            return other
-        ans = self._compare_check_nans(other, context)
-        if ans:
-            return False
-        return self._cmp(other) <= 0
-
-    def __gt__(self, other, context=None):
-        self, other = _convert_for_comparison(self, other)
-        if other is NotImplemented:
-            return other
-        ans = self._compare_check_nans(other, context)
-        if ans:
-            return False
-        return self._cmp(other) > 0
-
-    def __ge__(self, other, context=None):
-        self, other = _convert_for_comparison(self, other)
-        if other is NotImplemented:
-            return other
-        ans = self._compare_check_nans(other, context)
-        if ans:
-            return False
-        return self._cmp(other) >= 0
-
-    def compare(self, other, context=None):
-        """Compares one to another.
-
-        -1 => a < b
-        0  => a = b
-        1  => a > b
-        NaN => one is NaN
-        Like __cmp__, but returns Decimal instances.
-        """
-        other = _convert_other(other, raiseit=True)
-
-        # Compare(NaN, NaN) = NaN
-        if (self._is_special or other and other._is_special):
-            ans = self._check_nans(other, context)
-            if ans:
-                return ans
-
-        return Decimal(self._cmp(other))
-
-    def __hash__(self):
-        """x.__hash__() <==> hash(x)"""
-
-        # In order to make sure that the hash of a Decimal instance
-        # agrees with the hash of a numerically equal integer, float
-        # or Fraction, we follow the rules for numeric hashes outlined
-        # in the documentation.  (See library docs, 'Built-in Types').
-        if self._is_special:
-            if self.is_snan():
-                raise TypeError('Cannot hash a signaling NaN value.')
-            elif self.is_nan():
-                return _PyHASH_NAN
-            else:
-                if self._sign:
-                    return -_PyHASH_INF
-                else:
-                    return _PyHASH_INF
-
-        if self._exp >= 0:
-            exp_hash = pow(10, self._exp, _PyHASH_MODULUS)
-        else:
-            exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS)
-        hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS
-        ans = hash_ if self >= 0 else -hash_
-        return -2 if ans == -1 else ans
-
-    def as_tuple(self):
-        """Represents the number as a triple tuple.
-
-        To show the internals exactly as they are.
-        """
-        return DecimalTuple(self._sign, tuple(map(int, self._int)), self._exp)
-
-    def __repr__(self):
-        """Represents the number as an instance of Decimal."""
-        # Invariant:  eval(repr(d)) == d
-        return "Decimal('%s')" % str(self)
-
-    def __str__(self, eng=False, context=None):
-        """Return string representation of the number in scientific notation.
-
-        Captures all of the information in the underlying representation.
-        """
-
-        sign = ['', '-'][self._sign]
-        if self._is_special:
-            if self._exp == 'F':
-                return sign + 'Infinity'
-            elif self._exp == 'n':
-                return sign + 'NaN' + self._int
-            else: # self._exp == 'N'
-                return sign + 'sNaN' + self._int
-
-        # number of digits of self._int to left of decimal point
-        leftdigits = self._exp + len(self._int)
-
-        # dotplace is number of digits of self._int to the left of the
-        # decimal point in the mantissa of the output string (that is,
-        # after adjusting the exponent)
-        if self._exp <= 0 and leftdigits > -6:
-            # no exponent required
-            dotplace = leftdigits
-        elif not eng:
-            # usual scientific notation: 1 digit on left of the point
-            dotplace = 1
-        elif self._int == '0':
-            # engineering notation, zero
-            dotplace = (leftdigits + 1) % 3 - 1
-        else:
-            # engineering notation, nonzero
-            dotplace = (leftdigits - 1) % 3 + 1
-
-        if dotplace <= 0:
-            intpart = '0'
-            fracpart = '.' + '0'*(-dotplace) + self._int
-        elif dotplace >= len(self._int):
-            intpart = self._int+'0'*(dotplace-len(self._int))
-            fracpart = ''
-        else:
-            intpart = self._int[:dotplace]
-            fracpart = '.' + self._int[dotplace:]
-        if leftdigits == dotplace:
-            exp = ''
-        else:
-            if context is None:
-                context = getcontext()
-            exp = ['e', 'E'][context.capitals] + "%+d" % (leftdigits-dotplace)
-
-        return sign + intpart + fracpart + exp
-
-    def to_eng_string(self, context=None):
-        """Convert to engineering-type string.
-
-        Engineering notation has an exponent which is a multiple of 3, so there
-        are up to 3 digits left of the decimal place.
-
-        Same rules for when in exponential and when as a value as in __str__.
-        """
-        return self.__str__(eng=True, context=context)
-
-    def __neg__(self, context=None):
-        """Returns a copy with the sign switched.
-
-        Rounds, if it has reason.
-        """
-        if self._is_special:
-            ans = self._check_nans(context=context)
-            if ans:
-                return ans
-
-        if context is None:
-            context = getcontext()
-
-        if not self and context.rounding != ROUND_FLOOR:
-            # -Decimal('0') is Decimal('0'), not Decimal('-0'), except
-            # in ROUND_FLOOR rounding mode.
-            ans = self.copy_abs()
-        else:
-            ans = self.copy_negate()
-
-        return ans._fix(context)
-
-    def __pos__(self, context=None):
-        """Returns a copy, unless it is a sNaN.
-
-        Rounds the number (if more then precision digits)
-        """
-        if self._is_special:
-            ans = self._check_nans(context=context)
-            if ans:
-                return ans
-
-        if context is None:
-            context = getcontext()
-
-        if not self and context.rounding != ROUND_FLOOR:
-            # + (-0) = 0, except in ROUND_FLOOR rounding mode.
-            ans = self.copy_abs()
-        else:
-            ans = Decimal(self)
-
-        return ans._fix(context)
-
-    def __abs__(self, round=True, context=None):
-        """Returns the absolute value of self.
-
-        If the keyword argument 'round' is false, do not round.  The
-        expression self.__abs__(round=False) is equivalent to
-        self.copy_abs().
-        """
-        if not round:
-            return self.copy_abs()
-
-        if self._is_special:
-            ans = self._check_nans(context=context)
-            if ans:
-                return ans
-
-        if self._sign:
-            ans = self.__neg__(context=context)
-        else:
-            ans = self.__pos__(context=context)
-
-        return ans
-
-    def __add__(self, other, context=None):
-        """Returns self + other.
-
-        -INF + INF (or the reverse) cause InvalidOperation errors.
-        """
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        if context is None:
-            context = getcontext()
-
-        if self._is_special or other._is_special:
-            ans = self._check_nans(other, context)
-            if ans:
-                return ans
-
-            if self._isinfinity():
-                # If both INF, same sign => same as both, opposite => error.
-                if self._sign != other._sign and other._isinfinity():
-                    return context._raise_error(InvalidOperation, '-INF + INF')
-                return Decimal(self)
-            if other._isinfinity():
-                return Decimal(other)  # Can't both be infinity here
-
-        exp = min(self._exp, other._exp)
-        negativezero = 0
-        if context.rounding == ROUND_FLOOR and self._sign != other._sign:
-            # If the answer is 0, the sign should be negative, in this case.
-            negativezero = 1
-
-        if not self and not other:
-            sign = min(self._sign, other._sign)
-            if negativezero:
-                sign = 1
-            ans = _dec_from_triple(sign, '0', exp)
-            ans = ans._fix(context)
-            return ans
-        if not self:
-            exp = max(exp, other._exp - context.prec-1)
-            ans = other._rescale(exp, context.rounding)
-            ans = ans._fix(context)
-            return ans
-        if not other:
-            exp = max(exp, self._exp - context.prec-1)
-            ans = self._rescale(exp, context.rounding)
-            ans = ans._fix(context)
-            return ans
-
-        op1 = _WorkRep(self)
-        op2 = _WorkRep(other)
-        op1, op2 = _normalize(op1, op2, context.prec)
-
-        result = _WorkRep()
-        if op1.sign != op2.sign:
-            # Equal and opposite
-            if op1.int == op2.int:
-                ans = _dec_from_triple(negativezero, '0', exp)
-                ans = ans._fix(context)
-                return ans
-            if op1.int < op2.int:
-                op1, op2 = op2, op1
-                # OK, now abs(op1) > abs(op2)
-            if op1.sign == 1:
-                result.sign = 1
-                op1.sign, op2.sign = op2.sign, op1.sign
-            else:
-                result.sign = 0
-                # So we know the sign, and op1 > 0.
-        elif op1.sign == 1:
-            result.sign = 1
-            op1.sign, op2.sign = (0, 0)
-        else:
-            result.sign = 0
-        # Now, op1 > abs(op2) > 0
-
-        if op2.sign == 0:
-            result.int = op1.int + op2.int
-        else:
-            result.int = op1.int - op2.int
-
-        result.exp = op1.exp
-        ans = Decimal(result)
-        ans = ans._fix(context)
-        return ans
-
-    __radd__ = __add__
-
-    def __sub__(self, other, context=None):
-        """Return self - other"""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        if self._is_special or other._is_special:
-            ans = self._check_nans(other, context=context)
-            if ans:
-                return ans
-
-        # self - other is computed as self + other.copy_negate()
-        return self.__add__(other.copy_negate(), context=context)
-
-    def __rsub__(self, other, context=None):
-        """Return other - self"""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        return other.__sub__(self, context=context)
-
-    def __mul__(self, other, context=None):
-        """Return self * other.
-
-        (+-) INF * 0 (or its reverse) raise InvalidOperation.
-        """
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        if context is None:
-            context = getcontext()
-
-        resultsign = self._sign ^ other._sign
-
-        if self._is_special or other._is_special:
-            ans = self._check_nans(other, context)
-            if ans:
-                return ans
-
-            if self._isinfinity():
-                if not other:
-                    return context._raise_error(InvalidOperation, '(+-)INF * 0')
-                return _SignedInfinity[resultsign]
-
-            if other._isinfinity():
-                if not self:
-                    return context._raise_error(InvalidOperation, '0 * (+-)INF')
-                return _SignedInfinity[resultsign]
-
-        resultexp = self._exp + other._exp
-
-        # Special case for multiplying by zero
-        if not self or not other:
-            ans = _dec_from_triple(resultsign, '0', resultexp)
-            # Fixing in case the exponent is out of bounds
-            ans = ans._fix(context)
-            return ans
-
-        # Special case for multiplying by power of 10
-        if self._int == '1':
-            ans = _dec_from_triple(resultsign, other._int, resultexp)
-            ans = ans._fix(context)
-            return ans
-        if other._int == '1':
-            ans = _dec_from_triple(resultsign, self._int, resultexp)
-            ans = ans._fix(context)
-            return ans
-
-        op1 = _WorkRep(self)
-        op2 = _WorkRep(other)
-
-        ans = _dec_from_triple(resultsign, str(op1.int * op2.int), resultexp)
-        ans = ans._fix(context)
-
-        return ans
-    __rmul__ = __mul__
-
-    def __truediv__(self, other, context=None):
-        """Return self / other."""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return NotImplemented
-
-        if context is None:
-            context = getcontext()
-
-        sign = self._sign ^ other._sign
-
-        if self._is_special or other._is_special:
-            ans = self._check_nans(other, context)
-            if ans:
-                return ans
-
-            if self._isinfinity() and other._isinfinity():
-                return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
-
-            if self._isinfinity():
-                return _SignedInfinity[sign]
-
-            if other._isinfinity():
-                context._raise_error(Clamped, 'Division by infinity')
-                return _dec_from_triple(sign, '0', context.Etiny())
-
-        # Special cases for zeroes
-        if not other:
-            if not self:
-                return context._raise_error(DivisionUndefined, '0 / 0')
-            return context._raise_error(DivisionByZero, 'x / 0', sign)
-
-        if not self:
-            exp = self._exp - other._exp
-            coeff = 0
-        else:
-            # OK, so neither = 0, INF or NaN
-            shift = len(other._int) - len(self._int) + context.prec + 1
-            exp = self._exp - other._exp - shift
-            op1 = _WorkRep(self)
-            op2 = _WorkRep(other)
-            if shift >= 0:
-                coeff, remainder = divmod(op1.int * 10**shift, op2.int)
-            else:
-                coeff, remainder = divmod(op1.int, op2.int * 10**-shift)
-            if remainder:
-                # result is not exact; adjust to ensure correct rounding
-                if coeff % 5 == 0:
-                    coeff += 1
-            else:
-                # result is exact; get as close to ideal exponent as possible
-                ideal_exp = self._exp - other._exp
-                while exp < ideal_exp and coeff % 10 == 0:
-                    coeff //= 10
-                    exp += 1
-
-        ans = _dec_from_triple(sign, str(coeff), exp)
-        return ans._fix(context)
-
-    def _divide(self, other, context):
-        """Return (self // other, self % other), to context.prec precision.
-
-        Assumes that neither self nor other is a NaN, that self is not
-        infinite and that other is nonzero.
-        """
-        sign = self._sign ^ other._sign
-        if other._isinfinity():
-            ideal_exp = self._exp
-        else:
-            ideal_exp = min(self._exp, other._exp)
-
-        expdiff = self.adjusted() - other.adjusted()
-        if not self or other._isinfinity() or expdiff <= -2:
-            return (_dec_from_triple(sign, '0', 0),
-                    self._rescale(ideal_exp, context.rounding))
-        if expdiff <= context.prec:
-            op1 = _WorkRep(self)
-            op2 = _WorkRep(other)
-            if op1.exp >= op2.exp:
-                op1.int *= 10**(op1.exp - op2.exp)
-            else:
-                op2.int *= 10**(op2.exp - op1.exp)
-            q, r = divmod(op1.int, op2.int)
-            if q < 10**context.prec:
-                return (_dec_from_triple(sign, str(q), 0),
-                        _dec_from_triple(self._sign, str(r), ideal_exp))
-
-        # Here the quotient is too large to be representable
-        ans = context._raise_error(DivisionImpossible,
-                                   'quotient too large in //, % or divmod')
-        return ans, ans
-
-    def __rtruediv__(self, other, context=None):
-        """Swaps self/other and returns __truediv__."""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-        return other.__truediv__(self, context=context)
-
-    def __divmod__(self, other, context=None):
-        """
-        Return (self // other, self % other)
-        """
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        if context is None:
-            context = getcontext()
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return (ans, ans)
-
-        sign = self._sign ^ other._sign
-        if self._isinfinity():
-            if other._isinfinity():
-                ans = context._raise_error(InvalidOperation, 'divmod(INF, INF)')
-                return ans, ans
-            else:
-                return (_SignedInfinity[sign],
-                        context._raise_error(InvalidOperation, 'INF % x'))
-
-        if not other:
-            if not self:
-                ans = context._raise_error(DivisionUndefined, 'divmod(0, 0)')
-                return ans, ans
-            else:
-                return (context._raise_error(DivisionByZero, 'x // 0', sign),
-                        context._raise_error(InvalidOperation, 'x % 0'))
-
-        quotient, remainder = self._divide(other, context)
-        remainder = remainder._fix(context)
-        return quotient, remainder
-
-    def __rdivmod__(self, other, context=None):
-        """Swaps self/other and returns __divmod__."""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-        return other.__divmod__(self, context=context)
-
-    def __mod__(self, other, context=None):
-        """
-        self % other
-        """
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        if context is None:
-            context = getcontext()
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        if self._isinfinity():
-            return context._raise_error(InvalidOperation, 'INF % x')
-        elif not other:
-            if self:
-                return context._raise_error(InvalidOperation, 'x % 0')
-            else:
-                return context._raise_error(DivisionUndefined, '0 % 0')
-
-        remainder = self._divide(other, context)[1]
-        remainder = remainder._fix(context)
-        return remainder
-
-    def __rmod__(self, other, context=None):
-        """Swaps self/other and returns __mod__."""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-        return other.__mod__(self, context=context)
-
-    def remainder_near(self, other, context=None):
-        """
-        Remainder nearest to 0-  abs(remainder-near) <= other/2
-        """
-        if context is None:
-            context = getcontext()
-
-        other = _convert_other(other, raiseit=True)
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        # self == +/-infinity -> InvalidOperation
-        if self._isinfinity():
-            return context._raise_error(InvalidOperation,
-                                        'remainder_near(infinity, x)')
-
-        # other == 0 -> either InvalidOperation or DivisionUndefined
-        if not other:
-            if self:
-                return context._raise_error(InvalidOperation,
-                                            'remainder_near(x, 0)')
-            else:
-                return context._raise_error(DivisionUndefined,
-                                            'remainder_near(0, 0)')
-
-        # other = +/-infinity -> remainder = self
-        if other._isinfinity():
-            ans = Decimal(self)
-            return ans._fix(context)
-
-        # self = 0 -> remainder = self, with ideal exponent
-        ideal_exponent = min(self._exp, other._exp)
-        if not self:
-            ans = _dec_from_triple(self._sign, '0', ideal_exponent)
-            return ans._fix(context)
-
-        # catch most cases of large or small quotient
-        expdiff = self.adjusted() - other.adjusted()
-        if expdiff >= context.prec + 1:
-            # expdiff >= prec+1 => abs(self/other) > 10**prec
-            return context._raise_error(DivisionImpossible)
-        if expdiff <= -2:
-            # expdiff <= -2 => abs(self/other) < 0.1
-            ans = self._rescale(ideal_exponent, context.rounding)
-            return ans._fix(context)
-
-        # adjust both arguments to have the same exponent, then divide
-        op1 = _WorkRep(self)
-        op2 = _WorkRep(other)
-        if op1.exp >= op2.exp:
-            op1.int *= 10**(op1.exp - op2.exp)
-        else:
-            op2.int *= 10**(op2.exp - op1.exp)
-        q, r = divmod(op1.int, op2.int)
-        # remainder is r*10**ideal_exponent; other is +/-op2.int *
-        # 10**ideal_exponent.   Apply correction to ensure that
-        # abs(remainder) <= abs(other)/2
-        if 2*r + (q&1) > op2.int:
-            r -= op2.int
-            q += 1
-
-        if q >= 10**context.prec:
-            return context._raise_error(DivisionImpossible)
-
-        # result has same sign as self unless r is negative
-        sign = self._sign
-        if r < 0:
-            sign = 1-sign
-            r = -r
-
-        ans = _dec_from_triple(sign, str(r), ideal_exponent)
-        return ans._fix(context)
-
-    def __floordiv__(self, other, context=None):
-        """self // other"""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        if context is None:
-            context = getcontext()
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        if self._isinfinity():
-            if other._isinfinity():
-                return context._raise_error(InvalidOperation, 'INF // INF')
-            else:
-                return _SignedInfinity[self._sign ^ other._sign]
-
-        if not other:
-            if self:
-                return context._raise_error(DivisionByZero, 'x // 0',
-                                            self._sign ^ other._sign)
-            else:
-                return context._raise_error(DivisionUndefined, '0 // 0')
-
-        return self._divide(other, context)[0]
-
-    def __rfloordiv__(self, other, context=None):
-        """Swaps self/other and returns __floordiv__."""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-        return other.__floordiv__(self, context=context)
-
-    def __float__(self):
-        """Float representation."""
-        if self._isnan():
-            if self.is_snan():
-                raise ValueError("Cannot convert signaling NaN to float")
-            s = "-nan" if self._sign else "nan"
-        else:
-            s = str(self)
-        return float(s)
-
-    def __int__(self):
-        """Converts self to an int, truncating if necessary."""
-        if self._is_special:
-            if self._isnan():
-                raise ValueError("Cannot convert NaN to integer")
-            elif self._isinfinity():
-                raise OverflowError("Cannot convert infinity to integer")
-        s = (-1)**self._sign
-        if self._exp >= 0:
-            return s*int(self._int)*10**self._exp
-        else:
-            return s*int(self._int[:self._exp] or '0')
-
-    __trunc__ = __int__
-
-    def real(self):
-        return self
-    real = property(real)
-
-    def imag(self):
-        return Decimal(0)
-    imag = property(imag)
-
-    def conjugate(self):
-        return self
-
-    def __complex__(self):
-        return complex(float(self))
-
-    def _fix_nan(self, context):
-        """Decapitate the payload of a NaN to fit the context"""
-        payload = self._int
-
-        # maximum length of payload is precision if clamp=0,
-        # precision-1 if clamp=1.
-        max_payload_len = context.prec - context.clamp
-        if len(payload) > max_payload_len:
-            payload = payload[len(payload)-max_payload_len:].lstrip('0')
-            return _dec_from_triple(self._sign, payload, self._exp, True)
-        return Decimal(self)
-
-    def _fix(self, context):
-        """Round if it is necessary to keep self within prec precision.
-
-        Rounds and fixes the exponent.  Does not raise on a sNaN.
-
-        Arguments:
-        self - Decimal instance
-        context - context used.
-        """
-
-        if self._is_special:
-            if self._isnan():
-                # decapitate payload if necessary
-                return self._fix_nan(context)
-            else:
-                # self is +/-Infinity; return unaltered
-                return Decimal(self)
-
-        # if self is zero then exponent should be between Etiny and
-        # Emax if clamp==0, and between Etiny and Etop if clamp==1.
