[Python-checkins] cpython: Preliminary typing.py, anticipating provisional acceptance of PEP 484.

guido.van.rossum python-checkins at python.org
Fri May 22 19:14:24 CEST 2015


https://hg.python.org/cpython/rev/3e96d7ca3f51
changeset:   96211:3e96d7ca3f51
user:        Guido van Rossum <guido at python.org>
date:        Fri May 22 10:14:11 2015 -0700
summary:
  Preliminary typing.py, anticipating provisional acceptance of PEP 484.

There area bunch of TODOs here, but the biggest (not mentioned in the
file) is that I'm going to take out __instancecheck__ and
__subclasscheck__.  However my personal schedule is such that I
probably won't have time for these before Larry tags beta 1.  But I
will try -- this commit is mostly to make sure that typing.py doesn't
completely miss the train.

PS. I'm tracking issues at https://github.com/ambv/typehinting/issues.

files:
  Doc/library/typing.rst  |    15 +
  Lib/test/test_typing.py |  1373 +++++++++++++++++++++
  Lib/typing.py           |  1714 +++++++++++++++++++++++++++
  Misc/NEWS               |     2 +
  4 files changed, 3104 insertions(+), 0 deletions(-)


diff --git a/Doc/library/typing.rst b/Doc/library/typing.rst
new file mode 100644
--- /dev/null
+++ b/Doc/library/typing.rst
@@ -0,0 +1,15 @@
+:mod:`typing` --- Support for type hints
+========================================
+
+.. module:: typing
+   :synopsis: Support for type hints (see PEP 484).
+
+**Source code:** :source:`Lib/typing.py`
+
+--------------
+
+This module supports type hints as specified by :pep:`484`.  The most
+fundamental support consists of the type :class:`Any`, :class:`Union`,
+:class:`Tuple`, :class:`Callable`, :class:`TypeVar`, and
+:class:`Generic`.  For full specification please see :pep:`484`.  For
+a simplified introduction to type hints see :pep:`483`.
diff --git a/Lib/test/test_typing.py b/Lib/test/test_typing.py
new file mode 100644
--- /dev/null
+++ b/Lib/test/test_typing.py
@@ -0,0 +1,1373 @@
+from collections import namedtuple
+import re
+import sys
+from unittest import TestCase, main
+try:
+    from unittest import mock
+except ImportError:
+    import mock  # 3rd party install, for PY3.2.
+
+from typing import Any
+from typing import TypeVar, AnyStr
+from typing import T, KT, VT  # Not in __all__.
+from typing import Union, Optional
+from typing import Tuple
+from typing import Callable
+from typing import Generic
+from typing import cast
+from typing import get_type_hints
+from typing import no_type_check, no_type_check_decorator
+from typing import NamedTuple
+from typing import IO, TextIO, BinaryIO
+from typing import Pattern, Match
+import typing
+
+
+class Employee:
+    pass
+
+
+class Manager(Employee):
+    pass
+
+
+class Founder(Employee):
+    pass
+
+
+class ManagingFounder(Manager, Founder):
+    pass
+
+
+class AnyTests(TestCase):
+
+    def test_any_instance(self):
+        self.assertIsInstance(Employee(), Any)
+        self.assertIsInstance(42, Any)
+        self.assertIsInstance(None, Any)
+        self.assertIsInstance(object(), Any)
+
+    def test_any_subclass(self):
+        self.assertTrue(issubclass(Employee, Any))
+        self.assertTrue(issubclass(int, Any))
+        self.assertTrue(issubclass(type(None), Any))
+        self.assertTrue(issubclass(object, Any))
+
+    def test_others_any(self):
+        self.assertFalse(issubclass(Any, Employee))
+        self.assertFalse(issubclass(Any, int))
+        self.assertFalse(issubclass(Any, type(None)))
+        # However, Any is a subclass of object (this can't be helped).
+        self.assertTrue(issubclass(Any, object))
+
+    def test_repr(self):
+        self.assertEqual(repr(Any), 'typing.Any')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            issubclass(42, Any)
+        with self.assertRaises(TypeError):
+            Any[int]  # Any is not a generic type.
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+            class A(Any):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Any()
+
+    def test_cannot_subscript(self):
+        with self.assertRaises(TypeError):
+            Any[int]
+
+    def test_any_is_subclass(self):
+        # Any should be considered a subclass of everything.
+        assert issubclass(Any, Any)
+        assert issubclass(Any, typing.List)
+        assert issubclass(Any, typing.List[int])
+        assert issubclass(Any, typing.List[T])
+        assert issubclass(Any, typing.Mapping)