-        Etiny = context.Etiny()
-        Etop = context.Etop()
-        if not self:
-            exp_max = [context.Emax, Etop][context.clamp]
-            new_exp = min(max(self._exp, Etiny), exp_max)
-            if new_exp != self._exp:
-                context._raise_error(Clamped)
-                return _dec_from_triple(self._sign, '0', new_exp)
-            else:
-                return Decimal(self)
-
-        # exp_min is the smallest allowable exponent of the result,
-        # equal to max(self.adjusted()-context.prec+1, Etiny)
-        exp_min = len(self._int) + self._exp - context.prec
-        if exp_min > Etop:
-            # overflow: exp_min > Etop iff self.adjusted() > Emax
-            ans = context._raise_error(Overflow, 'above Emax', self._sign)
-            context._raise_error(Inexact)
-            context._raise_error(Rounded)
-            return ans
-
-        self_is_subnormal = exp_min < Etiny
-        if self_is_subnormal:
-            exp_min = Etiny
-
-        # round if self has too many digits
-        if self._exp < exp_min:
-            digits = len(self._int) + self._exp - exp_min
-            if digits < 0:
-                self = _dec_from_triple(self._sign, '1', exp_min-1)
-                digits = 0
-            rounding_method = self._pick_rounding_function[context.rounding]
-            changed = rounding_method(self, digits)
-            coeff = self._int[:digits] or '0'
-            if changed > 0:
-                coeff = str(int(coeff)+1)
-                if len(coeff) > context.prec:
-                    coeff = coeff[:-1]
-                    exp_min += 1
-
-            # check whether the rounding pushed the exponent out of range
-            if exp_min > Etop:
-                ans = context._raise_error(Overflow, 'above Emax', self._sign)
-            else:
-                ans = _dec_from_triple(self._sign, coeff, exp_min)
-
-            # raise the appropriate signals, taking care to respect
-            # the precedence described in the specification
-            if changed and self_is_subnormal:
-                context._raise_error(Underflow)
-            if self_is_subnormal:
-                context._raise_error(Subnormal)
-            if changed:
-                context._raise_error(Inexact)
-            context._raise_error(Rounded)
-            if not ans:
-                # raise Clamped on underflow to 0
-                context._raise_error(Clamped)
-            return ans
-
-        if self_is_subnormal:
-            context._raise_error(Subnormal)
-
-        # fold down if clamp == 1 and self has too few digits
-        if context.clamp == 1 and self._exp > Etop:
-            context._raise_error(Clamped)
-            self_padded = self._int + '0'*(self._exp - Etop)
-            return _dec_from_triple(self._sign, self_padded, Etop)
-
-        # here self was representable to begin with; return unchanged
-        return Decimal(self)
-
-    # for each of the rounding functions below:
-    #   self is a finite, nonzero Decimal
-    #   prec is an integer satisfying 0 <= prec < len(self._int)
-    #
-    # each function returns either -1, 0, or 1, as follows:
-    #   1 indicates that self should be rounded up (away from zero)
-    #   0 indicates that self should be truncated, and that all the
-    #     digits to be truncated are zeros (so the value is unchanged)
-    #  -1 indicates that there are nonzero digits to be truncated
-
-    def _round_down(self, prec):
-        """Also known as round-towards-0, truncate."""
-        if _all_zeros(self._int, prec):
-            return 0
-        else:
-            return -1
-
-    def _round_up(self, prec):
-        """Rounds away from 0."""
-        return -self._round_down(prec)
-
-    def _round_half_up(self, prec):
-        """Rounds 5 up (away from 0)"""
-        if self._int[prec] in '56789':
-            return 1
-        elif _all_zeros(self._int, prec):
-            return 0
-        else:
-            return -1
-
-    def _round_half_down(self, prec):
-        """Round 5 down"""
-        if _exact_half(self._int, prec):
-            return -1
-        else:
-            return self._round_half_up(prec)
-
-    def _round_half_even(self, prec):
-        """Round 5 to even, rest to nearest."""
-        if _exact_half(self._int, prec) and \
-                (prec == 0 or self._int[prec-1] in '02468'):
-            return -1
-        else:
-            return self._round_half_up(prec)
-
-    def _round_ceiling(self, prec):
-        """Rounds up (not away from 0 if negative.)"""
-        if self._sign:
-            return self._round_down(prec)
-        else:
-            return -self._round_down(prec)
-
-    def _round_floor(self, prec):
-        """Rounds down (not towards 0 if negative)"""
-        if not self._sign:
-            return self._round_down(prec)
-        else:
-            return -self._round_down(prec)
-
-    def _round_05up(self, prec):
-        """Round down unless digit prec-1 is 0 or 5."""
-        if prec and self._int[prec-1] not in '05':
-            return self._round_down(prec)
-        else:
-            return -self._round_down(prec)
-
-    _pick_rounding_function = dict(
-        ROUND_DOWN = _round_down,
-        ROUND_UP = _round_up,
-        ROUND_HALF_UP = _round_half_up,
-        ROUND_HALF_DOWN = _round_half_down,
-        ROUND_HALF_EVEN = _round_half_even,
-        ROUND_CEILING = _round_ceiling,
-        ROUND_FLOOR = _round_floor,
-        ROUND_05UP = _round_05up,
-    )
-
-    def __round__(self, n=None):
-        """Round self to the nearest integer, or to a given precision.
-
-        If only one argument is supplied, round a finite Decimal
-        instance self to the nearest integer.  If self is infinite or
-        a NaN then a Python exception is raised.  If self is finite
-        and lies exactly halfway between two integers then it is
-        rounded to the integer with even last digit.
-
-        >>> round(Decimal('123.456'))
-        123
-        >>> round(Decimal('-456.789'))
-        -457
-        >>> round(Decimal('-3.0'))
-        -3
-        >>> round(Decimal('2.5'))
-        2
-        >>> round(Decimal('3.5'))
-        4
-        >>> round(Decimal('Inf'))
-        Traceback (most recent call last):
-          ...
-        OverflowError: cannot round an infinity
-        >>> round(Decimal('NaN'))
-        Traceback (most recent call last):
-          ...
-        ValueError: cannot round a NaN
-
-        If a second argument n is supplied, self is rounded to n
-        decimal places using the rounding mode for the current
-        context.
-
-        For an integer n, round(self, -n) is exactly equivalent to
-        self.quantize(Decimal('1En')).
-
-        >>> round(Decimal('123.456'), 0)
-        Decimal('123')
-        >>> round(Decimal('123.456'), 2)
-        Decimal('123.46')
-        >>> round(Decimal('123.456'), -2)
-        Decimal('1E+2')
-        >>> round(Decimal('-Infinity'), 37)
-        Decimal('NaN')
-        >>> round(Decimal('sNaN123'), 0)
-        Decimal('NaN123')
-
-        """
-        if n is not None:
-            # two-argument form: use the equivalent quantize call
-            if not isinstance(n, int):
-                raise TypeError('Second argument to round should be integral')
-            exp = _dec_from_triple(0, '1', -n)
-            return self.quantize(exp)
-
-        # one-argument form
-        if self._is_special:
-            if self.is_nan():
-                raise ValueError("cannot round a NaN")
-            else:
-                raise OverflowError("cannot round an infinity")
-        return int(self._rescale(0, ROUND_HALF_EVEN))
-
-    def __floor__(self):
-        """Return the floor of self, as an integer.
-
-        For a finite Decimal instance self, return the greatest
-        integer n such that n <= self.  If self is infinite or a NaN
-        then a Python exception is raised.
-
-        """
-        if self._is_special:
-            if self.is_nan():
-                raise ValueError("cannot round a NaN")
-            else:
-                raise OverflowError("cannot round an infinity")
-        return int(self._rescale(0, ROUND_FLOOR))
-
-    def __ceil__(self):
-        """Return the ceiling of self, as an integer.
-
-        For a finite Decimal instance self, return the least integer n
-        such that n >= self.  If self is infinite or a NaN then a
-        Python exception is raised.
-
-        """
-        if self._is_special:
-            if self.is_nan():
-                raise ValueError("cannot round a NaN")
-            else:
-                raise OverflowError("cannot round an infinity")
-        return int(self._rescale(0, ROUND_CEILING))
-
-    def fma(self, other, third, context=None):
-        """Fused multiply-add.
-
-        Returns self*other+third with no rounding of the intermediate
-        product self*other.
-
-        self and other are multiplied together, with no rounding of
-        the result.  The third operand is then added to the result,
-        and a single final rounding is performed.
-        """
-
-        other = _convert_other(other, raiseit=True)
-        third = _convert_other(third, raiseit=True)
-
-        # compute product; raise InvalidOperation if either operand is
-        # a signaling NaN or if the product is zero times infinity.
-        if self._is_special or other._is_special:
-            if context is None:
-                context = getcontext()
-            if self._exp == 'N':
-                return context._raise_error(InvalidOperation, 'sNaN', self)
-            if other._exp == 'N':
-                return context._raise_error(InvalidOperation, 'sNaN', other)
-            if self._exp == 'n':
-                product = self
-            elif other._exp == 'n':
-                product = other
-            elif self._exp == 'F':
-                if not other:
-                    return context._raise_error(InvalidOperation,
-                                                'INF * 0 in fma')
-                product = _SignedInfinity[self._sign ^ other._sign]
-            elif other._exp == 'F':
-                if not self:
-                    return context._raise_error(InvalidOperation,
-                                                '0 * INF in fma')
-                product = _SignedInfinity[self._sign ^ other._sign]
-        else:
-            product = _dec_from_triple(self._sign ^ other._sign,
-                                       str(int(self._int) * int(other._int)),
-                                       self._exp + other._exp)
-
-        return product.__add__(third, context)
-
-    def _power_modulo(self, other, modulo, context=None):
-        """Three argument version of __pow__"""
-
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-        modulo = _convert_other(modulo)
-        if modulo is NotImplemented:
-            return modulo
-
-        if context is None:
-            context = getcontext()
-
-        # deal with NaNs: if there are any sNaNs then first one wins,
-        # (i.e. behaviour for NaNs is identical to that of fma)
-        self_is_nan = self._isnan()
-        other_is_nan = other._isnan()
-        modulo_is_nan = modulo._isnan()
-        if self_is_nan or other_is_nan or modulo_is_nan:
-            if self_is_nan == 2:
-                return context._raise_error(InvalidOperation, 'sNaN',
-                                        self)
-            if other_is_nan == 2:
-                return context._raise_error(InvalidOperation, 'sNaN',
-                                        other)
-            if modulo_is_nan == 2:
-                return context._raise_error(InvalidOperation, 'sNaN',
-                                        modulo)
-            if self_is_nan:
-                return self._fix_nan(context)
-            if other_is_nan:
-                return other._fix_nan(context)
-            return modulo._fix_nan(context)
-
-        # check inputs: we apply same restrictions as Python's pow()
-        if not (self._isinteger() and
-                other._isinteger() and
-                modulo._isinteger()):
-            return context._raise_error(InvalidOperation,
-                                        'pow() 3rd argument not allowed '
-                                        'unless all arguments are integers')
-        if other < 0:
-            return context._raise_error(InvalidOperation,
-                                        'pow() 2nd argument cannot be '
-                                        'negative when 3rd argument specified')
-        if not modulo:
-            return context._raise_error(InvalidOperation,
-                                        'pow() 3rd argument cannot be 0')
-
-        # additional restriction for decimal: the modulus must be less
-        # than 10**prec in absolute value
-        if modulo.adjusted() >= context.prec:
-            return context._raise_error(InvalidOperation,
-                                        'insufficient precision: pow() 3rd '
-                                        'argument must not have more than '
-                                        'precision digits')
-
-        # define 0**0 == NaN, for consistency with two-argument pow
-        # (even though it hurts!)
-        if not other and not self:
-            return context._raise_error(InvalidOperation,
-                                        'at least one of pow() 1st argument '
-                                        'and 2nd argument must be nonzero ;'
-                                        '0**0 is not defined')
-
-        # compute sign of result
-        if other._iseven():
-            sign = 0
-        else:
-            sign = self._sign
-
-        # convert modulo to a Python integer, and self and other to
-        # Decimal integers (i.e. force their exponents to be >= 0)
-        modulo = abs(int(modulo))
-        base = _WorkRep(self.to_integral_value())
-        exponent = _WorkRep(other.to_integral_value())
-
-        # compute result using integer pow()
-        base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
-        for i in range(exponent.exp):
-            base = pow(base, 10, modulo)
-        base = pow(base, exponent.int, modulo)
-
-        return _dec_from_triple(sign, str(base), 0)
-
-    def _power_exact(self, other, p):
-        """Attempt to compute self**other exactly.
-
-        Given Decimals self and other and an integer p, attempt to
-        compute an exact result for the power self**other, with p
-        digits of precision.  Return None if self**other is not
-        exactly representable in p digits.
-
-        Assumes that elimination of special cases has already been
-        performed: self and other must both be nonspecial; self must
-        be positive and not numerically equal to 1; other must be
-        nonzero.  For efficiency, other._exp should not be too large,
-        so that 10**abs(other._exp) is a feasible calculation."""
-
-        # In the comments below, we write x for the value of self and y for the
-        # value of other.  Write x = xc*10**xe and abs(y) = yc*10**ye, with xc
-        # and yc positive integers not divisible by 10.
-
-        # The main purpose of this method is to identify the *failure*
-        # of x**y to be exactly representable with as little effort as
-        # possible.  So we look for cheap and easy tests that
-        # eliminate the possibility of x**y being exact.  Only if all
-        # these tests are passed do we go on to actually compute x**y.
-
-        # Here's the main idea.  Express y as a rational number m/n, with m and
-        # n relatively prime and n>0.  Then for x**y to be exactly
-        # representable (at *any* precision), xc must be the nth power of a
-        # positive integer and xe must be divisible by n.  If y is negative
-        # then additionally xc must be a power of either 2 or 5, hence a power
-        # of 2**n or 5**n.
-        #
-        # There's a limit to how small |y| can be: if y=m/n as above
-        # then:
-        #
-        #  (1) if xc != 1 then for the result to be representable we
-        #      need xc**(1/n) >= 2, and hence also xc**|y| >= 2.  So
-        #      if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
-        #      2**(1/|y|), hence xc**|y| < 2 and the result is not
-        #      representable.
-        #
-        #  (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1.  Hence if
-        #      |y| < 1/|xe| then the result is not representable.
-        #
-        # Note that since x is not equal to 1, at least one of (1) and
-        # (2) must apply.  Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
-        # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
-        #
-        # There's also a limit to how large y can be, at least if it's
-        # positive: the normalized result will have coefficient xc**y,
-        # so if it's representable then xc**y < 10**p, and y <
-        # p/log10(xc).  Hence if y*log10(xc) >= p then the result is
-        # not exactly representable.
-
-        # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
-        # so |y| < 1/xe and the result is not representable.
-        # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
-        # < 1/nbits(xc).
-
-        x = _WorkRep(self)
-        xc, xe = x.int, x.exp
-        while xc % 10 == 0:
-            xc //= 10
-            xe += 1
-
-        y = _WorkRep(other)
-        yc, ye = y.int, y.exp
-        while yc % 10 == 0:
-            yc //= 10
-            ye += 1
-
-        # case where xc == 1: result is 10**(xe*y), with xe*y
-        # required to be an integer
-        if xc == 1:
-            xe *= yc
-            # result is now 10**(xe * 10**ye);  xe * 10**ye must be integral
-            while xe % 10 == 0:
-                xe //= 10
-                ye += 1
-            if ye < 0:
-                return None
-            exponent = xe * 10**ye
-            if y.sign == 1:
-                exponent = -exponent
-            # if other is a nonnegative integer, use ideal exponent
-            if other._isinteger() and other._sign == 0:
-                ideal_exponent = self._exp*int(other)
-                zeros = min(exponent-ideal_exponent, p-1)
-            else:
-                zeros = 0
-            return _dec_from_triple(0, '1' + '0'*zeros, exponent-zeros)
-
-        # case where y is negative: xc must be either a power
-        # of 2 or a power of 5.
-        if y.sign == 1:
-            last_digit = xc % 10
-            if last_digit in (2,4,6,8):
-                # quick test for power of 2
-                if xc & -xc != xc:
-                    return None
-                # now xc is a power of 2; e is its exponent
-                e = _nbits(xc)-1
-
-                # We now have:
-                #
-                #   x = 2**e * 10**xe, e > 0, and y < 0.
-                #
-                # The exact result is:
-                #
-                #   x**y = 5**(-e*y) * 10**(e*y + xe*y)
-                #
-                # provided that both e*y and xe*y are integers.  Note that if
-                # 5**(-e*y) >= 10**p, then the result can't be expressed
-                # exactly with p digits of precision.
-                #
-                # Using the above, we can guard against large values of ye.
-                # 93/65 is an upper bound for log(10)/log(5), so if
-                #
-                #   ye >= len(str(93*p//65))
-                #
-                # then
-                #
-                #   -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5),
-                #
-                # so 5**(-e*y) >= 10**p, and the coefficient of the result
-                # can't be expressed in p digits.
-
-                # emax >= largest e such that 5**e < 10**p.
-                emax = p*93//65
-                if ye >= len(str(emax)):
-                    return None
-
-                # Find -e*y and -xe*y; both must be integers
-                e = _decimal_lshift_exact(e * yc, ye)
-                xe = _decimal_lshift_exact(xe * yc, ye)
-                if e is None or xe is None:
-                    return None
-
-                if e > emax:
-                    return None
-                xc = 5**e
-
-            elif last_digit == 5:
-                # e >= log_5(xc) if xc is a power of 5; we have
-                # equality all the way up to xc=5**2658
-                e = _nbits(xc)*28//65
-                xc, remainder = divmod(5**e, xc)
-                if remainder:
-                    return None
-                while xc % 5 == 0:
-                    xc //= 5
-                    e -= 1
-
-                # Guard against large values of ye, using the same logic as in
-                # the 'xc is a power of 2' branch.  10/3 is an upper bound for
-                # log(10)/log(2).
-                emax = p*10//3
-                if ye >= len(str(emax)):
-                    return None
-
-                e = _decimal_lshift_exact(e * yc, ye)
-                xe = _decimal_lshift_exact(xe * yc, ye)
-                if e is None or xe is None:
-                    return None
-
-                if e > emax:
-                    return None
-                xc = 2**e
-            else:
-                return None
-
-            if xc >= 10**p:
-                return None
-            xe = -e-xe
-            return _dec_from_triple(0, str(xc), xe)
-
-        # now y is positive; find m and n such that y = m/n
-        if ye >= 0:
-            m, n = yc*10**ye, 1
-        else:
-            if xe != 0 and len(str(abs(yc*xe))) <= -ye:
-                return None
-            xc_bits = _nbits(xc)
-            if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
-                return None
-            m, n = yc, 10**(-ye)
-            while m % 2 == n % 2 == 0:
-                m //= 2
-                n //= 2
-            while m % 5 == n % 5 == 0:
-                m //= 5
-                n //= 5
-
-        # compute nth root of xc*10**xe
-        if n > 1:
-            # if 1 < xc < 2**n then xc isn't an nth power
-            if xc != 1 and xc_bits <= n:
-                return None
-
-            xe, rem = divmod(xe, n)
-            if rem != 0:
-                return None
-
-            # compute nth root of xc using Newton's method
-            a = 1 << -(-_nbits(xc)//n) # initial estimate
-            while True:
-                q, r = divmod(xc, a**(n-1))
-                if a <= q:
-                    break
-                else:
-                    a = (a*(n-1) + q)//n
-            if not (a == q and r == 0):
-                return None
-            xc = a
-
-        # now xc*10**xe is the nth root of the original xc*10**xe
-        # compute mth power of xc*10**xe
-
-        # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
-        # 10**p and the result is not representable.
-        if xc > 1 and m > p*100//_log10_lb(xc):
-            return None
-        xc = xc**m
-        xe *= m
-        if xc > 10**p:
-            return None
-
-        # by this point the result *is* exactly representable
-        # adjust the exponent to get as close as possible to the ideal
-        # exponent, if necessary
-        str_xc = str(xc)
-        if other._isinteger() and other._sign == 0:
-            ideal_exponent = self._exp*int(other)
-            zeros = min(xe-ideal_exponent, p-len(str_xc))
-        else:
-            zeros = 0
-        return _dec_from_triple(0, str_xc+'0'*zeros, xe-zeros)
-
-    def __pow__(self, other, modulo=None, context=None):
-        """Return self ** other [ % modulo].
-
-        With two arguments, compute self**other.
-
-        With three arguments, compute (self**other) % modulo.  For the
-        three argument form, the following restrictions on the
-        arguments hold:
-
-         - all three arguments must be integral
-         - other must be nonnegative
-         - either self or other (or both) must be nonzero
-         - modulo must be nonzero and must have at most p digits,
-           where p is the context precision.
-
-        If any of these restrictions is violated the InvalidOperation
-        flag is raised.
-
-        The result of pow(self, other, modulo) is identical to the
-        result that would be obtained by computing (self**other) %
-        modulo with unbounded precision, but is computed more
-        efficiently.  It is always exact.
-        """
-
-        if modulo is not None:
-            return self._power_modulo(other, modulo, context)
-
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-
-        if context is None:
-            context = getcontext()
-
-        # either argument is a NaN => result is NaN
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
-        if not other:
-            if not self:
-                return context._raise_error(InvalidOperation, '0 ** 0')
-            else:
-                return _One
-
-        # result has sign 1 iff self._sign is 1 and other is an odd integer
-        result_sign = 0
-        if self._sign == 1:
-            if other._isinteger():
-                if not other._iseven():
-                    result_sign = 1
-            else:
-                # -ve**noninteger = NaN
-                # (-0)**noninteger = 0**noninteger
-                if self:
-                    return context._raise_error(InvalidOperation,
-                        'x ** y with x negative and y not an integer')
-            # negate self, without doing any unwanted rounding
-            self = self.copy_negate()
-
-        # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
-        if not self:
-            if other._sign == 0:
-                return _dec_from_triple(result_sign, '0', 0)
-            else:
-                return _SignedInfinity[result_sign]
-
-        # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
-        if self._isinfinity():
-            if other._sign == 0:
-                return _SignedInfinity[result_sign]
-            else:
-                return _dec_from_triple(result_sign, '0', 0)
-
-        # 1**other = 1, but the choice of exponent and the flags
-        # depend on the exponent of self, and on whether other is a
-        # positive integer, a negative integer, or neither
-        if self == _One:
-            if other._isinteger():
-                # exp = max(self._exp*max(int(other), 0),
-                # 1-context.prec) but evaluating int(other) directly
-                # is dangerous until we know other is small (other
-                # could be 1e999999999)
-                if other._sign == 1:
-                    multiplier = 0
-                elif other > context.prec:
-                    multiplier = context.prec
-                else:
-                    multiplier = int(other)
-
-                exp = self._exp * multiplier
-                if exp < 1-context.prec:
-                    exp = 1-context.prec
-                    context._raise_error(Rounded)
-            else:
-                context._raise_error(Inexact)
-                context._raise_error(Rounded)
-                exp = 1-context.prec
-
-            return _dec_from_triple(result_sign, '1'+'0'*-exp, exp)
-
-        # compute adjusted exponent of self
-        self_adj = self.adjusted()
-
-        # self ** infinity is infinity if self > 1, 0 if self < 1
-        # self ** -infinity is infinity if self < 1, 0 if self > 1
-        if other._isinfinity():
-            if (other._sign == 0) == (self_adj < 0):
-                return _dec_from_triple(result_sign, '0', 0)
-            else:
-                return _SignedInfinity[result_sign]
-
-        # from here on, the result always goes through the call
-        # to _fix at the end of this function.
-        ans = None
-        exact = False
-
-        # crude test to catch cases of extreme overflow/underflow.  If
-        # log10(self)*other >= 10**bound and bound >= len(str(Emax))
-        # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
-        # self**other >= 10**(Emax+1), so overflow occurs.  The test
-        # for underflow is similar.
-        bound = self._log10_exp_bound() + other.adjusted()
-        if (self_adj >= 0) == (other._sign == 0):
-            # self > 1 and other +ve, or self < 1 and other -ve
-            # possibility of overflow
-            if bound >= len(str(context.Emax)):
-                ans = _dec_from_triple(result_sign, '1', context.Emax+1)
-        else:
-            # self > 1 and other -ve, or self < 1 and other +ve
-            # possibility of underflow to 0
-            Etiny = context.Etiny()
-            if bound >= len(str(-Etiny)):
-                ans = _dec_from_triple(result_sign, '1', Etiny-1)
-
-        # try for an exact result with precision +1
-        if ans is None:
-            ans = self._power_exact(other, context.prec + 1)
-            if ans is not None:
-                if result_sign == 1:
-                    ans = _dec_from_triple(1, ans._int, ans._exp)
-                exact = True
-
-        # usual case: inexact result, x**y computed directly as exp(y*log(x))
-        if ans is None:
-            p = context.prec
-            x = _WorkRep(self)
-            xc, xe = x.int, x.exp
-            y = _WorkRep(other)
-            yc, ye = y.int, y.exp
-            if y.sign == 1:
-                yc = -yc
-
-            # compute correctly rounded result:  start with precision +3,
-            # then increase precision until result is unambiguously roundable
-            extra = 3
-            while True:
-                coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
-                if coeff % (5*10**(len(str(coeff))-p-1)):
-                    break
-                extra += 3
-
-            ans = _dec_from_triple(result_sign, str(coeff), exp)
-
-        # unlike exp, ln and log10, the power function respects the
-        # rounding mode; no need to switch to ROUND_HALF_EVEN here
-
-        # There's a difficulty here when 'other' is not an integer and
-        # the result is exact.  In this case, the specification
-        # requires that the Inexact flag be raised (in spite of
-        # exactness), but since the result is exact _fix won't do this
-        # for us.  (Correspondingly, the Underflow signal should also
-        # be raised for subnormal results.)  We can't directly raise
-        # these signals either before or after calling _fix, since
-        # that would violate the precedence for signals.  So we wrap
-        # the ._fix call in a temporary context, and reraise
-        # afterwards.
-        if exact and not other._isinteger():
-            # pad with zeros up to length context.prec+1 if necessary; this
-            # ensures that the Rounded signal will be raised.
-            if len(ans._int) <= context.prec:
-                expdiff = context.prec + 1 - len(ans._int)
-                ans = _dec_from_triple(ans._sign, ans._int+'0'*expdiff,
-                                       ans._exp-expdiff)
-
-            # create a copy of the current context, with cleared flags/traps
-            newcontext = context.copy()
-            newcontext.clear_flags()
-            for exception in _signals:
-                newcontext.traps[exception] = 0
-
-            # round in the new context
-            ans = ans._fix(newcontext)
-
-            # raise Inexact, and if necessary, Underflow
-            newcontext._raise_error(Inexact)
-            if newcontext.flags[Subnormal]:
-                newcontext._raise_error(Underflow)
-
-            # propagate signals to the original context; _fix could
-            # have raised any of Overflow, Underflow, Subnormal,
-            # Inexact, Rounded, Clamped.  Overflow needs the correct
-            # arguments.  Note that the order of the exceptions is
-            # important here.
-            if newcontext.flags[Overflow]:
-                context._raise_error(Overflow, 'above Emax', ans._sign)
-            for exception in Underflow, Subnormal, Inexact, Rounded, Clamped:
-                if newcontext.flags[exception]:
-                    context._raise_error(exception)
-
-        else:
-            ans = ans._fix(context)
-
-        return ans
-
-    def __rpow__(self, other, context=None):
-        """Swaps self/other and returns __pow__."""
-        other = _convert_other(other)
-        if other is NotImplemented:
-            return other
-        return other.__pow__(self, context=context)
-
-    def normalize(self, context=None):
-        """Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
-
-        if context is None:
-            context = getcontext()
-
-        if self._is_special:
-            ans = self._check_nans(context=context)
-            if ans:
-                return ans
-
-        dup = self._fix(context)
-        if dup._isinfinity():
-            return dup
-
-        if not dup:
-            return _dec_from_triple(dup._sign, '0', 0)
-        exp_max = [context.Emax, context.Etop()][context.clamp]
-        end = len(dup._int)
-        exp = dup._exp
-        while dup._int[end-1] == '0' and exp < exp_max:
-            exp += 1
-            end -= 1
-        return _dec_from_triple(dup._sign, dup._int[:end], exp)
-
-    def quantize(self, exp, rounding=None, context=None):
-        """Quantize self so its exponent is the same as that of exp.
-
-        Similar to self._rescale(exp._exp) but with error checking.
-        """
-        exp = _convert_other(exp, raiseit=True)
-
-        if context is None:
-            context = getcontext()
-        if rounding is None:
-            rounding = context.rounding
-
-        if self._is_special or exp._is_special:
-            ans = self._check_nans(exp, context)
-            if ans:
-                return ans
-
-            if exp._isinfinity() or self._isinfinity():
-                if exp._isinfinity() and self._isinfinity():
-                    return Decimal(self)  # if both are inf, it is OK
-                return context._raise_error(InvalidOperation,
-                                        'quantize with one INF')
-
-        # exp._exp should be between Etiny and Emax
-        if not (context.Etiny() <= exp._exp <= context.Emax):
-            return context._raise_error(InvalidOperation,
-                   'target exponent out of bounds in quantize')
-
-        if not self:
-            ans = _dec_from_triple(self._sign, '0', exp._exp)
-            return ans._fix(context)
-
-        self_adjusted = self.adjusted()
-        if self_adjusted > context.Emax:
-            return context._raise_error(InvalidOperation,
-                                        'exponent of quantize result too large for current context')
-        if self_adjusted - exp._exp + 1 > context.prec:
-            return context._raise_error(InvalidOperation,
-                                        'quantize result has too many digits for current context')
-
-        ans = self._rescale(exp._exp, rounding)
-        if ans.adjusted() > context.Emax:
-            return context._raise_error(InvalidOperation,
-                                        'exponent of quantize result too large for current context')
-        if len(ans._int) > context.prec:
-            return context._raise_error(InvalidOperation,
-                                        'quantize result has too many digits for current context')
-
-        # raise appropriate flags
-        if ans and ans.adjusted() < context.Emin:
-            context._raise_error(Subnormal)
-        if ans._exp > self._exp:
-            if ans != self:
-                context._raise_error(Inexact)
-            context._raise_error(Rounded)
-
-        # call to fix takes care of any necessary folddown, and
-        # signals Clamped if necessary
-        ans = ans._fix(context)
-        return ans
-
-    def same_quantum(self, other, context=None):
-        """Return True if self and other have the same exponent; otherwise
-        return False.
-
-        If either operand is a special value, the following rules are used:
-           * return True if both operands are infinities
-           * return True if both operands are NaNs
-           * otherwise, return False.
-        """
-        other = _convert_other(other, raiseit=True)
-        if self._is_special or other._is_special:
-            return (self.is_nan() and other.is_nan() or
-                    self.is_infinite() and other.is_infinite())
-        return self._exp == other._exp
-
-    def _rescale(self, exp, rounding):
-        """Rescale self so that the exponent is exp, either by padding with zeros
-        or by truncating digits, using the given rounding mode.
-
-        Specials are returned without change.  This operation is
-        quiet: it raises no flags, and uses no information from the
-        context.
-
-        exp = exp to scale to (an integer)
-        rounding = rounding mode
-        """
-        if self._is_special:
-            return Decimal(self)
-        if not self:
-            return _dec_from_triple(self._sign, '0', exp)
-
-        if self._exp >= exp:
-            # pad answer with zeros if necessary
-            return _dec_from_triple(self._sign,
-                                        self._int + '0'*(self._exp - exp), exp)
-
-        # too many digits; round and lose data.  If self.adjusted() <
-        # exp-1, replace self by 10**(exp-1) before rounding
-        digits = len(self._int) + self._exp - exp
-        if digits < 0:
-            self = _dec_from_triple(self._sign, '1', exp-1)
-            digits = 0
-        this_function = self._pick_rounding_function[rounding]
-        changed = this_function(self, digits)
-        coeff = self._int[:digits] or '0'
-        if changed == 1:
-            coeff = str(int(coeff)+1)
-        return _dec_from_triple(self._sign, coeff, exp)
-
-    def _round(self, places, rounding):
-        """Round a nonzero, nonspecial Decimal to a fixed number of
-        significant figures, using the given rounding mode.
-
-        Infinities, NaNs and zeros are returned unaltered.
-
-        This operation is quiet: it raises no flags, and uses no
-        information from the context.
-
-        """
-        if places <= 0:
-            raise ValueError("argument should be at least 1 in _round")
-        if self._is_special or not self:
-            return Decimal(self)
-        ans = self._rescale(self.adjusted()+1-places, rounding)
-        # it can happen that the rescale alters the adjusted exponent;
-        # for example when rounding 99.97 to 3 significant figures.
-        # When this happens we end up with an extra 0 at the end of
-        # the number; a second rescale fixes this.
-        if ans.adjusted() != self.adjusted():
-            ans = ans._rescale(ans.adjusted()+1-places, rounding)
-        return ans
-
-    def to_integral_exact(self, rounding=None, context=None):
-        """Rounds to a nearby integer.
-
-        If no rounding mode is specified, take the rounding mode from
-        the context.  This method raises the Rounded and Inexact flags
-        when appropriate.
-
-        See also: to_integral_value, which does exactly the same as
-        this method except that it doesn't raise Inexact or Rounded.
-        """
-        if self._is_special:
-            ans = self._check_nans(context=context)
-            if ans:
-                return ans
-            return Decimal(self)
-        if self._exp >= 0:
-            return Decimal(self)
-        if not self:
-            return _dec_from_triple(self._sign, '0', 0)
-        if context is None:
-            context = getcontext()
-        if rounding is None:
-            rounding = context.rounding
-        ans = self._rescale(0, rounding)
-        if ans != self:
-            context._raise_error(Inexact)
-        context._raise_error(Rounded)
-        return ans
-
-    def to_integral_value(self, rounding=None, context=None):
-        """Rounds to the nearest integer, without raising inexact, rounded."""
-        if context is None:
-            context = getcontext()
-        if rounding is None:
-            rounding = context.rounding
-        if self._is_special:
-            ans = self._check_nans(context=context)
-            if ans:
-                return ans
-            return Decimal(self)
-        if self._exp >= 0:
-            return Decimal(self)
-        else:
-            return self._rescale(0, rounding)
-
-    # the method name changed, but we provide also the old one, for compatibility
-    to_integral = to_integral_value
-
-    def sqrt(self, context=None):
-        """Return the square root of self."""
-        if context is None:
-            context = getcontext()
-
-        if self._is_special:
-            ans = self._check_nans(context=context)
-            if ans:
-                return ans
-
-            if self._isinfinity() and self._sign == 0:
-                return Decimal(self)
-
-        if not self:
-            # exponent = self._exp // 2.  sqrt(-0) = -0
-            ans = _dec_from_triple(self._sign, '0', self._exp // 2)
-            return ans._fix(context)
-
-        if self._sign == 1:
-            return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
-
-        # At this point self represents a positive number.  Let p be
-        # the desired precision and express self in the form c*100**e
-        # with c a positive real number and e an integer, c and e
-        # being chosen so that 100**(p-1) <= c < 100**p.  Then the
-        # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
-        # <= sqrt(c) < 10**p, so the closest representable Decimal at
-        # precision p is n*10**e where n = round_half_even(sqrt(c)),
-        # the closest integer to sqrt(c) with the even integer chosen
-        # in the case of a tie.
-        #
-        # To ensure correct rounding in all cases, we use the
-        # following trick: we compute the square root to an extra
-        # place (precision p+1 instead of precision p), rounding down.
-        # Then, if the result is inexact and its last digit is 0 or 5,
-        # we increase the last digit to 1 or 6 respectively; if it's
-        # exact we leave the last digit alone.  Now the final round to
-        # p places (or fewer in the case of underflow) will round
-        # correctly and raise the appropriate flags.
-
-        # use an extra digit of precision
-        prec = context.prec+1
-
-        # write argument in the form c*100**e where e = self._exp//2
-        # is the 'ideal' exponent, to be used if the square root is
-        # exactly representable.  l is the number of 'digits' of c in
-        # base 100, so that 100**(l-1) <= c < 100**l.
-        op = _WorkRep(self)
-        e = op.exp >> 1
-        if op.exp & 1:
-            c = op.int * 10
-            l = (len(self._int) >> 1) + 1
-        else:
-            c = op.int
-            l = len(self._int)+1 >> 1
-
-        # rescale so that c has exactly prec base 100 'digits'
-        shift = prec-l
-        if shift >= 0:
-            c *= 100**shift
-            exact = True
-        else:
-            c, remainder = divmod(c, 100**-shift)
-            exact = not remainder
-        e -= shift
-
-        # find n = floor(sqrt(c)) using Newton's method
-        n = 10**prec
-        while True:
-            q = c//n
-            if n <= q:
-                break
-            else:
-                n = n + q >> 1
-        exact = exact and n*n == c
-
-        if exact:
-            # result is exact; rescale to use ideal exponent e
-            if shift >= 0:
-                # assert n % 10**shift == 0
-                n //= 10**shift
-            else:
-                n *= 10**-shift
-            e += shift
-        else:
-            # result is not exact; fix last digit as described above
-            if n % 5 == 0:
-                n += 1
-
-        ans = _dec_from_triple(0, str(n), e)
-
-        # round, and fit to current context
-        context = context._shallow_copy()
-        rounding = context._set_rounding(ROUND_HALF_EVEN)
-        ans = ans._fix(context)
-        context.rounding = rounding
-
-        return ans
-
-    def max(self, other, context=None):
-        """Returns the larger value.
-
-        Like max(self, other) except if one is not a number, returns
-        NaN (and signals if one is sNaN).  Also rounds.
-        """
-        other = _convert_other(other, raiseit=True)
-
-        if context is None:
-            context = getcontext()
-
-        if self._is_special or other._is_special:
-            # If one operand is a quiet NaN and the other is number, then the
-            # number is always returned
-            sn = self._isnan()
-            on = other._isnan()
-            if sn or on:
-                if on == 1 and sn == 0:
-                    return self._fix(context)
-                if sn == 1 and on == 0:
-                    return other._fix(context)
-                return self._check_nans(other, context)
-
-        c = self._cmp(other)
-        if c == 0:
-            # If both operands are finite and equal in numerical value
-            # then an ordering is applied:
-            #
-            # If the signs differ then max returns the operand with the
-            # positive sign and min returns the operand with the negative sign
-            #
-            # If the signs are the same then the exponent is used to select
-            # the result.  This is exactly the ordering used in compare_total.
-            c = self.compare_total(other)
-
-        if c == -1:
-            ans = other
-        else:
-            ans = self
-
-        return ans._fix(context)
-
-    def min(self, other, context=None):
-        """Returns the smaller value.
-
-        Like min(self, other) except if one is not a number, returns
-        NaN (and signals if one is sNaN).  Also rounds.
-        """
-        other = _convert_other(other, raiseit=True)
-
-        if context is None:
-            context = getcontext()
-
-        if self._is_special or other._is_special:
-            # If one operand is a quiet NaN and the other is number, then the
-            # number is always returned
-            sn = self._isnan()
-            on = other._isnan()
-            if sn or on:
-                if on == 1 and sn == 0:
-                    return self._fix(context)
-                if sn == 1 and on == 0:
-                    return other._fix(context)
-                return self._check_nans(other, context)
-
-        c = self._cmp(other)
-        if c == 0:
-            c = self.compare_total(other)
-
-        if c == -1:
-            ans = self
-        else:
-            ans = other
-
-        return ans._fix(context)
-
-    def _isinteger(self):
-        """Returns whether self is an integer"""
-        if self._is_special:
-            return False
-        if self._exp >= 0:
-            return True
-        rest = self._int[self._exp:]
-        return rest == '0'*len(rest)
-
-    def _iseven(self):
-        """Returns True if self is even.  Assumes self is an integer."""
-        if not self or self._exp > 0:
-            return True
-        return self._int[-1+self._exp] in '02468'
-
-    def adjusted(self):
-        """Return the adjusted exponent of self"""
-        try:
-            return self._exp + len(self._int) - 1
-        # If NaN or Infinity, self._exp is string
-        except TypeError:
-            return 0
-
-    def canonical(self):
-        """Returns the same Decimal object.
-
-        As we do not have different encodings for the same number, the
-        received object already is in its canonical form.
-        """
-        return self
-
-    def compare_signal(self, other, context=None):
-        """Compares self to the other operand numerically.
-
-        It's pretty much like compare(), but all NaNs signal, with signaling
-        NaNs taking precedence over quiet NaNs.
-        """
-        other = _convert_other(other, raiseit = True)
-        ans = self._compare_check_nans(other, context)
-        if ans:
-            return ans
-        return self.compare(other, context=context)
-
-    def compare_total(self, other, context=None):
-        """Compares self to other using the abstract representations.
-
-        This is not like the standard compare, which use their numerical
-        value. Note that a total ordering is defined for all possible abstract
-        representations.
-        """
-        other = _convert_other(other, raiseit=True)
-
-        # if one is negative and the other is positive, it's easy
-        if self._sign and not other._sign:
-            return _NegativeOne
-        if not self._sign and other._sign:
-            return _One
-        sign = self._sign
-
-        # let's handle both NaN types
-        self_nan = self._isnan()
-        other_nan = other._isnan()
-        if self_nan or other_nan:
-            if self_nan == other_nan:
-                # compare payloads as though they're integers
-                self_key = len(self._int), self._int
-                other_key = len(other._int), other._int
-                if self_key < other_key:
-                    if sign:
-                        return _One
-                    else:
-                        return _NegativeOne
-                if self_key > other_key:
-                    if sign:
-                        return _NegativeOne
-                    else:
-                        return _One
-                return _Zero
-
-            if sign:
-                if self_nan == 1:
-                    return _NegativeOne
-                if other_nan == 1:
-                    return _One
-                if self_nan == 2:
-                    return _NegativeOne
-                if other_nan == 2:
-                    return _One
-            else:
-                if self_nan == 1:
-                    return _One
-                if other_nan == 1:
-                    return _NegativeOne
-                if self_nan == 2:
-                    return _One
-                if other_nan == 2:
-                    return _NegativeOne
-
-        if self < other:
-            return _NegativeOne
-        if self > other:
-            return _One
-
-        if self._exp < other._exp:
-            if sign:
-                return _One
-            else:
-                return _NegativeOne
-        if self._exp > other._exp:
-            if sign:
-                return _NegativeOne
-            else:
-                return _One
-        return _Zero
-
-
-    def compare_total_mag(self, other, context=None):
-        """Compares self to other using abstract repr., ignoring sign.
-
-        Like compare_total, but with operand's sign ignored and assumed to be 0.
-        """
-        other = _convert_other(other, raiseit=True)
-
-        s = self.copy_abs()
-        o = other.copy_abs()
-        return s.compare_total(o)
-
-    def copy_abs(self):
-        """Returns a copy with the sign set to 0. """
-        return _dec_from_triple(0, self._int, self._exp, self._is_special)
-
-    def copy_negate(self):
-        """Returns a copy with the sign inverted."""
-        if self._sign:
-            return _dec_from_triple(0, self._int, self._exp, self._is_special)
-        else:
-            return _dec_from_triple(1, self._int, self._exp, self._is_special)
-
-    def copy_sign(self, other, context=None):
-        """Returns self with the sign of other."""
-        other = _convert_other(other, raiseit=True)
-        return _dec_from_triple(other._sign, self._int,
-                                self._exp, self._is_special)
-
-    def exp(self, context=None):
-        """Returns e ** self."""
-
-        if context is None:
-            context = getcontext()
-
-        # exp(NaN) = NaN
-        ans = self._check_nans(context=context)
-        if ans:
-            return ans
-
-        # exp(-Infinity) = 0
-        if self._isinfinity() == -1:
-            return _Zero
-
-        # exp(0) = 1
-        if not self:
-            return _One
-
-        # exp(Infinity) = Infinity
-        if self._isinfinity() == 1:
-            return Decimal(self)
-
-        # the result is now guaranteed to be inexact (the true
-        # mathematical result is transcendental). There's no need to
-        # raise Rounded and Inexact here---they'll always be raised as
-        # a result of the call to _fix.
-        p = context.prec
-        adj = self.adjusted()
-
-        # we only need to do any computation for quite a small range
-        # of adjusted exponents---for example, -29 <= adj <= 10 for
-        # the default context.  For smaller exponent the result is
-        # indistinguishable from 1 at the given precision, while for
-        # larger exponent the result either overflows or underflows.
-        if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
-            # overflow
-            ans = _dec_from_triple(0, '1', context.Emax+1)
-        elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
-            # underflow to 0
-            ans = _dec_from_triple(0, '1', context.Etiny()-1)
-        elif self._sign == 0 and adj < -p:
-            # p+1 digits; final round will raise correct flags
-            ans = _dec_from_triple(0, '1' + '0'*(p-1) + '1', -p)
-        elif self._sign == 1 and adj < -p-1:
-            # p+1 digits; final round will raise correct flags
-            ans = _dec_from_triple(0, '9'*(p+1), -p-1)
-        # general case
-        else:
-            op = _WorkRep(self)
-            c, e = op.int, op.exp
-            if op.sign == 1:
-                c = -c
-
-            # compute correctly rounded result: increase precision by
-            # 3 digits at a time until we get an unambiguously
-            # roundable result
-            extra = 3
-            while True:
-                coeff, exp = _dexp(c, e, p+extra)
-                if coeff % (5*10**(len(str(coeff))-p-1)):
-                    break
-                extra += 3
-
-            ans = _dec_from_triple(0, str(coeff), exp)
-
-        # at this stage, ans should round correctly with *any*
-        # rounding mode, not just with ROUND_HALF_EVEN
-        context = context._shallow_copy()
-        rounding = context._set_rounding(ROUND_HALF_EVEN)
-        ans = ans._fix(context)
-        context.rounding = rounding
-
-        return ans
-
-    def is_canonical(self):
-        """Return True if self is canonical; otherwise return False.
-
-        Currently, the encoding of a Decimal instance is always
-        canonical, so this method returns True for any Decimal.
-        """
-        return True
-
-    def is_finite(self):
-        """Return True if self is finite; otherwise return False.
-
-        A Decimal instance is considered finite if it is neither
-        infinite nor a NaN.
-        """
-        return not self._is_special
-
-    def is_infinite(self):
-        """Return True if self is infinite; otherwise return False."""
-        return self._exp == 'F'
-
-    def is_nan(self):
-        """Return True if self is a qNaN or sNaN; otherwise return False."""
-        return self._exp in ('n', 'N')
-
-    def is_normal(self, context=None):
-        """Return True if self is a normal number; otherwise return False."""
-        if self._is_special or not self:
-            return False
-        if context is None:
-            context = getcontext()
-        return context.Emin <= self.adjusted()
-
-    def is_qnan(self):
-        """Return True if self is a quiet NaN; otherwise return False."""
-        return self._exp == 'n'
-
-    def is_signed(self):
-        """Return True if self is negative; otherwise return False."""
-        return self._sign == 1
-
-    def is_snan(self):
-        """Return True if self is a signaling NaN; otherwise return False."""
-        return self._exp == 'N'
-
-    def is_subnormal(self, context=None):
-        """Return True if self is subnormal; otherwise return False."""
-        if self._is_special or not self:
-            return False
-        if context is None:
-            context = getcontext()
-        return self.adjusted() < context.Emin
-
-    def is_zero(self):
-        """Return True if self is a zero; otherwise return False."""
-        return not self._is_special and self._int == '0'
-
-    def _ln_exp_bound(self):
-        """Compute a lower bound for the adjusted exponent of self.ln().
-        In other words, compute r such that self.ln() >= 10**r.  Assumes
-        that self is finite and positive and that self != 1.
-        """
-
-        # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
-        adj = self._exp + len(self._int) - 1
-        if adj >= 1:
-            # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
-            return len(str(adj*23//10)) - 1
-        if adj <= -2:
-            # argument <= 0.1
-            return len(str((-1-adj)*23//10)) - 1
-        op = _WorkRep(self)
-        c, e = op.int, op.exp
-        if adj == 0:
-            # 1 < self < 10
-            num = str(c-10**-e)
-            den = str(c)
-            return len(num) - len(den) - (num < den)
-        # adj == -1, 0.1 <= self < 1
-        return e + len(str(10**-e - c)) - 1
-
-
-    def ln(self, context=None):
-        """Returns the natural (base e) logarithm of self."""
-
-        if context is None:
-            context = getcontext()
-
-        # ln(NaN) = NaN
-        ans = self._check_nans(context=context)
-        if ans:
-            return ans
-
-        # ln(0.0) == -Infinity
-        if not self:
-            return _NegativeInfinity
-
-        # ln(Infinity) = Infinity
-        if self._isinfinity() == 1:
-            return _Infinity
-
-        # ln(1.0) == 0.0
-        if self == _One:
-            return _Zero
-
-        # ln(negative) raises InvalidOperation
-        if self._sign == 1:
-            return context._raise_error(InvalidOperation,
-                                        'ln of a negative value')
-
-        # result is irrational, so necessarily inexact
-        op = _WorkRep(self)
-        c, e = op.int, op.exp
-        p = context.prec
-
-        # correctly rounded result: repeatedly increase precision by 3
-        # until we get an unambiguously roundable result
-        places = p - self._ln_exp_bound() + 2 # at least p+3 places
-        while True:
-            coeff = _dlog(c, e, places)
-            # assert len(str(abs(coeff)))-p >= 1
-            if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
-                break
-            places += 3
-        ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
-
-        context = context._shallow_copy()
-        rounding = context._set_rounding(ROUND_HALF_EVEN)
-        ans = ans._fix(context)
-        context.rounding = rounding
-        return ans
-
-    def _log10_exp_bound(self):
-        """Compute a lower bound for the adjusted exponent of self.log10().
-        In other words, find r such that self.log10() >= 10**r.
-        Assumes that self is finite and positive and that self != 1.
-        """
-
-        # For x >= 10 or x < 0.1 we only need a bound on the integer
-        # part of log10(self), and this comes directly from the
-        # exponent of x.  For 0.1 <= x <= 10 we use the inequalities
-        # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
-        # (1-1/x)/2.31 > 0.  If x < 1 then |log10(x)| > (1-x)/2.31 > 0
-
-        adj = self._exp + len(self._int) - 1
-        if adj >= 1:
-            # self >= 10
-            return len(str(adj))-1
-        if adj <= -2:
-            # self < 0.1
-            return len(str(-1-adj))-1
-        op = _WorkRep(self)
-        c, e = op.int, op.exp
-        if adj == 0:
-            # 1 < self < 10
-            num = str(c-10**-e)
-            den = str(231*c)
-            return len(num) - len(den) - (num < den) + 2
-        # adj == -1, 0.1 <= self < 1
-        num = str(10**-e-c)
-        return len(num) + e - (num < "231") - 1
-
-    def log10(self, context=None):
-        """Returns the base 10 logarithm of self."""
-
-        if context is None:
-            context = getcontext()
-
-        # log10(NaN) = NaN
-        ans = self._check_nans(context=context)
-        if ans:
-            return ans
-
-        # log10(0.0) == -Infinity
-        if not self:
-            return _NegativeInfinity
-
-        # log10(Infinity) = Infinity
-        if self._isinfinity() == 1:
-            return _Infinity
-
-        # log10(negative or -Infinity) raises InvalidOperation
-        if self._sign == 1:
-            return context._raise_error(InvalidOperation,
-                                        'log10 of a negative value')
-
-        # log10(10**n) = n
-        if self._int[0] == '1' and self._int[1:] == '0'*(len(self._int) - 1):
-            # answer may need rounding
-            ans = Decimal(self._exp + len(self._int) - 1)
-        else:
-            # result is irrational, so necessarily inexact
-            op = _WorkRep(self)
-            c, e = op.int, op.exp
-            p = context.prec
-
-            # correctly rounded result: repeatedly increase precision
-            # until result is unambiguously roundable
-            places = p-self._log10_exp_bound()+2
-            while True:
-                coeff = _dlog10(c, e, places)
-                # assert len(str(abs(coeff)))-p >= 1
-                if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
-                    break
-                places += 3
-            ans = _dec_from_triple(int(coeff<0), str(abs(coeff)), -places)
-
-        context = context._shallow_copy()
-        rounding = context._set_rounding(ROUND_HALF_EVEN)
-        ans = ans._fix(context)
-        context.rounding = rounding
-        return ans
-
-    def logb(self, context=None):
-        """ Returns the exponent of the magnitude of self's MSD.
-
-        The result is the integer which is the exponent of the magnitude
-        of the most significant digit of self (as though it were truncated
-        to a single digit while maintaining the value of that digit and
-        without limiting the resulting exponent).
-        """
-        # logb(NaN) = NaN
-        ans = self._check_nans(context=context)
-        if ans:
-            return ans
-
-        if context is None:
-            context = getcontext()
-
-        # logb(+/-Inf) = +Inf
-        if self._isinfinity():
-            return _Infinity
-
-        # logb(0) = -Inf, DivisionByZero
-        if not self:
-            return context._raise_error(DivisionByZero, 'logb(0)', 1)
-
-        # otherwise, simply return the adjusted exponent of self, as a
-        # Decimal.  Note that no attempt is made to fit the result
-        # into the current context.
-        ans = Decimal(self.adjusted())
-        return ans._fix(context)
-
-    def _islogical(self):
-        """Return True if self is a logical operand.
-
-        For being logical, it must be a finite number with a sign of 0,
-        an exponent of 0, and a coefficient whose digits must all be
-        either 0 or 1.
-        """
-        if self._sign != 0 or self._exp != 0:
-            return False
-        for dig in self._int:
-            if dig not in '01':
-                return False
-        return True
-
-    def _fill_logical(self, context, opa, opb):
-        dif = context.prec - len(opa)
-        if dif > 0:
-            opa = '0'*dif + opa
-        elif dif < 0:
-            opa = opa[-context.prec:]
-        dif = context.prec - len(opb)
-        if dif > 0:
-            opb = '0'*dif + opb
-        elif dif < 0:
-            opb = opb[-context.prec:]
-        return opa, opb
-
-    def logical_and(self, other, context=None):
-        """Applies an 'and' operation between self and other's digits."""
-        if context is None:
-            context = getcontext()
-
-        other = _convert_other(other, raiseit=True)
-
-        if not self._islogical() or not other._islogical():
-            return context._raise_error(InvalidOperation)
-
-        # fill to context.prec
-        (opa, opb) = self._fill_logical(context, self._int, other._int)
-
-        # make the operation, and clean starting zeroes
-        result = "".join([str(int(a)&int(b)) for a,b in zip(opa,opb)])
-        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
-
-    def logical_invert(self, context=None):
-        """Invert all its digits."""
-        if context is None:
-            context = getcontext()
-        return self.logical_xor(_dec_from_triple(0,'1'*context.prec,0),
-                                context)
-
-    def logical_or(self, other, context=None):
-        """Applies an 'or' operation between self and other's digits."""
-        if context is None:
-            context = getcontext()
-
-        other = _convert_other(other, raiseit=True)
-
-        if not self._islogical() or not other._islogical():
-            return context._raise_error(InvalidOperation)
-
-        # fill to context.prec
-        (opa, opb) = self._fill_logical(context, self._int, other._int)
-
-        # make the operation, and clean starting zeroes
-        result = "".join([str(int(a)|int(b)) for a,b in zip(opa,opb)])
-        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
-
-    def logical_xor(self, other, context=None):
-        """Applies an 'xor' operation between self and other's digits."""
-        if context is None:
-            context = getcontext()
-
-        other = _convert_other(other, raiseit=True)
-
-        if not self._islogical() or not other._islogical():
-            return context._raise_error(InvalidOperation)
-
-        # fill to context.prec
-        (opa, opb) = self._fill_logical(context, self._int, other._int)
-
-        # make the operation, and clean starting zeroes
-        result = "".join([str(int(a)^int(b)) for a,b in zip(opa,opb)])
-        return _dec_from_triple(0, result.lstrip('0') or '0', 0)
-
-    def max_mag(self, other, context=None):
-        """Compares the values numerically with their sign ignored."""
-        other = _convert_other(other, raiseit=True)
-
-        if context is None:
-            context = getcontext()
-
-        if self._is_special or other._is_special:
-            # If one operand is a quiet NaN and the other is number, then the
-            # number is always returned
-            sn = self._isnan()
-            on = other._isnan()
-            if sn or on:
-                if on == 1 and sn == 0:
-                    return self._fix(context)
-                if sn == 1 and on == 0:
-                    return other._fix(context)
-                return self._check_nans(other, context)
-
-        c = self.copy_abs()._cmp(other.copy_abs())
-        if c == 0:
-            c = self.compare_total(other)
-
-        if c == -1:
-            ans = other
-        else:
-            ans = self
-
-        return ans._fix(context)
-
-    def min_mag(self, other, context=None):
-        """Compares the values numerically with their sign ignored."""
-        other = _convert_other(other, raiseit=True)
-
-        if context is None:
-            context = getcontext()
-
-        if self._is_special or other._is_special:
-            # If one operand is a quiet NaN and the other is number, then the
-            # number is always returned
-            sn = self._isnan()
-            on = other._isnan()
-            if sn or on:
-                if on == 1 and sn == 0:
-                    return self._fix(context)
-                if sn == 1 and on == 0:
-                    return other._fix(context)
-                return self._check_nans(other, context)
-
-        c = self.copy_abs()._cmp(other.copy_abs())
-        if c == 0:
-            c = self.compare_total(other)
-
-        if c == -1:
-            ans = self
-        else:
-            ans = other
-
-        return ans._fix(context)
-
-    def next_minus(self, context=None):
-        """Returns the largest representable number smaller than itself."""
-        if context is None:
-            context = getcontext()
-
-        ans = self._check_nans(context=context)
-        if ans:
-            return ans
-
-        if self._isinfinity() == -1:
-            return _NegativeInfinity
-        if self._isinfinity() == 1:
-            return _dec_from_triple(0, '9'*context.prec, context.Etop())
-
-        context = context.copy()
-        context._set_rounding(ROUND_FLOOR)
-        context._ignore_all_flags()
-        new_self = self._fix(context)
-        if new_self != self:
-            return new_self
-        return self.__sub__(_dec_from_triple(0, '1', context.Etiny()-1),
-                            context)
-
-    def next_plus(self, context=None):
-        """Returns the smallest representable number larger than itself."""
-        if context is None:
-            context = getcontext()
-
-        ans = self._check_nans(context=context)
-        if ans:
-            return ans
-
-        if self._isinfinity() == 1:
-            return _Infinity
-        if self._isinfinity() == -1:
-            return _dec_from_triple(1, '9'*context.prec, context.Etop())
-
-        context = context.copy()
-        context._set_rounding(ROUND_CEILING)
-        context._ignore_all_flags()
-        new_self = self._fix(context)
-        if new_self != self:
-            return new_self
-        return self.__add__(_dec_from_triple(0, '1', context.Etiny()-1),
-                            context)
-
-    def next_toward(self, other, context=None):
-        """Returns the number closest to self, in the direction towards other.
-
-        The result is the closest representable number to self
-        (excluding self) that is in the direction towards other,
-        unless both have the same value.  If the two operands are
-        numerically equal, then the result is a copy of self with the
-        sign set to be the same as the sign of other.
-        """
-        other = _convert_other(other, raiseit=True)
-
-        if context is None:
-            context = getcontext()
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        comparison = self._cmp(other)
-        if comparison == 0:
-            return self.copy_sign(other)
-
-        if comparison == -1:
-            ans = self.next_plus(context)
-        else: # comparison == 1
-            ans = self.next_minus(context)
-
-        # decide which flags to raise using value of ans
-        if ans._isinfinity():
-            context._raise_error(Overflow,
-                                 'Infinite result from next_toward',
-                                 ans._sign)
-            context._raise_error(Inexact)
-            context._raise_error(Rounded)
-        elif ans.adjusted() < context.Emin:
-            context._raise_error(Underflow)
-            context._raise_error(Subnormal)
-            context._raise_error(Inexact)
-            context._raise_error(Rounded)
-            # if precision == 1 then we don't raise Clamped for a
-            # result 0E-Etiny.
-            if not ans:
-                context._raise_error(Clamped)
-
-        return ans
-
-    def number_class(self, context=None):
-        """Returns an indication of the class of self.
-
-        The class is one of the following strings:
-          sNaN
-          NaN
-          -Infinity
-          -Normal
-          -Subnormal
-          -Zero
-          +Zero
-          +Subnormal
-          +Normal
-          +Infinity
-        """
-        if self.is_snan():
-            return "sNaN"
-        if self.is_qnan():
-            return "NaN"
-        inf = self._isinfinity()
-        if inf == 1:
-            return "+Infinity"
-        if inf == -1:
-            return "-Infinity"
-        if self.is_zero():
-            if self._sign:
-                return "-Zero"
-            else:
-                return "+Zero"
-        if context is None:
-            context = getcontext()
-        if self.is_subnormal(context=context):
-            if self._sign:
-                return "-Subnormal"
-            else:
-                return "+Subnormal"
-        # just a normal, regular, boring number, :)
-        if self._sign:
-            return "-Normal"
-        else:
-            return "+Normal"
-
-    def radix(self):
-        """Just returns 10, as this is Decimal, :)"""
-        return Decimal(10)
-
-    def rotate(self, other, context=None):
-        """Returns a rotated copy of self, value-of-other times."""
-        if context is None:
-            context = getcontext()
-
-        other = _convert_other(other, raiseit=True)
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        if other._exp != 0:
-            return context._raise_error(InvalidOperation)
-        if not (-context.prec <= int(other) <= context.prec):
-            return context._raise_error(InvalidOperation)
-
-        if self._isinfinity():
-            return Decimal(self)
-
-        # get values, pad if necessary
-        torot = int(other)
-        rotdig = self._int
-        topad = context.prec - len(rotdig)
-        if topad > 0:
-            rotdig = '0'*topad + rotdig
-        elif topad < 0:
-            rotdig = rotdig[-topad:]
-
-        # let's rotate!
-        rotated = rotdig[torot:] + rotdig[:torot]
-        return _dec_from_triple(self._sign,
-                                rotated.lstrip('0') or '0', self._exp)
-
-    def scaleb(self, other, context=None):
-        """Returns self operand after adding the second value to its exp."""
-        if context is None:
-            context = getcontext()
-
-        other = _convert_other(other, raiseit=True)
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        if other._exp != 0:
-            return context._raise_error(InvalidOperation)
-        liminf = -2 * (context.Emax + context.prec)
-        limsup =  2 * (context.Emax + context.prec)
-        if not (liminf <= int(other) <= limsup):
-            return context._raise_error(InvalidOperation)
-
-        if self._isinfinity():
-            return Decimal(self)
-
-        d = _dec_from_triple(self._sign, self._int, self._exp + int(other))
-        d = d._fix(context)
-        return d
-
-    def shift(self, other, context=None):
-        """Returns a shifted copy of self, value-of-other times."""
-        if context is None:
-            context = getcontext()
-
-        other = _convert_other(other, raiseit=True)
-
-        ans = self._check_nans(other, context)
-        if ans:
-            return ans
-
-        if other._exp != 0:
-            return context._raise_error(InvalidOperation)
-        if not (-context.prec <= int(other) <= context.prec):
-            return context._raise_error(InvalidOperation)
-
-        if self._isinfinity():
-            return Decimal(self)
-
-        # get values, pad if necessary
-        torot = int(other)
-        rotdig = self._int
-        topad = context.prec - len(rotdig)
-        if topad > 0:
-            rotdig = '0'*topad + rotdig
-        elif topad < 0:
-            rotdig = rotdig[-topad:]
-
-        # let's shift!
-        if torot < 0:
-            shifted = rotdig[:torot]
-        else:
-            shifted = rotdig + '0'*torot
-            shifted = shifted[-context.prec:]
-
-        return _dec_from_triple(self._sign,
-                                    shifted.lstrip('0') or '0', self._exp)
-
-    # Support for pickling, copy, and deepcopy
-    def __reduce__(self):
-        return (self.__class__, (str(self),))
-
-    def __copy__(self):
-        if type(self) is Decimal:
-            return self     # I'm immutable; therefore I am my own clone
-        return self.__class__(str(self))
-
-    def __deepcopy__(self, memo):
-        if type(self) is Decimal:
-            return self     # My components are also immutable
-        return self.__class__(str(self))
-
-    # PEP 3101 support.  the _localeconv keyword argument should be
-    # considered private: it's provided for ease of testing only.
-    def __format__(self, specifier, context=None, _localeconv=None):
-        """Format a Decimal instance according to the given specifier.
-
-        The specifier should be a standard format specifier, with the
-        form described in PEP 3101.  Formatting types 'e', 'E', 'f',
-        'F', 'g', 'G', 'n' and '%' are supported.  If the formatting
-        type is omitted it defaults to 'g' or 'G', depending on the
-        value of context.capitals.
-        """
-
-        # Note: PEP 3101 says that if the type is not present then
-        # there should be at least one digit after the decimal point.
-        # We take the liberty of ignoring this requirement for
-        # Decimal---it's presumably there to make sure that
-        # format(float, '') behaves similarly to str(float).
-        if context is None:
-            context = getcontext()
-
-        spec = _parse_format_specifier(specifier, _localeconv=_localeconv)
-
-        # special values don't care about the type or precision
-        if self._is_special:
-            sign = _format_sign(self._sign, spec)
-            body = str(self.copy_abs())
-            if spec['type'] == '%':
-                body += '%'
-            return _format_align(sign, body, spec)
-
-        # a type of None defaults to 'g' or 'G', depending on context
-        if spec['type'] is None:
-            spec['type'] = ['g', 'G'][context.capitals]
-
-        # if type is '%', adjust exponent of self accordingly
-        if spec['type'] == '%':
-            self = _dec_from_triple(self._sign, self._int, self._exp+2)
-
-        # round if necessary, taking rounding mode from the context
-        rounding = context.rounding
-        precision = spec['precision']
-        if precision is not None:
-            if spec['type'] in 'eE':
-                self = self._round(precision+1, rounding)
-            elif spec['type'] in 'fF%':
-                self = self._rescale(-precision, rounding)
-            elif spec['type'] in 'gG' and len(self._int) > precision:
-                self = self._round(precision, rounding)
-        # special case: zeros with a positive exponent can't be
-        # represented in fixed point; rescale them to 0e0.
-        if not self and self._exp > 0 and spec['type'] in 'fF%':
-            self = self._rescale(0, rounding)
-
-        # figure out placement of the decimal point
-        leftdigits = self._exp + len(self._int)
-        if spec['type'] in 'eE':
-            if not self and precision is not None:
-                dotplace = 1 - precision
-            else:
-                dotplace = 1
-        elif spec['type'] in 'fF%':
-            dotplace = leftdigits
-        elif spec['type'] in 'gG':
-            if self._exp <= 0 and leftdigits > -6:
-                dotplace = leftdigits
-            else:
-                dotplace = 1
-
-        # find digits before and after decimal point, and get exponent
-        if dotplace < 0:
-            intpart = '0'
-            fracpart = '0'*(-dotplace) + self._int
-        elif dotplace > len(self._int):
-            intpart = self._int + '0'*(dotplace-len(self._int))
-            fracpart = ''
-        else:
-            intpart = self._int[:dotplace] or '0'
-            fracpart = self._int[dotplace:]
-        exp = leftdigits-dotplace
-
-        # done with the decimal-specific stuff;  hand over the rest
-        # of the formatting to the _format_number function
-        return _format_number(self._sign, intpart, fracpart, exp, spec)
-
-def _dec_from_triple(sign, coefficient, exponent, special=False):
-    """Create a decimal instance directly, without any validation,
-    normalization (e.g. removal of leading zeros) or argument
-    conversion.
-
-    This function is for *internal use only*.
-    """
-
-    self = object.__new__(Decimal)
-    self._sign = sign
-    self._int = coefficient
-    self._exp = exponent
-    self._is_special = special
-
-    return self
-
-# Register Decimal as a kind of Number (an abstract base class).
-# However, do not register it as Real (because Decimals are not
-# interoperable with floats).
-_numbers.Number.register(Decimal)
-
-
-##### Context class #######################################################
-
-class _ContextManager(object):
-    """Context manager class to support localcontext().
-
-      Sets a copy of the supplied context in __enter__() and restores
-      the previous decimal context in __exit__()
-    """
-    def __init__(self, new_context):
-        self.new_context = new_context.copy()
-    def __enter__(self):
-        self.saved_context = getcontext()
-        setcontext(self.new_context)
-        return self.new_context
-    def __exit__(self, t, v, tb):
-        setcontext(self.saved_context)
-
-class Context(object):
-    """Contains the context for a Decimal instance.
-
-    Contains:
-    prec - precision (for use in rounding, division, square roots..)
-    rounding - rounding type (how you round)
-    traps - If traps[exception] = 1, then the exception is
-                    raised when it is caused.  Otherwise, a value is
-                    substituted in.
-    flags  - When an exception is caused, flags[exception] is set.
-             (Whether or not the trap_enabler is set)
-             Should be reset by user of Decimal instance.
-    Emin -   Minimum exponent
-    Emax -   Maximum exponent
-    capitals -      If 1, 1*10^1 is printed as 1E+1.
-                    If 0, printed as 1e1
-    clamp -  If 1, change exponents if too high (Default 0)
-    """
-
-    def __init__(self, prec=None, rounding=None, Emin=None, Emax=None,
-                       capitals=None, clamp=None, flags=None, traps=None,
-                       _ignored_flags=None):
-        # Set defaults; for everything except flags and _ignored_flags,
-        # inherit from DefaultContext.
-        try:
-            dc = DefaultContext
-        except NameError:
-            pass
-
-        self.prec = prec if prec is not None else dc.prec
-        self.rounding = rounding if rounding is not None else dc.rounding
-        self.Emin = Emin if Emin is not None else dc.Emin
-        self.Emax = Emax if Emax is not None else dc.Emax
-        self.capitals = capitals if capitals is not None else dc.capitals
-        self.clamp = clamp if clamp is not None else dc.clamp
-
-        if _ignored_flags is None:
-            self._ignored_flags = []
-        else:
-            self._ignored_flags = _ignored_flags
-
-        if traps is None:
-            self.traps = dc.traps.copy()
-        elif not isinstance(traps, dict):
-            self.traps = dict((s, int(s in traps)) for s in _signals + traps)
-        else:
-            self.traps = traps
-
-        if flags is None:
-            self.flags = dict.fromkeys(_signals, 0)
-        elif not isinstance(flags, dict):
-            self.flags = dict((s, int(s in flags)) for s in _signals + flags)
-        else:
-            self.flags = flags
-
-    def _set_integer_check(self, name, value, vmin, vmax):
-        if not isinstance(value, int):
-            raise TypeError("%s must be an integer" % name)
-        if vmin == '-inf':
-            if value > vmax:
-                raise ValueError("%s must be in [%s, %d]. got: %s" % (name, vmin, vmax, value))
-        elif vmax == 'inf':
-            if value < vmin:
-                raise ValueError("%s must be in [%d, %s]. got: %s" % (name, vmin, vmax, value))
-        else:
-            if value < vmin or value > vmax:
-                raise ValueError("%s must be in [%d, %d]. got %s" % (name, vmin, vmax, value))
-        return object.__setattr__(self, name, value)
-
-    def _set_signal_dict(self, name, d):
-        if not isinstance(d, dict):
-            raise TypeError("%s must be a signal dict" % d)
-        for key in d:
-            if not key in _signals:
-                raise KeyError("%s is not a valid signal dict" % d)
-        for key in _signals:
-            if not key in d:
-                raise KeyError("%s is not a valid signal dict" % d)
-        return object.__setattr__(self, name, d)
-
-    def __setattr__(self, name, value):
-        if name == 'prec':
-            return self._set_integer_check(name, value, 1, 'inf')
-        elif name == 'Emin':
-            return self._set_integer_check(name, value, '-inf', 0)
-        elif name == 'Emax':
-            return self._set_integer_check(name, value, 0, 'inf')
-        elif name == 'capitals':
-            return self._set_integer_check(name, value, 0, 1)
-        elif name == 'clamp':
-            return self._set_integer_check(name, value, 0, 1)
-        elif name == 'rounding':
-            if not value in _rounding_modes:
-                # raise TypeError even for strings to have consistency
-                # among various implementations.
-                raise TypeError("%s: invalid rounding mode" % value)
-            return object.__setattr__(self, name, value)
-        elif name == 'flags' or name == 'traps':
-            return self._set_signal_dict(name, value)
-        elif name == '_ignored_flags':
-            return object.__setattr__(self, name, value)
-        else:
-            raise AttributeError(
-                "'decimal.Context' object has no attribute '%s'" % name)
-
-    def __delattr__(self, name):
-        raise AttributeError("%s cannot be deleted" % name)
-
-    # Support for pickling, copy, and deepcopy
-    def __reduce__(self):
-        flags = [sig for sig, v in self.flags.items() if v]
-        traps = [sig for sig, v in self.traps.items() if v]
-        return (self.__class__,
-                (self.prec, self.rounding, self.Emin, self.Emax,
-                 self.capitals, self.clamp, flags, traps))
-
-    def __repr__(self):
-        """Show the current context."""
-        s = []
-        s.append('Context(prec=%(prec)d, rounding=%(rounding)s, '
-                 'Emin=%(Emin)d, Emax=%(Emax)d, capitals=%(capitals)d, '
-                 'clamp=%(clamp)d'
-                 % vars(self))
-        names = [f.__name__ for f, v in self.flags.items() if v]
-        s.append('flags=[' + ', '.join(names) + ']')
-        names = [t.__name__ for t, v in self.traps.items() if v]
-        s.append('traps=[' + ', '.join(names) + ']')
-        return ', '.join(s) + ')'
-
-    def clear_flags(self):
-        """Reset all flags to zero"""
-        for flag in self.flags:
-            self.flags[flag] = 0
-
-    def clear_traps(self):
-        """Reset all traps to zero"""
-        for flag in self.traps:
-            self.traps[flag] = 0
-
-    def _shallow_copy(self):
-        """Returns a shallow copy from self."""
-        nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
-                     self.capitals, self.clamp, self.flags, self.traps,
-                     self._ignored_flags)
-        return nc
-
-    def copy(self):
-        """Returns a deep copy from self."""
-        nc = Context(self.prec, self.rounding, self.Emin, self.Emax,
-                     self.capitals, self.clamp,
-                     self.flags.copy(), self.traps.copy(),
-                     self._ignored_flags)
-        return nc
-    __copy__ = copy
-
-    def _raise_error(self, condition, explanation = None, *args):
-        """Handles an error
-
-        If the flag is in _ignored_flags, returns the default response.
-        Otherwise, it sets the flag, then, if the corresponding
-        trap_enabler is set, it reraises the exception.  Otherwise, it returns
-        the default value after setting the flag.
-        """
-        error = _condition_map.get(condition, condition)
-        if error in self._ignored_flags:
-            # Don't touch the flag
-            return error().handle(self, *args)
-
-        self.flags[error] = 1
-        if not self.traps[error]:
-            # The errors define how to handle themselves.
-            return condition().handle(self, *args)
-
-        # Errors should only be risked on copies of the context
-        # self._ignored_flags = []
-        raise error(explanation)
-
-    def _ignore_all_flags(self):
-        """Ignore all flags, if they are raised"""
-        return self._ignore_flags(*_signals)
-
-    def _ignore_flags(self, *flags):
-        """Ignore the flags, if they are raised"""
-        # Do not mutate-- This way, copies of a context leave the original
-        # alone.
-        self._ignored_flags = (self._ignored_flags + list(flags))
-        return list(flags)
-
-    def _regard_flags(self, *flags):
-        """Stop ignoring the flags, if they are raised"""
-        if flags and isinstance(flags[0], (tuple,list)):
-            flags = flags[0]
-        for flag in flags:
-            self._ignored_flags.remove(flag)
-
-    # We inherit object.__hash__, so we must deny this explicitly
-    __hash__ = None
-
-    def Etiny(self):
-        """Returns Etiny (= Emin - prec + 1)"""
-        return int(self.Emin - self.prec + 1)
-
-    def Etop(self):
-        """Returns maximum exponent (= Emax - prec + 1)"""
-        return int(self.Emax - self.prec + 1)
-
-    def _set_rounding(self, type):
-        """Sets the rounding type.
-
-        Sets the rounding type, and returns the current (previous)
-        rounding type.  Often used like:
-
-        context = context.copy()
-        # so you don't change the calling context
-        # if an error occurs in the middle.
-        rounding = context._set_rounding(ROUND_UP)
-        val = self.__sub__(other, context=context)
-        context._set_rounding(rounding)
-
-        This will make it round up for that operation.
-        """
-        rounding = self.rounding
-        self.rounding= type
-        return rounding
-
-    def create_decimal(self, num='0'):
-        """Creates a new Decimal instance but using self as context.
-
-        This method implements the to-number operation of the
-        IBM Decimal specification."""
-
-        if isinstance(num, str) and num != num.strip():
-            return self._raise_error(ConversionSyntax,
-                                     "no trailing or leading whitespace is "
-                                     "permitted.")
-
-        d = Decimal(num, context=self)
-        if d._isnan() and len(d._int) > self.prec - self.clamp:
-            return self._raise_error(ConversionSyntax,
-                                     "diagnostic info too long in NaN")
-        return d._fix(self)
-
-    def create_decimal_from_float(self, f):
-        """Creates a new Decimal instance from a float but rounding using self
-        as the context.
-
-        >>> context = Context(prec=5, rounding=ROUND_DOWN)
-        >>> context.create_decimal_from_float(3.1415926535897932)
-        Decimal('3.1415')
-        >>> context = Context(prec=5, traps=[Inexact])
-        >>> context.create_decimal_from_float(3.1415926535897932)
-        Traceback (most recent call last):
-            ...
-        decimal.Inexact: None
-
-        """
-        d = Decimal.from_float(f)       # An exact conversion
-        return d._fix(self)             # Apply the context rounding
-
-    # Methods
-    def abs(self, a):
-        """Returns the absolute value of the operand.
-
-        If the operand is negative, the result is the same as using the minus
-        operation on the operand.  Otherwise, the result is the same as using
-        the plus operation on the operand.
-
-        >>> ExtendedContext.abs(Decimal('2.1'))
-        Decimal('2.1')
-        >>> ExtendedContext.abs(Decimal('-100'))
-        Decimal('100')
-        >>> ExtendedContext.abs(Decimal('101.5'))
-        Decimal('101.5')
-        >>> ExtendedContext.abs(Decimal('-101.5'))
-        Decimal('101.5')
-        >>> ExtendedContext.abs(-1)
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.__abs__(context=self)
-
-    def add(self, a, b):
-        """Return the sum of the two operands.
-
-        >>> ExtendedContext.add(Decimal('12'), Decimal('7.00'))
-        Decimal('19.00')
-        >>> ExtendedContext.add(Decimal('1E+2'), Decimal('1.01E+4'))
-        Decimal('1.02E+4')
-        >>> ExtendedContext.add(1, Decimal(2))
-        Decimal('3')
-        >>> ExtendedContext.add(Decimal(8), 5)
-        Decimal('13')
-        >>> ExtendedContext.add(5, 5)
-        Decimal('10')
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__add__(b, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def _apply(self, a):
-        return str(a._fix(self))
-
-    def canonical(self, a):
-        """Returns the same Decimal object.
-
-        As we do not have different encodings for the same number, the
-        received object already is in its canonical form.
-
-        >>> ExtendedContext.canonical(Decimal('2.50'))
-        Decimal('2.50')
-        """
-        if not isinstance(a, Decimal):
-            raise TypeError("canonical requires a Decimal as an argument.")
-        return a.canonical()
-
-    def compare(self, a, b):
-        """Compares values numerically.
-
-        If the signs of the operands differ, a value representing each operand
-        ('-1' if the operand is less than zero, '0' if the operand is zero or
-        negative zero, or '1' if the operand is greater than zero) is used in
-        place of that operand for the comparison instead of the actual
-        operand.
-
-        The comparison is then effected by subtracting the second operand from
-        the first and then returning a value according to the result of the
-        subtraction: '-1' if the result is less than zero, '0' if the result is
-        zero or negative zero, or '1' if the result is greater than zero.
-
-        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))
-        Decimal('-1')
-        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))
-        Decimal('0')
-        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))
-        Decimal('0')
-        >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))
-        Decimal('1')
-        >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))
-        Decimal('1')
-        >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))
-        Decimal('-1')
-        >>> ExtendedContext.compare(1, 2)
-        Decimal('-1')
-        >>> ExtendedContext.compare(Decimal(1), 2)
-        Decimal('-1')
-        >>> ExtendedContext.compare(1, Decimal(2))
-        Decimal('-1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.compare(b, context=self)
-
-    def compare_signal(self, a, b):
-        """Compares the values of the two operands numerically.
-
-        It's pretty much like compare(), but all NaNs signal, with signaling
-        NaNs taking precedence over quiet NaNs.
-
-        >>> c = ExtendedContext
-        >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
-        Decimal('-1')
-        >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
-        Decimal('0')
-        >>> c.flags[InvalidOperation] = 0
-        >>> print(c.flags[InvalidOperation])
-        0
-        >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
-        Decimal('NaN')
-        >>> print(c.flags[InvalidOperation])
-        1
-        >>> c.flags[InvalidOperation] = 0
-        >>> print(c.flags[InvalidOperation])
-        0
-        >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
-        Decimal('NaN')
-        >>> print(c.flags[InvalidOperation])
-        1
-        >>> c.compare_signal(-1, 2)
-        Decimal('-1')
-        >>> c.compare_signal(Decimal(-1), 2)
-        Decimal('-1')
-        >>> c.compare_signal(-1, Decimal(2))
-        Decimal('-1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.compare_signal(b, context=self)
-
-    def compare_total(self, a, b):
-        """Compares two operands using their abstract representation.
-
-        This is not like the standard compare, which use their numerical
-        value. Note that a total ordering is defined for all possible abstract
-        representations.
-
-        >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
-        Decimal('-1')
-        >>> ExtendedContext.compare_total(Decimal('-127'),  Decimal('12'))
-        Decimal('-1')
-        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
-        Decimal('-1')
-        >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
-        Decimal('0')
-        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('12.300'))
-        Decimal('1')
-        >>> ExtendedContext.compare_total(Decimal('12.3'),  Decimal('NaN'))
-        Decimal('-1')
-        >>> ExtendedContext.compare_total(1, 2)
-        Decimal('-1')
-        >>> ExtendedContext.compare_total(Decimal(1), 2)
-        Decimal('-1')
-        >>> ExtendedContext.compare_total(1, Decimal(2))
-        Decimal('-1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.compare_total(b)
-
-    def compare_total_mag(self, a, b):
-        """Compares two operands using their abstract representation ignoring sign.
-
-        Like compare_total, but with operand's sign ignored and assumed to be 0.
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.compare_total_mag(b)
-
-    def copy_abs(self, a):
-        """Returns a copy of the operand with the sign set to 0.
-
-        >>> ExtendedContext.copy_abs(Decimal('2.1'))
-        Decimal('2.1')
-        >>> ExtendedContext.copy_abs(Decimal('-100'))
-        Decimal('100')
-        >>> ExtendedContext.copy_abs(-1)
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.copy_abs()
-
-    def copy_decimal(self, a):
-        """Returns a copy of the decimal object.
-
-        >>> ExtendedContext.copy_decimal(Decimal('2.1'))
-        Decimal('2.1')
-        >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
-        Decimal('-1.00')
-        >>> ExtendedContext.copy_decimal(1)
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return Decimal(a)
-
-    def copy_negate(self, a):
-        """Returns a copy of the operand with the sign inverted.
-
-        >>> ExtendedContext.copy_negate(Decimal('101.5'))
-        Decimal('-101.5')
-        >>> ExtendedContext.copy_negate(Decimal('-101.5'))
-        Decimal('101.5')
-        >>> ExtendedContext.copy_negate(1)
-        Decimal('-1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.copy_negate()
-
-    def copy_sign(self, a, b):
-        """Copies the second operand's sign to the first one.
-
-        In detail, it returns a copy of the first operand with the sign
-        equal to the sign of the second operand.
-
-        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
-        Decimal('1.50')
-        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
-        Decimal('1.50')
-        >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
-        Decimal('-1.50')
-        >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
-        Decimal('-1.50')
-        >>> ExtendedContext.copy_sign(1, -2)
-        Decimal('-1')
-        >>> ExtendedContext.copy_sign(Decimal(1), -2)
-        Decimal('-1')
-        >>> ExtendedContext.copy_sign(1, Decimal(-2))
-        Decimal('-1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.copy_sign(b)
-
-    def divide(self, a, b):
-        """Decimal division in a specified context.
-
-        >>> ExtendedContext.divide(Decimal('1'), Decimal('3'))
-        Decimal('0.333333333')
-        >>> ExtendedContext.divide(Decimal('2'), Decimal('3'))
-        Decimal('0.666666667')
-        >>> ExtendedContext.divide(Decimal('5'), Decimal('2'))
-        Decimal('2.5')
-        >>> ExtendedContext.divide(Decimal('1'), Decimal('10'))
-        Decimal('0.1')
-        >>> ExtendedContext.divide(Decimal('12'), Decimal('12'))
-        Decimal('1')
-        >>> ExtendedContext.divide(Decimal('8.00'), Decimal('2'))
-        Decimal('4.00')
-        >>> ExtendedContext.divide(Decimal('2.400'), Decimal('2.0'))
-        Decimal('1.20')
-        >>> ExtendedContext.divide(Decimal('1000'), Decimal('100'))
-        Decimal('10')
-        >>> ExtendedContext.divide(Decimal('1000'), Decimal('1'))
-        Decimal('1000')
-        >>> ExtendedContext.divide(Decimal('2.40E+6'), Decimal('2'))
-        Decimal('1.20E+6')
-        >>> ExtendedContext.divide(5, 5)
-        Decimal('1')
-        >>> ExtendedContext.divide(Decimal(5), 5)
-        Decimal('1')
-        >>> ExtendedContext.divide(5, Decimal(5))
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__truediv__(b, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def divide_int(self, a, b):
-        """Divides two numbers and returns the integer part of the result.
-
-        >>> ExtendedContext.divide_int(Decimal('2'), Decimal('3'))
-        Decimal('0')
-        >>> ExtendedContext.divide_int(Decimal('10'), Decimal('3'))
-        Decimal('3')
-        >>> ExtendedContext.divide_int(Decimal('1'), Decimal('0.3'))
-        Decimal('3')
-        >>> ExtendedContext.divide_int(10, 3)
-        Decimal('3')
-        >>> ExtendedContext.divide_int(Decimal(10), 3)
-        Decimal('3')
-        >>> ExtendedContext.divide_int(10, Decimal(3))
-        Decimal('3')
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__floordiv__(b, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def divmod(self, a, b):
-        """Return (a // b, a % b).
-
-        >>> ExtendedContext.divmod(Decimal(8), Decimal(3))
-        (Decimal('2'), Decimal('2'))
-        >>> ExtendedContext.divmod(Decimal(8), Decimal(4))
-        (Decimal('2'), Decimal('0'))
-        >>> ExtendedContext.divmod(8, 4)
-        (Decimal('2'), Decimal('0'))
-        >>> ExtendedContext.divmod(Decimal(8), 4)
-        (Decimal('2'), Decimal('0'))
-        >>> ExtendedContext.divmod(8, Decimal(4))
-        (Decimal('2'), Decimal('0'))
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__divmod__(b, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def exp(self, a):
-        """Returns e ** a.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.exp(Decimal('-Infinity'))
-        Decimal('0')
-        >>> c.exp(Decimal('-1'))
-        Decimal('0.367879441')
-        >>> c.exp(Decimal('0'))
-        Decimal('1')
-        >>> c.exp(Decimal('1'))
-        Decimal('2.71828183')
-        >>> c.exp(Decimal('0.693147181'))
-        Decimal('2.00000000')
-        >>> c.exp(Decimal('+Infinity'))
-        Decimal('Infinity')
-        >>> c.exp(10)
-        Decimal('22026.4658')
-        """
-        a =_convert_other(a, raiseit=True)
-        return a.exp(context=self)
-
-    def fma(self, a, b, c):
-        """Returns a multiplied by b, plus c.
-
-        The first two operands are multiplied together, using multiply,
-        the third operand is then added to the result of that
-        multiplication, using add, all with only one final rounding.
-
-        >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
-        Decimal('22')
-        >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
-        Decimal('-8')
-        >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
-        Decimal('1.38435736E+12')
-        >>> ExtendedContext.fma(1, 3, 4)
-        Decimal('7')
-        >>> ExtendedContext.fma(1, Decimal(3), 4)
-        Decimal('7')
-        >>> ExtendedContext.fma(1, 3, Decimal(4))
-        Decimal('7')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.fma(b, c, context=self)
-
-    def is_canonical(self, a):
-        """Return True if the operand is canonical; otherwise return False.
-
-        Currently, the encoding of a Decimal instance is always
-        canonical, so this method returns True for any Decimal.
-
-        >>> ExtendedContext.is_canonical(Decimal('2.50'))
-        True
-        """
-        if not isinstance(a, Decimal):
-            raise TypeError("is_canonical requires a Decimal as an argument.")
-        return a.is_canonical()
-
-    def is_finite(self, a):
-        """Return True if the operand is finite; otherwise return False.
-
-        A Decimal instance is considered finite if it is neither
-        infinite nor a NaN.
-
-        >>> ExtendedContext.is_finite(Decimal('2.50'))
-        True
-        >>> ExtendedContext.is_finite(Decimal('-0.3'))
-        True
-        >>> ExtendedContext.is_finite(Decimal('0'))
-        True
-        >>> ExtendedContext.is_finite(Decimal('Inf'))
-        False
-        >>> ExtendedContext.is_finite(Decimal('NaN'))
-        False
-        >>> ExtendedContext.is_finite(1)
-        True
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_finite()
-
-    def is_infinite(self, a):
-        """Return True if the operand is infinite; otherwise return False.
-
-        >>> ExtendedContext.is_infinite(Decimal('2.50'))
-        False
-        >>> ExtendedContext.is_infinite(Decimal('-Inf'))
-        True
-        >>> ExtendedContext.is_infinite(Decimal('NaN'))
-        False
-        >>> ExtendedContext.is_infinite(1)
-        False
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_infinite()
-
-    def is_nan(self, a):
-        """Return True if the operand is a qNaN or sNaN;
-        otherwise return False.
-
-        >>> ExtendedContext.is_nan(Decimal('2.50'))
-        False
-        >>> ExtendedContext.is_nan(Decimal('NaN'))
-        True
-        >>> ExtendedContext.is_nan(Decimal('-sNaN'))
-        True
-        >>> ExtendedContext.is_nan(1)
-        False
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_nan()
-
-    def is_normal(self, a):
-        """Return True if the operand is a normal number;
-        otherwise return False.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.is_normal(Decimal('2.50'))
-        True
-        >>> c.is_normal(Decimal('0.1E-999'))
-        False
-        >>> c.is_normal(Decimal('0.00'))
-        False
-        >>> c.is_normal(Decimal('-Inf'))
-        False
-        >>> c.is_normal(Decimal('NaN'))
-        False
-        >>> c.is_normal(1)
-        True
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_normal(context=self)
-
-    def is_qnan(self, a):
-        """Return True if the operand is a quiet NaN; otherwise return False.
-
-        >>> ExtendedContext.is_qnan(Decimal('2.50'))
-        False
-        >>> ExtendedContext.is_qnan(Decimal('NaN'))
-        True
-        >>> ExtendedContext.is_qnan(Decimal('sNaN'))
-        False
-        >>> ExtendedContext.is_qnan(1)
-        False
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_qnan()
-
-    def is_signed(self, a):
-        """Return True if the operand is negative; otherwise return False.
-
-        >>> ExtendedContext.is_signed(Decimal('2.50'))
-        False
-        >>> ExtendedContext.is_signed(Decimal('-12'))
-        True
-        >>> ExtendedContext.is_signed(Decimal('-0'))
-        True
-        >>> ExtendedContext.is_signed(8)
-        False
-        >>> ExtendedContext.is_signed(-8)
-        True
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_signed()
-
-    def is_snan(self, a):
-        """Return True if the operand is a signaling NaN;
-        otherwise return False.
-
-        >>> ExtendedContext.is_snan(Decimal('2.50'))
-        False
-        >>> ExtendedContext.is_snan(Decimal('NaN'))
-        False
-        >>> ExtendedContext.is_snan(Decimal('sNaN'))
-        True
-        >>> ExtendedContext.is_snan(1)
-        False
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_snan()
-
-    def is_subnormal(self, a):
-        """Return True if the operand is subnormal; otherwise return False.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.is_subnormal(Decimal('2.50'))
-        False
-        >>> c.is_subnormal(Decimal('0.1E-999'))
-        True
-        >>> c.is_subnormal(Decimal('0.00'))
-        False
-        >>> c.is_subnormal(Decimal('-Inf'))
-        False
-        >>> c.is_subnormal(Decimal('NaN'))
-        False
-        >>> c.is_subnormal(1)
-        False
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_subnormal(context=self)
-
-    def is_zero(self, a):
-        """Return True if the operand is a zero; otherwise return False.
-
-        >>> ExtendedContext.is_zero(Decimal('0'))
-        True
-        >>> ExtendedContext.is_zero(Decimal('2.50'))
-        False
-        >>> ExtendedContext.is_zero(Decimal('-0E+2'))
-        True
-        >>> ExtendedContext.is_zero(1)
-        False
-        >>> ExtendedContext.is_zero(0)
-        True
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.is_zero()
-
-    def ln(self, a):
-        """Returns the natural (base e) logarithm of the operand.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.ln(Decimal('0'))
-        Decimal('-Infinity')
-        >>> c.ln(Decimal('1.000'))
-        Decimal('0')
-        >>> c.ln(Decimal('2.71828183'))
-        Decimal('1.00000000')
-        >>> c.ln(Decimal('10'))
-        Decimal('2.30258509')
-        >>> c.ln(Decimal('+Infinity'))
-        Decimal('Infinity')
-        >>> c.ln(1)
-        Decimal('0')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.ln(context=self)
-
-    def log10(self, a):
-        """Returns the base 10 logarithm of the operand.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.log10(Decimal('0'))
-        Decimal('-Infinity')
-        >>> c.log10(Decimal('0.001'))
-        Decimal('-3')
-        >>> c.log10(Decimal('1.000'))
-        Decimal('0')
-        >>> c.log10(Decimal('2'))
-        Decimal('0.301029996')
-        >>> c.log10(Decimal('10'))
-        Decimal('1')
-        >>> c.log10(Decimal('70'))
-        Decimal('1.84509804')
-        >>> c.log10(Decimal('+Infinity'))
-        Decimal('Infinity')
-        >>> c.log10(0)
-        Decimal('-Infinity')
-        >>> c.log10(1)
-        Decimal('0')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.log10(context=self)
-
-    def logb(self, a):
-        """ Returns the exponent of the magnitude of the operand's MSD.
-
-        The result is the integer which is the exponent of the magnitude
-        of the most significant digit of the operand (as though the
-        operand were truncated to a single digit while maintaining the
-        value of that digit and without limiting the resulting exponent).
-
-        >>> ExtendedContext.logb(Decimal('250'))
-        Decimal('2')
-        >>> ExtendedContext.logb(Decimal('2.50'))
-        Decimal('0')
-        >>> ExtendedContext.logb(Decimal('0.03'))
-        Decimal('-2')
-        >>> ExtendedContext.logb(Decimal('0'))
-        Decimal('-Infinity')
-        >>> ExtendedContext.logb(1)
-        Decimal('0')
-        >>> ExtendedContext.logb(10)
-        Decimal('1')
-        >>> ExtendedContext.logb(100)
-        Decimal('2')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.logb(context=self)
-
-    def logical_and(self, a, b):
-        """Applies the logical operation 'and' between each operand's digits.
-
-        The operands must be both logical numbers.
-
-        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
-        Decimal('0')
-        >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
-        Decimal('0')
-        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
-        Decimal('0')
-        >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
-        Decimal('1')
-        >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
-        Decimal('1000')
-        >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
-        Decimal('10')
-        >>> ExtendedContext.logical_and(110, 1101)
-        Decimal('100')
-        >>> ExtendedContext.logical_and(Decimal(110), 1101)
-        Decimal('100')
-        >>> ExtendedContext.logical_and(110, Decimal(1101))
-        Decimal('100')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.logical_and(b, context=self)
-
-    def logical_invert(self, a):
-        """Invert all the digits in the operand.
-
-        The operand must be a logical number.
-
-        >>> ExtendedContext.logical_invert(Decimal('0'))
-        Decimal('111111111')
-        >>> ExtendedContext.logical_invert(Decimal('1'))
-        Decimal('111111110')
-        >>> ExtendedContext.logical_invert(Decimal('111111111'))
-        Decimal('0')
-        >>> ExtendedContext.logical_invert(Decimal('101010101'))
-        Decimal('10101010')
-        >>> ExtendedContext.logical_invert(1101)
-        Decimal('111110010')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.logical_invert(context=self)
-
-    def logical_or(self, a, b):
-        """Applies the logical operation 'or' between each operand's digits.
-
-        The operands must be both logical numbers.
-
-        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
-        Decimal('0')
-        >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
-        Decimal('1')
-        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
-        Decimal('1')
-        >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
-        Decimal('1')
-        >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
-        Decimal('1110')
-        >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
-        Decimal('1110')
-        >>> ExtendedContext.logical_or(110, 1101)
-        Decimal('1111')
-        >>> ExtendedContext.logical_or(Decimal(110), 1101)
-        Decimal('1111')
-        >>> ExtendedContext.logical_or(110, Decimal(1101))
-        Decimal('1111')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.logical_or(b, context=self)
-
-    def logical_xor(self, a, b):
-        """Applies the logical operation 'xor' between each operand's digits.
-
-        The operands must be both logical numbers.
-
-        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
-        Decimal('0')
-        >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
-        Decimal('1')
-        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
-        Decimal('1')
-        >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
-        Decimal('0')
-        >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
-        Decimal('110')
-        >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
-        Decimal('1101')
-        >>> ExtendedContext.logical_xor(110, 1101)
-        Decimal('1011')
-        >>> ExtendedContext.logical_xor(Decimal(110), 1101)
-        Decimal('1011')
-        >>> ExtendedContext.logical_xor(110, Decimal(1101))
-        Decimal('1011')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.logical_xor(b, context=self)
-
-    def max(self, a, b):
-        """max compares two values numerically and returns the maximum.
-
-        If either operand is a NaN then the general rules apply.
-        Otherwise, the operands are compared as though by the compare
-        operation.  If they are numerically equal then the left-hand operand
-        is chosen as the result.  Otherwise the maximum (closer to positive
-        infinity) of the two operands is chosen as the result.
-
-        >>> ExtendedContext.max(Decimal('3'), Decimal('2'))
-        Decimal('3')
-        >>> ExtendedContext.max(Decimal('-10'), Decimal('3'))
-        Decimal('3')
-        >>> ExtendedContext.max(Decimal('1.0'), Decimal('1'))
-        Decimal('1')
-        >>> ExtendedContext.max(Decimal('7'), Decimal('NaN'))
-        Decimal('7')
-        >>> ExtendedContext.max(1, 2)
-        Decimal('2')
-        >>> ExtendedContext.max(Decimal(1), 2)
-        Decimal('2')
-        >>> ExtendedContext.max(1, Decimal(2))
-        Decimal('2')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.max(b, context=self)
-
-    def max_mag(self, a, b):
-        """Compares the values numerically with their sign ignored.
-
-        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('NaN'))
-        Decimal('7')
-        >>> ExtendedContext.max_mag(Decimal('7'), Decimal('-10'))
-        Decimal('-10')
-        >>> ExtendedContext.max_mag(1, -2)
-        Decimal('-2')
-        >>> ExtendedContext.max_mag(Decimal(1), -2)
-        Decimal('-2')
-        >>> ExtendedContext.max_mag(1, Decimal(-2))
-        Decimal('-2')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.max_mag(b, context=self)
-
-    def min(self, a, b):
-        """min compares two values numerically and returns the minimum.
-
-        If either operand is a NaN then the general rules apply.
-        Otherwise, the operands are compared as though by the compare
-        operation.  If they are numerically equal then the left-hand operand
-        is chosen as the result.  Otherwise the minimum (closer to negative
-        infinity) of the two operands is chosen as the result.
-
-        >>> ExtendedContext.min(Decimal('3'), Decimal('2'))
-        Decimal('2')
-        >>> ExtendedContext.min(Decimal('-10'), Decimal('3'))
-        Decimal('-10')
-        >>> ExtendedContext.min(Decimal('1.0'), Decimal('1'))
-        Decimal('1.0')
-        >>> ExtendedContext.min(Decimal('7'), Decimal('NaN'))
-        Decimal('7')
-        >>> ExtendedContext.min(1, 2)
-        Decimal('1')
-        >>> ExtendedContext.min(Decimal(1), 2)
-        Decimal('1')
-        >>> ExtendedContext.min(1, Decimal(29))
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.min(b, context=self)
-
-    def min_mag(self, a, b):
-        """Compares the values numerically with their sign ignored.
-
-        >>> ExtendedContext.min_mag(Decimal('3'), Decimal('-2'))
-        Decimal('-2')
-        >>> ExtendedContext.min_mag(Decimal('-3'), Decimal('NaN'))
-        Decimal('-3')
-        >>> ExtendedContext.min_mag(1, -2)
-        Decimal('1')
-        >>> ExtendedContext.min_mag(Decimal(1), -2)
-        Decimal('1')
-        >>> ExtendedContext.min_mag(1, Decimal(-2))
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.min_mag(b, context=self)
-
-    def minus(self, a):
-        """Minus corresponds to unary prefix minus in Python.
-
-        The operation is evaluated using the same rules as subtract; the
-        operation minus(a) is calculated as subtract('0', a) where the '0'
-        has the same exponent as the operand.
-
-        >>> ExtendedContext.minus(Decimal('1.3'))
-        Decimal('-1.3')
-        >>> ExtendedContext.minus(Decimal('-1.3'))
-        Decimal('1.3')
-        >>> ExtendedContext.minus(1)
-        Decimal('-1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.__neg__(context=self)
-
-    def multiply(self, a, b):
-        """multiply multiplies two operands.
-
-        If either operand is a special value then the general rules apply.
-        Otherwise, the operands are multiplied together
-        ('long multiplication'), resulting in a number which may be as long as
-        the sum of the lengths of the two operands.
-
-        >>> ExtendedContext.multiply(Decimal('1.20'), Decimal('3'))
-        Decimal('3.60')
-        >>> ExtendedContext.multiply(Decimal('7'), Decimal('3'))
-        Decimal('21')
-        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('0.8'))
-        Decimal('0.72')
-        >>> ExtendedContext.multiply(Decimal('0.9'), Decimal('-0'))
-        Decimal('-0.0')
-        >>> ExtendedContext.multiply(Decimal('654321'), Decimal('654321'))
-        Decimal('4.28135971E+11')
-        >>> ExtendedContext.multiply(7, 7)
-        Decimal('49')
-        >>> ExtendedContext.multiply(Decimal(7), 7)
-        Decimal('49')
-        >>> ExtendedContext.multiply(7, Decimal(7))
-        Decimal('49')
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__mul__(b, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def next_minus(self, a):
-        """Returns the largest representable number smaller than a.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> ExtendedContext.next_minus(Decimal('1'))
-        Decimal('0.999999999')
-        >>> c.next_minus(Decimal('1E-1007'))
-        Decimal('0E-1007')
-        >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
-        Decimal('-1.00000004')
-        >>> c.next_minus(Decimal('Infinity'))
-        Decimal('9.99999999E+999')
-        >>> c.next_minus(1)
-        Decimal('0.999999999')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.next_minus(context=self)
-
-    def next_plus(self, a):
-        """Returns the smallest representable number larger than a.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> ExtendedContext.next_plus(Decimal('1'))
-        Decimal('1.00000001')
-        >>> c.next_plus(Decimal('-1E-1007'))
-        Decimal('-0E-1007')
-        >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
-        Decimal('-1.00000002')
-        >>> c.next_plus(Decimal('-Infinity'))
-        Decimal('-9.99999999E+999')
-        >>> c.next_plus(1)
-        Decimal('1.00000001')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.next_plus(context=self)
-
-    def next_toward(self, a, b):
-        """Returns the number closest to a, in direction towards b.
-
-        The result is the closest representable number from the first
-        operand (but not the first operand) that is in the direction
-        towards the second operand, unless the operands have the same
-        value.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.next_toward(Decimal('1'), Decimal('2'))
-        Decimal('1.00000001')
-        >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
-        Decimal('-0E-1007')
-        >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
-        Decimal('-1.00000002')
-        >>> c.next_toward(Decimal('1'), Decimal('0'))
-        Decimal('0.999999999')
-        >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
-        Decimal('0E-1007')
-        >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
-        Decimal('-1.00000004')
-        >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
-        Decimal('-0.00')
-        >>> c.next_toward(0, 1)
-        Decimal('1E-1007')
-        >>> c.next_toward(Decimal(0), 1)
-        Decimal('1E-1007')
-        >>> c.next_toward(0, Decimal(1))
-        Decimal('1E-1007')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.next_toward(b, context=self)
-
-    def normalize(self, a):
-        """normalize reduces an operand to its simplest form.
-
-        Essentially a plus operation with all trailing zeros removed from the
-        result.
-
-        >>> ExtendedContext.normalize(Decimal('2.1'))
-        Decimal('2.1')
-        >>> ExtendedContext.normalize(Decimal('-2.0'))
-        Decimal('-2')
-        >>> ExtendedContext.normalize(Decimal('1.200'))
-        Decimal('1.2')
-        >>> ExtendedContext.normalize(Decimal('-120'))
-        Decimal('-1.2E+2')
-        >>> ExtendedContext.normalize(Decimal('120.00'))
-        Decimal('1.2E+2')
-        >>> ExtendedContext.normalize(Decimal('0.00'))
-        Decimal('0')
-        >>> ExtendedContext.normalize(6)
-        Decimal('6')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.normalize(context=self)
-
-    def number_class(self, a):
-        """Returns an indication of the class of the operand.
-
-        The class is one of the following strings:
-          -sNaN
-          -NaN
-          -Infinity
-          -Normal
-          -Subnormal
-          -Zero
-          +Zero
-          +Subnormal
-          +Normal
-          +Infinity
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.number_class(Decimal('Infinity'))
-        '+Infinity'
-        >>> c.number_class(Decimal('1E-10'))
-        '+Normal'
-        >>> c.number_class(Decimal('2.50'))
-        '+Normal'
-        >>> c.number_class(Decimal('0.1E-999'))
-        '+Subnormal'
-        >>> c.number_class(Decimal('0'))
-        '+Zero'
-        >>> c.number_class(Decimal('-0'))
-        '-Zero'
-        >>> c.number_class(Decimal('-0.1E-999'))
-        '-Subnormal'
-        >>> c.number_class(Decimal('-1E-10'))
-        '-Normal'
-        >>> c.number_class(Decimal('-2.50'))
-        '-Normal'
-        >>> c.number_class(Decimal('-Infinity'))
-        '-Infinity'
-        >>> c.number_class(Decimal('NaN'))
-        'NaN'
-        >>> c.number_class(Decimal('-NaN'))
-        'NaN'
-        >>> c.number_class(Decimal('sNaN'))
-        'sNaN'
-        >>> c.number_class(123)
-        '+Normal'
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.number_class(context=self)
-
-    def plus(self, a):
-        """Plus corresponds to unary prefix plus in Python.
-
-        The operation is evaluated using the same rules as add; the
-        operation plus(a) is calculated as add('0', a) where the '0'
-        has the same exponent as the operand.
-
-        >>> ExtendedContext.plus(Decimal('1.3'))
-        Decimal('1.3')
-        >>> ExtendedContext.plus(Decimal('-1.3'))
-        Decimal('-1.3')
-        >>> ExtendedContext.plus(-1)
-        Decimal('-1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.__pos__(context=self)
-
-    def power(self, a, b, modulo=None):
-        """Raises a to the power of b, to modulo if given.
-
-        With two arguments, compute a**b.  If a is negative then b
-        must be integral.  The result will be inexact unless b is
-        integral and the result is finite and can be expressed exactly
-        in 'precision' digits.
-
-        With three arguments, compute (a**b) % modulo.  For the
-        three argument form, the following restrictions on the
-        arguments hold:
-
-         - all three arguments must be integral
-         - b must be nonnegative
-         - at least one of a or b must be nonzero
-         - modulo must be nonzero and have at most 'precision' digits
-
-        The result of pow(a, b, modulo) is identical to the result
-        that would be obtained by computing (a**b) % modulo with
-        unbounded precision, but is computed more efficiently.  It is
-        always exact.
-
-        >>> c = ExtendedContext.copy()
-        >>> c.Emin = -999
-        >>> c.Emax = 999
-        >>> c.power(Decimal('2'), Decimal('3'))
-        Decimal('8')
-        >>> c.power(Decimal('-2'), Decimal('3'))
-        Decimal('-8')
-        >>> c.power(Decimal('2'), Decimal('-3'))
-        Decimal('0.125')
-        >>> c.power(Decimal('1.7'), Decimal('8'))
-        Decimal('69.7575744')
-        >>> c.power(Decimal('10'), Decimal('0.301029996'))
-        Decimal('2.00000000')
-        >>> c.power(Decimal('Infinity'), Decimal('-1'))
-        Decimal('0')
-        >>> c.power(Decimal('Infinity'), Decimal('0'))
-        Decimal('1')
-        >>> c.power(Decimal('Infinity'), Decimal('1'))
-        Decimal('Infinity')
-        >>> c.power(Decimal('-Infinity'), Decimal('-1'))
-        Decimal('-0')
-        >>> c.power(Decimal('-Infinity'), Decimal('0'))
-        Decimal('1')
-        >>> c.power(Decimal('-Infinity'), Decimal('1'))
-        Decimal('-Infinity')
-        >>> c.power(Decimal('-Infinity'), Decimal('2'))
-        Decimal('Infinity')
-        >>> c.power(Decimal('0'), Decimal('0'))
-        Decimal('NaN')
-
-        >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
-        Decimal('11')
-        >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
-        Decimal('-11')
-        >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
-        Decimal('1')
-        >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
-        Decimal('11')
-        >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
-        Decimal('11729830')
-        >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
-        Decimal('-0')
-        >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
-        Decimal('1')
-        >>> ExtendedContext.power(7, 7)
-        Decimal('823543')
-        >>> ExtendedContext.power(Decimal(7), 7)
-        Decimal('823543')
-        >>> ExtendedContext.power(7, Decimal(7), 2)
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__pow__(b, modulo, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def quantize(self, a, b):
-        """Returns a value equal to 'a' (rounded), having the exponent of 'b'.
-
-        The coefficient of the result is derived from that of the left-hand
-        operand.  It may be rounded using the current rounding setting (if the
-        exponent is being increased), multiplied by a positive power of ten (if
-        the exponent is being decreased), or is unchanged (if the exponent is
-        already equal to that of the right-hand operand).
-
-        Unlike other operations, if the length of the coefficient after the
-        quantize operation would be greater than precision then an Invalid
-        operation condition is raised.  This guarantees that, unless there is
-        an error condition, the exponent of the result of a quantize is always
-        equal to that of the right-hand operand.
-
-        Also unlike other operations, quantize will never raise Underflow, even
-        if the result is subnormal and inexact.
-
-        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.001'))
-        Decimal('2.170')
-        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.01'))
-        Decimal('2.17')
-        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('0.1'))
-        Decimal('2.2')
-        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+0'))
-        Decimal('2')
-        >>> ExtendedContext.quantize(Decimal('2.17'), Decimal('1e+1'))
-        Decimal('0E+1')
-        >>> ExtendedContext.quantize(Decimal('-Inf'), Decimal('Infinity'))
-        Decimal('-Infinity')
-        >>> ExtendedContext.quantize(Decimal('2'), Decimal('Infinity'))
-        Decimal('NaN')
-        >>> ExtendedContext.quantize(Decimal('-0.1'), Decimal('1'))
-        Decimal('-0')
-        >>> ExtendedContext.quantize(Decimal('-0'), Decimal('1e+5'))
-        Decimal('-0E+5')
-        >>> ExtendedContext.quantize(Decimal('+35236450.6'), Decimal('1e-2'))
-        Decimal('NaN')
-        >>> ExtendedContext.quantize(Decimal('-35236450.6'), Decimal('1e-2'))
-        Decimal('NaN')
-        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-1'))
-        Decimal('217.0')
-        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e-0'))
-        Decimal('217')
-        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+1'))
-        Decimal('2.2E+2')
-        >>> ExtendedContext.quantize(Decimal('217'), Decimal('1e+2'))
-        Decimal('2E+2')
-        >>> ExtendedContext.quantize(1, 2)
-        Decimal('1')
-        >>> ExtendedContext.quantize(Decimal(1), 2)
-        Decimal('1')
-        >>> ExtendedContext.quantize(1, Decimal(2))
-        Decimal('1')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.quantize(b, context=self)
-
-    def radix(self):
-        """Just returns 10, as this is Decimal, :)
-
-        >>> ExtendedContext.radix()
-        Decimal('10')
-        """
-        return Decimal(10)
-
-    def remainder(self, a, b):
-        """Returns the remainder from integer division.
-
-        The result is the residue of the dividend after the operation of
-        calculating integer division as described for divide-integer, rounded
-        to precision digits if necessary.  The sign of the result, if
-        non-zero, is the same as that of the original dividend.
-
-        This operation will fail under the same conditions as integer division
-        (that is, if integer division on the same two operands would fail, the
-        remainder cannot be calculated).
-
-        >>> ExtendedContext.remainder(Decimal('2.1'), Decimal('3'))
-        Decimal('2.1')
-        >>> ExtendedContext.remainder(Decimal('10'), Decimal('3'))
-        Decimal('1')
-        >>> ExtendedContext.remainder(Decimal('-10'), Decimal('3'))
-        Decimal('-1')
-        >>> ExtendedContext.remainder(Decimal('10.2'), Decimal('1'))
-        Decimal('0.2')
-        >>> ExtendedContext.remainder(Decimal('10'), Decimal('0.3'))
-        Decimal('0.1')
-        >>> ExtendedContext.remainder(Decimal('3.6'), Decimal('1.3'))
-        Decimal('1.0')
-        >>> ExtendedContext.remainder(22, 6)
-        Decimal('4')
-        >>> ExtendedContext.remainder(Decimal(22), 6)
-        Decimal('4')
-        >>> ExtendedContext.remainder(22, Decimal(6))
-        Decimal('4')
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__mod__(b, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def remainder_near(self, a, b):
-        """Returns to be "a - b * n", where n is the integer nearest the exact
-        value of "x / b" (if two integers are equally near then the even one
-        is chosen).  If the result is equal to 0 then its sign will be the
-        sign of a.
-
-        This operation will fail under the same conditions as integer division
-        (that is, if integer division on the same two operands would fail, the
-        remainder cannot be calculated).
-
-        >>> ExtendedContext.remainder_near(Decimal('2.1'), Decimal('3'))
-        Decimal('-0.9')
-        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('6'))
-        Decimal('-2')
-        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('3'))
-        Decimal('1')
-        >>> ExtendedContext.remainder_near(Decimal('-10'), Decimal('3'))
-        Decimal('-1')
-        >>> ExtendedContext.remainder_near(Decimal('10.2'), Decimal('1'))
-        Decimal('0.2')
-        >>> ExtendedContext.remainder_near(Decimal('10'), Decimal('0.3'))
-        Decimal('0.1')
-        >>> ExtendedContext.remainder_near(Decimal('3.6'), Decimal('1.3'))
-        Decimal('-0.3')
-        >>> ExtendedContext.remainder_near(3, 11)
-        Decimal('3')
-        >>> ExtendedContext.remainder_near(Decimal(3), 11)
-        Decimal('3')
-        >>> ExtendedContext.remainder_near(3, Decimal(11))
-        Decimal('3')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.remainder_near(b, context=self)
-
-    def rotate(self, a, b):
-        """Returns a rotated copy of a, b times.
-
-        The coefficient of the result is a rotated copy of the digits in
-        the coefficient of the first operand.  The number of places of
-        rotation is taken from the absolute value of the second operand,
-        with the rotation being to the left if the second operand is
-        positive or to the right otherwise.
-
-        >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
-        Decimal('400000003')
-        >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
-        Decimal('12')
-        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
-        Decimal('891234567')
-        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
-        Decimal('123456789')
-        >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
-        Decimal('345678912')
-        >>> ExtendedContext.rotate(1333333, 1)
-        Decimal('13333330')
-        >>> ExtendedContext.rotate(Decimal(1333333), 1)
-        Decimal('13333330')
-        >>> ExtendedContext.rotate(1333333, Decimal(1))
-        Decimal('13333330')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.rotate(b, context=self)
-
-    def same_quantum(self, a, b):
-        """Returns True if the two operands have the same exponent.
-
-        The result is never affected by either the sign or the coefficient of
-        either operand.
-
-        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.001'))
-        False
-        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('0.01'))
-        True
-        >>> ExtendedContext.same_quantum(Decimal('2.17'), Decimal('1'))
-        False
-        >>> ExtendedContext.same_quantum(Decimal('Inf'), Decimal('-Inf'))
-        True
-        >>> ExtendedContext.same_quantum(10000, -1)
-        True
-        >>> ExtendedContext.same_quantum(Decimal(10000), -1)
-        True
-        >>> ExtendedContext.same_quantum(10000, Decimal(-1))
-        True
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.same_quantum(b)
-
-    def scaleb (self, a, b):
-        """Returns the first operand after adding the second value its exp.
-
-        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
-        Decimal('0.0750')
-        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
-        Decimal('7.50')
-        >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
-        Decimal('7.50E+3')
-        >>> ExtendedContext.scaleb(1, 4)
-        Decimal('1E+4')
-        >>> ExtendedContext.scaleb(Decimal(1), 4)
-        Decimal('1E+4')
-        >>> ExtendedContext.scaleb(1, Decimal(4))
-        Decimal('1E+4')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.scaleb(b, context=self)
-
-    def shift(self, a, b):
-        """Returns a shifted copy of a, b times.
-
-        The coefficient of the result is a shifted copy of the digits
-        in the coefficient of the first operand.  The number of places
-        to shift is taken from the absolute value of the second operand,
-        with the shift being to the left if the second operand is
-        positive or to the right otherwise.  Digits shifted into the
-        coefficient are zeros.
-
-        >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
-        Decimal('400000000')
-        >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
-        Decimal('0')
-        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
-        Decimal('1234567')
-        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
-        Decimal('123456789')
-        >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
-        Decimal('345678900')
-        >>> ExtendedContext.shift(88888888, 2)
-        Decimal('888888800')
-        >>> ExtendedContext.shift(Decimal(88888888), 2)
-        Decimal('888888800')
-        >>> ExtendedContext.shift(88888888, Decimal(2))
-        Decimal('888888800')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.shift(b, context=self)
-
-    def sqrt(self, a):
-        """Square root of a non-negative number to context precision.
-
-        If the result must be inexact, it is rounded using the round-half-even
-        algorithm.
-
-        >>> ExtendedContext.sqrt(Decimal('0'))
-        Decimal('0')
-        >>> ExtendedContext.sqrt(Decimal('-0'))
-        Decimal('-0')
-        >>> ExtendedContext.sqrt(Decimal('0.39'))
-        Decimal('0.624499800')
-        >>> ExtendedContext.sqrt(Decimal('100'))
-        Decimal('10')
-        >>> ExtendedContext.sqrt(Decimal('1'))
-        Decimal('1')
-        >>> ExtendedContext.sqrt(Decimal('1.0'))
-        Decimal('1.0')
-        >>> ExtendedContext.sqrt(Decimal('1.00'))
-        Decimal('1.0')
-        >>> ExtendedContext.sqrt(Decimal('7'))
-        Decimal('2.64575131')
-        >>> ExtendedContext.sqrt(Decimal('10'))
-        Decimal('3.16227766')
-        >>> ExtendedContext.sqrt(2)
-        Decimal('1.41421356')
-        >>> ExtendedContext.prec
-        9
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.sqrt(context=self)
-
-    def subtract(self, a, b):
-        """Return the difference between the two operands.
-
-        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.07'))
-        Decimal('0.23')
-        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('1.30'))
-        Decimal('0.00')
-        >>> ExtendedContext.subtract(Decimal('1.3'), Decimal('2.07'))
-        Decimal('-0.77')
-        >>> ExtendedContext.subtract(8, 5)
-        Decimal('3')
-        >>> ExtendedContext.subtract(Decimal(8), 5)
-        Decimal('3')
-        >>> ExtendedContext.subtract(8, Decimal(5))
-        Decimal('3')
-        """
-        a = _convert_other(a, raiseit=True)
-        r = a.__sub__(b, context=self)
-        if r is NotImplemented:
-            raise TypeError("Unable to convert %s to Decimal" % b)
-        else:
-            return r
-
-    def to_eng_string(self, a):
-        """Converts a number to a string, using scientific notation.
-
-        The operation is not affected by the context.
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.to_eng_string(context=self)
-
-    def to_sci_string(self, a):
-        """Converts a number to a string, using scientific notation.
-
-        The operation is not affected by the context.
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.__str__(context=self)
-
-    def to_integral_exact(self, a):
-        """Rounds to an integer.
-
-        When the operand has a negative exponent, the result is the same
-        as using the quantize() operation using the given operand as the
-        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
-        of the operand as the precision setting; Inexact and Rounded flags
-        are allowed in this operation.  The rounding mode is taken from the
-        context.
-
-        >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
-        Decimal('2')
-        >>> ExtendedContext.to_integral_exact(Decimal('100'))
-        Decimal('100')
-        >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
-        Decimal('100')
-        >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
-        Decimal('102')
-        >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
-        Decimal('-102')
-        >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
-        Decimal('1.0E+6')
-        >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
-        Decimal('7.89E+77')
-        >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
-        Decimal('-Infinity')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.to_integral_exact(context=self)
-
-    def to_integral_value(self, a):
-        """Rounds to an integer.
-
-        When the operand has a negative exponent, the result is the same
-        as using the quantize() operation using the given operand as the
-        left-hand-operand, 1E+0 as the right-hand-operand, and the precision
-        of the operand as the precision setting, except that no flags will
-        be set.  The rounding mode is taken from the context.
-
-        >>> ExtendedContext.to_integral_value(Decimal('2.1'))
-        Decimal('2')
-        >>> ExtendedContext.to_integral_value(Decimal('100'))
-        Decimal('100')
-        >>> ExtendedContext.to_integral_value(Decimal('100.0'))
-        Decimal('100')
-        >>> ExtendedContext.to_integral_value(Decimal('101.5'))
-        Decimal('102')
-        >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
-        Decimal('-102')
-        >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
-        Decimal('1.0E+6')
-        >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
-        Decimal('7.89E+77')
-        >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
-        Decimal('-Infinity')
-        """
-        a = _convert_other(a, raiseit=True)
-        return a.to_integral_value(context=self)
-
-    # the method name changed, but we provide also the old one, for compatibility
-    to_integral = to_integral_value
-
-class _WorkRep(object):
-    __slots__ = ('sign','int','exp')
-    # sign: 0 or 1
-    # int:  int
-    # exp:  None, int, or string
-
-    def __init__(self, value=None):
-        if value is None:
-            self.sign = None
-            self.int = 0
-            self.exp = None
-        elif isinstance(value, Decimal):
-            self.sign = value._sign
-            self.int = int(value._int)
-            self.exp = value._exp
-        else:
-            # assert isinstance(value, tuple)
-            self.sign = value[0]
-            self.int = value[1]
-            self.exp = value[2]
-
-    def __repr__(self):
-        return "(%r, %r, %r)" % (self.sign, self.int, self.exp)
-
-    __str__ = __repr__
-
-
-
-def _normalize(op1, op2, prec = 0):
-    """Normalizes op1, op2 to have the same exp and length of coefficient.
-
-    Done during addition.
-    """
-    if op1.exp < op2.exp:
-        tmp = op2
-        other = op1
-    else:
-        tmp = op1
-        other = op2
-
-    # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
-    # Then adding 10**exp to tmp has the same effect (after rounding)
-    # as adding any positive quantity smaller than 10**exp; similarly
-    # for subtraction.  So if other is smaller than 10**exp we replace
-    # it with 10**exp.  This avoids tmp.exp - other.exp getting too large.
-    tmp_len = len(str(tmp.int))
-    other_len = len(str(other.int))
-    exp = tmp.exp + min(-1, tmp_len - prec - 2)
-    if other_len + other.exp - 1 < exp:
-        other.int = 1
-        other.exp = exp
-
-    tmp.int *= 10 ** (tmp.exp - other.exp)
-    tmp.exp = other.exp
-    return op1, op2
-
-##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
-
-_nbits = int.bit_length
-
-def _decimal_lshift_exact(n, e):
-    """ Given integers n and e, return n * 10**e if it's an integer, else None.
-
-    The computation is designed to avoid computing large powers of 10
-    unnecessarily.
-
-    >>> _decimal_lshift_exact(3, 4)
-    30000
-    >>> _decimal_lshift_exact(300, -999999999)  # returns None
-
-    """
-    if n == 0:
-        return 0
-    elif e >= 0:
-        return n * 10**e
-    else:
-        # val_n = largest power of 10 dividing n.
-        str_n = str(abs(n))
-        val_n = len(str_n) - len(str_n.rstrip('0'))
-        return None if val_n < -e else n // 10**-e
-
-def _sqrt_nearest(n, a):
-    """Closest integer to the square root of the positive integer n.  a is
-    an initial approximation to the square root.  Any positive integer
-    will do for a, but the closer a is to the square root of n the
-    faster convergence will be.
-
-    """
-    if n <= 0 or a <= 0:
-        raise ValueError("Both arguments to _sqrt_nearest should be positive.")
-
-    b=0
-    while a != b:
-        b, a = a, a--n//a>>1
-    return a
-
-def _rshift_nearest(x, shift):
-    """Given an integer x and a nonnegative integer shift, return closest
-    integer to x / 2**shift; use round-to-even in case of a tie.
-
-    """
-    b, q = 1 << shift, x >> shift
-    return q + (2*(x & (b-1)) + (q&1) > b)
-
-def _div_nearest(a, b):
-    """Closest integer to a/b, a and b positive integers; rounds to even
-    in the case of a tie.
-
-    """
-    q, r = divmod(a, b)
-    return q + (2*r + (q&1) > b)
-
-def _ilog(x, M, L = 8):
-    """Integer approximation to M*log(x/M), with absolute error boundable
-    in terms only of x/M.
-
-    Given positive integers x and M, return an integer approximation to
-    M * log(x/M).  For L = 8 and 0.1 <= x/M <= 10 the difference
-    between the approximation and the exact result is at most 22.  For
-    L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15.  In
-    both cases these are upper bounds on the error; it will usually be
-    much smaller."""
-
-    # The basic algorithm is the following: let log1p be the function
-    # log1p(x) = log(1+x).  Then log(x/M) = log1p((x-M)/M).  We use
-    # the reduction
-    #
-    #    log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
-    #
-    # repeatedly until the argument to log1p is small (< 2**-L in
-    # absolute value).  For small y we can use the Taylor series
-    # expansion
-    #
-    #    log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
-    #
-    # truncating at T such that y**T is small enough.  The whole
-    # computation is carried out in a form of fixed-point arithmetic,
-    # with a real number z being represented by an integer
-    # approximation to z*M.  To avoid loss of precision, the y below
-    # is actually an integer approximation to 2**R*y*M, where R is the
-    # number of reductions performed so far.
-
-    y = x-M
-    # argument reduction; R = number of reductions performed
-    R = 0
-    while (R <= L and abs(y) << L-R >= M or
-           R > L and abs(y) >> R-L >= M):
-        y = _div_nearest((M*y) << 1,
-                         M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
-        R += 1
-
-    # Taylor series with T terms
-    T = -int(-10*len(str(M))//(3*L))
-    yshift = _rshift_nearest(y, R)
-    w = _div_nearest(M, T)
-    for k in range(T-1, 0, -1):
-        w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
-
-    return _div_nearest(w*y, M)
-
-def _dlog10(c, e, p):
-    """Given integers c, e and p with c > 0, p >= 0, compute an integer
-    approximation to 10**p * log10(c*10**e), with an absolute error of
-    at most 1.  Assumes that c*10**e is not exactly 1."""
-
-    # increase precision by 2; compensate for this by dividing
-    # final result by 100
-    p += 2
-
-    # write c*10**e as d*10**f with either:
-    #   f >= 0 and 1 <= d <= 10, or
-    #   f <= 0 and 0.1 <= d <= 1.
-    # Thus for c*10**e close to 1, f = 0
-    l = len(str(c))
-    f = e+l - (e+l >= 1)
-
-    if p > 0:
-        M = 10**p
-        k = e+p-f
-        if k >= 0:
-            c *= 10**k
-        else:
-            c = _div_nearest(c, 10**-k)
-
-        log_d = _ilog(c, M) # error < 5 + 22 = 27
-        log_10 = _log10_digits(p) # error < 1
-        log_d = _div_nearest(log_d*M, log_10)
-        log_tenpower = f*M # exact
-    else:
-        log_d = 0  # error < 2.31
-        log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
-
-    return _div_nearest(log_tenpower+log_d, 100)
-
-def _dlog(c, e, p):
-    """Given integers c, e and p with c > 0, compute an integer
-    approximation to 10**p * log(c*10**e), with an absolute error of
-    at most 1.  Assumes that c*10**e is not exactly 1."""
-
-    # Increase precision by 2. The precision increase is compensated
-    # for at the end with a division by 100.
-    p += 2
-
-    # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
-    # or f <= 0 and 0.1 <= d <= 1.  Then we can compute 10**p * log(c*10**e)
-    # as 10**p * log(d) + 10**p*f * log(10).
-    l = len(str(c))
-    f = e+l - (e+l >= 1)
-
-    # compute approximation to 10**p*log(d), with error < 27
-    if p > 0:
-        k = e+p-f
-        if k >= 0:
-            c *= 10**k
-        else:
-            c = _div_nearest(c, 10**-k)  # error of <= 0.5 in c
-
-        # _ilog magnifies existing error in c by a factor of at most 10
-        log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
-    else:
-        # p <= 0: just approximate the whole thing by 0; error < 2.31
-        log_d = 0
-
-    # compute approximation to f*10**p*log(10), with error < 11.
-    if f:
-        extra = len(str(abs(f)))-1
-        if p + extra >= 0:
-            # error in f * _log10_digits(p+extra) < |f| * 1 = |f|
-            # after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
-            f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
-        else:
-            f_log_ten = 0
-    else:
-        f_log_ten = 0
-
-    # error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
-    return _div_nearest(f_log_ten + log_d, 100)
-
-class _Log10Memoize(object):
-    """Class to compute, store, and allow retrieval of, digits of the
-    constant log(10) = 2.302585....  This constant is needed by
-    Decimal.ln, Decimal.log10, Decimal.exp and Decimal.__pow__."""
-    def __init__(self):
-        self.digits = "23025850929940456840179914546843642076011014886"
-
-    def getdigits(self, p):
-        """Given an integer p >= 0, return floor(10**p)*log(10).
-
-        For example, self.getdigits(3) returns 2302.
-        """
-        # digits are stored as a string, for quick conversion to
-        # integer in the case that we've already computed enough
-        # digits; the stored digits should always be correct
-        # (truncated, not rounded to nearest).
-        if p < 0:
-            raise ValueError("p should be nonnegative")
-
-        if p >= len(self.digits):
-            # compute p+3, p+6, p+9, ... digits; continue until at
-            # least one of the extra digits is nonzero
-            extra = 3
-            while True:
-                # compute p+extra digits, correct to within 1ulp
-                M = 10**(p+extra+2)
-                digits = str(_div_nearest(_ilog(10*M, M), 100))
-                if digits[-extra:] != '0'*extra:
-                    break
-                extra += 3
-            # keep all reliable digits so far; remove trailing zeros
-            # and next nonzero digit
-            self.digits = digits.rstrip('0')[:-1]
-        return int(self.digits[:p+1])
-
-_log10_digits = _Log10Memoize().getdigits
-
-def _iexp(x, M, L=8):
-    """Given integers x and M, M > 0, such that x/M is small in absolute
-    value, compute an integer approximation to M*exp(x/M).  For 0 <=
-    x/M <= 2.4, the absolute error in the result is bounded by 60 (and
-    is usually much smaller)."""
-
-    # Algorithm: to compute exp(z) for a real number z, first divide z
-    # by a suitable power R of 2 so that |z/2**R| < 2**-L.  Then
-    # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
-    # series
-    #
-    #     expm1(x) = x + x**2/2! + x**3/3! + ...
-    #
-    # Now use the identity
-    #
-    #     expm1(2x) = expm1(x)*(expm1(x)+2)
-    #
-    # R times to compute the sequence expm1(z/2**R),
-    # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
-
-    # Find R such that x/2**R/M <= 2**-L
-    R = _nbits((x<<L)//M)
-
-    # Taylor series.  (2**L)**T > M
-    T = -int(-10*len(str(M))//(3*L))
-    y = _div_nearest(x, T)
-    Mshift = M<<R
-    for i in range(T-1, 0, -1):
-        y = _div_nearest(x*(Mshift + y), Mshift * i)
-
-    # Expansion
-    for k in range(R-1, -1, -1):
-        Mshift = M<<(k+2)
-        y = _div_nearest(y*(y+Mshift), Mshift)
-
-    return M+y
-
-def _dexp(c, e, p):
-    """Compute an approximation to exp(c*10**e), with p decimal places of
-    precision.
-
-    Returns integers d, f such that:
-
-      10**(p-1) <= d <= 10**p, and
-      (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
-
-    In other words, d*10**f is an approximation to exp(c*10**e) with p
-    digits of precision, and with an error in d of at most 1.  This is
-    almost, but not quite, the same as the error being < 1ulp: when d
-    = 10**(p-1) the error could be up to 10 ulp."""
-
-    # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
-    p += 2
-
-    # compute log(10) with extra precision = adjusted exponent of c*10**e
-    extra = max(0, e + len(str(c)) - 1)
-    q = p + extra
-
-    # compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
-    # rounding down
-    shift = e+q
-    if shift >= 0:
-        cshift = c*10**shift
-    else:
-        cshift = c//10**-shift
-    quot, rem = divmod(cshift, _log10_digits(q))
-
-    # reduce remainder back to original precision
-    rem = _div_nearest(rem, 10**extra)
-
-    # error in result of _iexp < 120;  error after division < 0.62
-    return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
-
-def _dpower(xc, xe, yc, ye, p):
-    """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
-    y = yc*10**ye, compute x**y.  Returns a pair of integers (c, e) such that:
-
-      10**(p-1) <= c <= 10**p, and
-      (c-1)*10**e < x**y < (c+1)*10**e
-
-    in other words, c*10**e is an approximation to x**y with p digits
-    of precision, and with an error in c of at most 1.  (This is
-    almost, but not quite, the same as the error being < 1ulp: when c
-    == 10**(p-1) we can only guarantee error < 10ulp.)
-
-    We assume that: x is positive and not equal to 1, and y is nonzero.
-    """
-
-    # Find b such that 10**(b-1) <= |y| <= 10**b
-    b = len(str(abs(yc))) + ye
-
-    # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
-    lxc = _dlog(xc, xe, p+b+1)
-
-    # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
-    shift = ye-b
-    if shift >= 0:
-        pc = lxc*yc*10**shift
-    else:
-        pc = _div_nearest(lxc*yc, 10**-shift)
-
-    if pc == 0:
-        # we prefer a result that isn't exactly 1; this makes it
-        # easier to compute a correctly rounded result in __pow__
-        if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
-            coeff, exp = 10**(p-1)+1, 1-p
-        else:
-            coeff, exp = 10**p-1, -p
-    else:
-        coeff, exp = _dexp(pc, -(p+1), p+1)
-        coeff = _div_nearest(coeff, 10)
-        exp += 1
-
-    return coeff, exp
-
-def _log10_lb(c, correction = {
-        '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
-        '6': 23, '7': 16, '8': 10, '9': 5}):
-    """Compute a lower bound for 100*log10(c) for a positive integer c."""
-    if c <= 0:
-        raise ValueError("The argument to _log10_lb should be nonnegative.")
-    str_c = str(c)
-    return 100*len(str_c) - correction[str_c[0]]
-
-##### Helper Functions ####################################################
-
-def _convert_other(other, raiseit=False, allow_float=False):
-    """Convert other to Decimal.
-
-    Verifies that it's ok to use in an implicit construction.
-    If allow_float is true, allow conversion from float;  this
-    is used in the comparison methods (__eq__ and friends).
-
-    """
-    if isinstance(other, Decimal):
-        return other
-    if isinstance(other, int):
-        return Decimal(other)
-    if allow_float and isinstance(other, float):
-        return Decimal.from_float(other)
-
-    if raiseit:
-        raise TypeError("Unable to convert %s to Decimal" % other)
-    return NotImplemented
-
-def _convert_for_comparison(self, other, equality_op=False):
-    """Given a Decimal instance self and a Python object other, return
-    a pair (s, o) of Decimal instances such that "s op o" is
-    equivalent to "self op other" for any of the 6 comparison
-    operators "op".
-
-    """
-    if isinstance(other, Decimal):
-        return self, other
-
-    # Comparison with a Rational instance (also includes integers):
-    # self op n/d <=> self*d op n (for n and d integers, d positive).
-    # A NaN or infinity can be left unchanged without affecting the
-    # comparison result.
-    if isinstance(other, _numbers.Rational):
-        if not self._is_special:
-            self = _dec_from_triple(self._sign,
-                                    str(int(self._int) * other.denominator),
-                                    self._exp)
-        return self, Decimal(other.numerator)
-
-    # Comparisons with float and complex types.  == and != comparisons
-    # with complex numbers should succeed, returning either True or False
-    # as appropriate.  Other comparisons return NotImplemented.
-    if equality_op and isinstance(other, _numbers.Complex) and other.imag == 0:
-        other = other.real
-    if isinstance(other, float):
-        context = getcontext()
-        if equality_op:
-            context.flags[FloatOperation] = 1
-        else:
-            context._raise_error(FloatOperation,
-                "strict semantics for mixing floats and Decimals are enabled")
-        return self, Decimal.from_float(other)
-    return NotImplemented, NotImplemented
-
-
-##### Setup Specific Contexts ############################################
-
-# The default context prototype used by Context()
-# Is mutable, so that new contexts can have different default values
-
-DefaultContext = Context(
-        prec=28, rounding=ROUND_HALF_EVEN,
-        traps=[DivisionByZero, Overflow, InvalidOperation],
-        flags=[],
-        Emax=999999,
-        Emin=-999999,
-        capitals=1,
-        clamp=0
-)
-
-# Pre-made alternate contexts offered by the specification
-# Don't change these; the user should be able to select these
-# contexts and be able to reproduce results from other implementations
-# of the spec.
-
-BasicContext = Context(
-        prec=9, rounding=ROUND_HALF_UP,
-        traps=[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
-        flags=[],
-)
-
-ExtendedContext = Context(
-        prec=9, rounding=ROUND_HALF_EVEN,
-        traps=[],
-        flags=[],
-)
-
-
-##### crud for parsing strings #############################################
-#
-# Regular expression used for parsing numeric strings.  Additional
-# comments:
-#
-# 1. Uncomment the two '\s*' lines to allow leading and/or trailing
-# whitespace.  But note that the specification disallows whitespace in
-# a numeric string.
-#
-# 2. For finite numbers (not infinities and NaNs) the body of the
-# number between the optional sign and the optional exponent must have
-# at least one decimal digit, possibly after the decimal point.  The
-# lookahead expression '(?=\d|\.\d)' checks this.
-
-import re
-_parser = re.compile(r"""        # A numeric string consists of:
-#    \s*
-    (?P<sign>[-+])?              # an optional sign, followed by either...
-    (
-        (?=\d|\.\d)              # ...a number (with at least one digit)
-        (?P<int>\d*)             # having a (possibly empty) integer part
-        (\.(?P<frac>\d*))?       # followed by an optional fractional part
-        (E(?P<exp>[-+]?\d+))?    # followed by an optional exponent, or...
-    |
-        Inf(inity)?              # ...an infinity, or...
-    |
-        (?P<signal>s)?           # ...an (optionally signaling)
-        NaN                      # NaN
-        (?P<diag>\d*)            # with (possibly empty) diagnostic info.
-    )
-#    \s*
-    \Z
-""", re.VERBOSE | re.IGNORECASE).match
-
-_all_zeros = re.compile('0*$').match
-_exact_half = re.compile('50*$').match
-
-##### PEP3101 support functions ##############################################
-# The functions in this section have little to do with the Decimal
-# class, and could potentially be reused or adapted for other pure
-# Python numeric classes that want to implement __format__
-#
-# A format specifier for Decimal looks like:
-#
-#   [[fill]align][sign][#][0][minimumwidth][,][.precision][type]
-
-_parse_format_specifier_regex = re.compile(r"""\A
-(?:
-   (?P<fill>.)?
-   (?P<align>[<>=^])
-)?
-(?P<sign>[-+ ])?
-(?P<alt>\#)?
-(?P<zeropad>0)?
-(?P<minimumwidth>(?!0)\d+)?
-(?P<thousands_sep>,)?
-(?:\.(?P<precision>0|(?!0)\d+))?
-(?P<type>[eEfFgGn%])?
-\Z
-""", re.VERBOSE|re.DOTALL)
-
-del re
-
-# The locale module is only needed for the 'n' format specifier.  The
-# rest of the PEP 3101 code functions quite happily without it, so we
-# don't care too much if locale isn't present.
-try:
-    import locale as _locale
-except ImportError:
-    pass
-
-def _parse_format_specifier(format_spec, _localeconv=None):
-    """Parse and validate a format specifier.
-
-    Turns a standard numeric format specifier into a dict, with the
-    following entries:
-
-      fill: fill character to pad field to minimum width
-      align: alignment type, either '<', '>', '=' or '^'
-      sign: either '+', '-' or ' '
-      minimumwidth: nonnegative integer giving minimum width
-      zeropad: boolean, indicating whether to pad with zeros
-      thousands_sep: string to use as thousands separator, or ''
-      grouping: grouping for thousands separators, in format
-        used by localeconv
-      decimal_point: string to use for decimal point
-      precision: nonnegative integer giving precision, or None
-      type: one of the characters 'eEfFgG%', or None
-
-    """
-    m = _parse_format_specifier_regex.match(format_spec)
-    if m is None:
-        raise ValueError("Invalid format specifier: " + format_spec)
-
-    # get the dictionary
-    format_dict = m.groupdict()
-
-    # zeropad; defaults for fill and alignment.  If zero padding
-    # is requested, the fill and align fields should be absent.
-    fill = format_dict['fill']
-    align = format_dict['align']
-    format_dict['zeropad'] = (format_dict['zeropad'] is not None)
-    if format_dict['zeropad']:
-        if fill is not None:
-            raise ValueError("Fill character conflicts with '0'"
-                             " in format specifier: " + format_spec)
-        if align is not None:
-            raise ValueError("Alignment conflicts with '0' in "
-                             "format specifier: " + format_spec)
-    format_dict['fill'] = fill or ' '
-    # PEP 3101 originally specified that the default alignment should
-    # be left;  it was later agreed that right-aligned makes more sense
-    # for numeric types.  See http://bugs.python.org/issue6857.
-    format_dict['align'] = align or '>'
-
-    # default sign handling: '-' for negative, '' for positive
-    if format_dict['sign'] is None:
-        format_dict['sign'] = '-'
-
-    # minimumwidth defaults to 0; precision remains None if not given
-    format_dict['minimumwidth'] = int(format_dict['minimumwidth'] or '0')
-    if format_dict['precision'] is not None:
-        format_dict['precision'] = int(format_dict['precision'])
-
-    # if format type is 'g' or 'G' then a precision of 0 makes little
-    # sense; convert it to 1.  Same if format type is unspecified.
-    if format_dict['precision'] == 0:
-        if format_dict['type'] is None or format_dict['type'] in 'gGn':
-            format_dict['precision'] = 1
-
-    # determine thousands separator, grouping, and decimal separator, and
-    # add appropriate entries to format_dict
-    if format_dict['type'] == 'n':
-        # apart from separators, 'n' behaves just like 'g'
-        format_dict['type'] = 'g'
-        if _localeconv is None:
-            _localeconv = _locale.localeconv()
-        if format_dict['thousands_sep'] is not None:
-            raise ValueError("Explicit thousands separator conflicts with "
-                             "'n' type in format specifier: " + format_spec)
-        format_dict['thousands_sep'] = _localeconv['thousands_sep']
-        format_dict['grouping'] = _localeconv['grouping']
-        format_dict['decimal_point'] = _localeconv['decimal_point']
-    else:
-        if format_dict['thousands_sep'] is None:
-            format_dict['thousands_sep'] = ''
-        format_dict['grouping'] = [3, 0]
-        format_dict['decimal_point'] = '.'
-
-    return format_dict
-
-def _format_align(sign, body, spec):
-    """Given an unpadded, non-aligned numeric string 'body' and sign
-    string 'sign', add padding and alignment conforming to the given
-    format specifier dictionary 'spec' (as produced by
-    parse_format_specifier).
-
-    """
-    # how much extra space do we have to play with?
-    minimumwidth = spec['minimumwidth']
-    fill = spec['fill']
-    padding = fill*(minimumwidth - len(sign) - len(body))
-
-    align = spec['align']
-    if align == '<':
-        result = sign + body + padding
-    elif align == '>':
-        result = padding + sign + body
-    elif align == '=':
-        result = sign + padding + body
-    elif align == '^':
-        half = len(padding)//2
-        result = padding[:half] + sign + body + padding[half:]
-    else:
-        raise ValueError('Unrecognised alignment field')
-
-    return result
-
-def _group_lengths(grouping):
-    """Convert a localeconv-style grouping into a (possibly infinite)
-    iterable of integers representing group lengths.
-
-    """
-    # The result from localeconv()['grouping'], and the input to this
-    # function, should be a list of integers in one of the
-    # following three forms:
-    #
-    #   (1) an empty list, or
-    #   (2) nonempty list of positive integers + [0]
-    #   (3) list of positive integers + [locale.CHAR_MAX], or
-
-    from itertools import chain, repeat
-    if not grouping:
-        return []
-    elif grouping[-1] == 0 and len(grouping) >= 2:
-        return chain(grouping[:-1], repeat(grouping[-2]))
-    elif grouping[-1] == _locale.CHAR_MAX:
-        return grouping[:-1]
-    else:
-        raise ValueError('unrecognised format for grouping')
-
-def _insert_thousands_sep(digits, spec, min_width=1):
-    """Insert thousands separators into a digit string.
-
-    spec is a dictionary whose keys should include 'thousands_sep' and
-    'grouping'; typically it's the result of parsing the format
-    specifier using _parse_format_specifier.
-
-    The min_width keyword argument gives the minimum length of the
-    result, which will be padded on the left with zeros if necessary.
-
-    If necessary, the zero padding adds an extra '0' on the left to
-    avoid a leading thousands separator.  For example, inserting
-    commas every three digits in '123456', with min_width=8, gives
-    '0,123,456', even though that has length 9.
-
-    """
-
-    sep = spec['thousands_sep']
-    grouping = spec['grouping']
-
-    groups = []
-    for l in _group_lengths(grouping):
-        if l <= 0:
-            raise ValueError("group length should be positive")
-        # max(..., 1) forces at least 1 digit to the left of a separator
-        l = min(max(len(digits), min_width, 1), l)
-        groups.append('0'*(l - len(digits)) + digits[-l:])
-        digits = digits[:-l]
-        min_width -= l
-        if not digits and min_width <= 0:
-            break
-        min_width -= len(sep)
-    else:
-        l = max(len(digits), min_width, 1)
-        groups.append('0'*(l - len(digits)) + digits[-l:])
-    return sep.join(reversed(groups))
-
-def _format_sign(is_negative, spec):
-    """Determine sign character."""
-
-    if is_negative:
-        return '-'
-    elif spec['sign'] in ' +':
-        return spec['sign']
-    else:
-        return ''
-
-def _format_number(is_negative, intpart, fracpart, exp, spec):
-    """Format a number, given the following data:
-
-    is_negative: true if the number is negative, else false
-    intpart: string of digits that must appear before the decimal point
-    fracpart: string of digits that must come after the point
-    exp: exponent, as an integer
-    spec: dictionary resulting from parsing the format specifier
-
-    This function uses the information in spec to:
-      insert separators (decimal separator and thousands separators)
-      format the sign
-      format the exponent
-      add trailing '%' for the '%' type
-      zero-pad if necessary
-      fill and align if necessary
-    """
-
-    sign = _format_sign(is_negative, spec)
-
-    if fracpart or spec['alt']:
-        fracpart = spec['decimal_point'] + fracpart
-
-    if exp != 0 or spec['type'] in 'eE':
-        echar = {'E': 'E', 'e': 'e', 'G': 'E', 'g': 'e'}[spec['type']]
-        fracpart += "{0}{1:+}".format(echar, exp)
-    if spec['type'] == '%':
-        fracpart += '%'
-
-    if spec['zeropad']:
-        min_width = spec['minimumwidth'] - len(fracpart) - len(sign)
-    else:
-        min_width = 0
-    intpart = _insert_thousands_sep(intpart, spec, min_width)
-
-    return _format_align(sign, intpart+fracpart, spec)
-
-
-##### Useful Constants (internal use only) ################################
-
-# Reusable defaults
-_Infinity = Decimal('Inf')
-_NegativeInfinity = Decimal('-Inf')
-_NaN = Decimal('NaN')
-_Zero = Decimal(0)
-_One = Decimal(1)
-_NegativeOne = Decimal(-1)
-
-# _SignedInfinity[sign] is infinity w/ that sign
-_SignedInfinity = (_Infinity, _NegativeInfinity)
-
-# Constants related to the hash implementation;  hash(x) is based
-# on the reduction of x modulo _PyHASH_MODULUS
-_PyHASH_MODULUS = sys.hash_info.modulus
-# hash values to use for positive and negative infinities, and nans
-_PyHASH_INF = sys.hash_info.inf
-_PyHASH_NAN = sys.hash_info.nan
-
-# _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS
-_PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS)
-del sys
-
-try:
-    import _decimal
-except ImportError:
-    pass
-else:
-    s1 = set(dir())
-    s2 = set(dir(_decimal))
-    for name in s1 - s2:
-        del globals()[name]
-    del s1, s2, name
-    from _decimal import *
-
-if __name__ == '__main__':
-    import doctest, decimal
-    doctest.testmod(decimal)
diff --git a/Lib/test/test_decimal.py b/Lib/test/test_decimal.py
--- a/Lib/test/test_decimal.py
+++ b/Lib/test/test_decimal.py
@@ -4173,9 +4173,7 @@
         self.assertEqual(C.__version__, P.__version__)
         self.assertEqual(C.__libmpdec_version__, P.__libmpdec_version__)
 
-        x = dir(C)
-        y = [s for s in dir(P) if '__' in s or not s.startswith('_')]
-        self.assertEqual(set(x) - set(y), set())
+        self.assertEqual(dir(C), dir(P))
 
     def test_context_attributes(self):
 
diff --git a/Modules/_decimal/tests/deccheck.py b/Modules/_decimal/tests/deccheck.py
--- a/Modules/_decimal/tests/deccheck.py
+++ b/Modules/_decimal/tests/deccheck.py
@@ -36,6 +36,7 @@
 from randdec import randfloat, all_unary, all_binary, all_ternary
 from randdec import unary_optarg, binary_optarg, ternary_optarg
 from formathelper import rand_format, rand_locale
+from _pydecimal import _dec_from_triple
 
 C = import_fresh_module('decimal', fresh=['_decimal'])
 P = import_fresh_module('decimal', blocked=['_decimal'])
@@ -370,7 +371,7 @@
         return abs(a - b)
 
     def standard_ulp(self, dec, prec):
-        return P._dec_from_triple(0, '1', dec._exp+len(dec._int)-prec)
+        return _dec_from_triple(0, '1', dec._exp+len(dec._int)-prec)
 
     def rounding_direction(self, x, mode):
         """Determine the effective direction of the rounding when
@@ -401,10 +402,10 @@
         # Convert infinities to the largest representable number + 1.
         x = exact
         if exact.is_infinite():
-            x = P._dec_from_triple(exact._sign, '10', context.p.Emax)
+            x = _dec_from_triple(exact._sign, '10', context.p.Emax)
         y = rounded
         if rounded.is_infinite():
-            y = P._dec_from_triple(rounded._sign, '10', context.p.Emax)
+            y = _dec_from_triple(rounded._sign, '10', context.p.Emax)
 
         # err = (rounded - exact) / ulp(rounded)
         self.maxctx.prec = p * 2

-- 
Repository URL: http://hg.python.org/cpython


More information about the Python-checkins mailing list