+        assert issubclass(Any, typing.Mapping[str, int])
+        assert issubclass(Any, typing.Mapping[KT, VT])
+        assert issubclass(Any, Generic)
+        assert issubclass(Any, Generic[T])
+        assert issubclass(Any, Generic[KT, VT])
+        assert issubclass(Any, AnyStr)
+        assert issubclass(Any, Union)
+        assert issubclass(Any, Union[int, str])
+        assert issubclass(Any, typing.Match)
+        assert issubclass(Any, typing.Match[str])
+        # These expressions must simply not fail.
+        typing.Match[Any]
+        typing.Pattern[Any]
+        typing.IO[Any]
+
+
+class TypeVarTests(TestCase):
+
+    def test_basic_plain(self):
+        T = TypeVar('T')
+        # Nothing is an instance if T.
+        with self.assertRaises(TypeError):
+            isinstance('', T)
+        # Every class is a subclass of T.
+        assert issubclass(int, T)
+        assert issubclass(str, T)
+        # T equals itself.
+        assert T == T
+        # T is a subclass of itself.
+        assert issubclass(T, T)
+
+    def test_basic_constrained(self):
+        A = TypeVar('A', str, bytes)
+        # Nothing is an instance of A.
+        with self.assertRaises(TypeError):
+            isinstance('', A)
+        # Only str and bytes are subclasses of A.
+        assert issubclass(str, A)
+        assert issubclass(bytes, A)
+        assert not issubclass(int, A)
+        # A equals itself.
+        assert A == A
+        # A is a subclass of itself.
+        assert issubclass(A, A)
+
+    def test_constrained_error(self):
+        with self.assertRaises(TypeError):
+            X = TypeVar('X', int)
+
+    def test_union_unique(self):
+        X = TypeVar('X')
+        Y = TypeVar('Y')
+        assert X != Y
+        assert Union[X] == X
+        assert Union[X] != Union[X, Y]
+        assert Union[X, X] == X
+        assert Union[X, int] != Union[X]
+        assert Union[X, int] != Union[int]
+        assert Union[X, int].__union_params__ == (X, int)
+        assert Union[X, int].__union_set_params__ == {X, int}
+
+    def test_union_constrained(self):
+        A = TypeVar('A', str, bytes)
+        assert Union[A, str] != Union[A]
+
+    def test_repr(self):
+        self.assertEqual(repr(T), '~T')
+        self.assertEqual(repr(KT), '~KT')
+        self.assertEqual(repr(VT), '~VT')
+        self.assertEqual(repr(AnyStr), '~AnyStr')
+        T_co = TypeVar('T_co', covariant=True)
+        self.assertEqual(repr(T_co), '+T_co')
+        T_contra = TypeVar('T_contra', contravariant=True)
+        self.assertEqual(repr(T_contra), '-T_contra')
+
+    def test_no_redefinition(self):
+        self.assertNotEqual(TypeVar('T'), TypeVar('T'))
+        self.assertNotEqual(TypeVar('T', int, str), TypeVar('T', int, str))
+
+    def test_subclass_as_unions(self):
+        # None of these are true -- each type var is its own world.
+        self.assertFalse(issubclass(TypeVar('T', int, str),
+                                    TypeVar('T', int, str)))
+        self.assertFalse(issubclass(TypeVar('T', int, float),
+                                    TypeVar('T', int, float, str)))
+        self.assertFalse(issubclass(TypeVar('T', int, str),
+                                    TypeVar('T', str, int)))
+        A = TypeVar('A', int, str)
+        B = TypeVar('B', int, str, float)
+        self.assertFalse(issubclass(A, B))
+        self.assertFalse(issubclass(B, A))
+
+    def test_cannot_subclass_vars(self):
+        with self.assertRaises(TypeError):
+            class V(TypeVar('T')):
+                pass
+
+    def test_cannot_subclass_var_itself(self):
+        with self.assertRaises(TypeError):
+            class V(TypeVar):
+                pass
+
+    def test_cannot_instantiate_vars(self):
+        with self.assertRaises(TypeError):
+            TypeVar('A')()
+
+    def test_bound(self):
+        X = TypeVar('X', bound=Employee)
+        assert issubclass(Employee, X)
+        assert issubclass(Manager, X)
+        assert not issubclass(int, X)
+
+    def test_bound_errors(self):
+        with self.assertRaises(TypeError):
+            TypeVar('X', bound=42)
+        with self.assertRaises(TypeError):
+            TypeVar('X', str, float, bound=Employee)
+
+
+class UnionTests(TestCase):
+
+    def test_basics(self):
+        u = Union[int, float]
+        self.assertNotEqual(u, Union)
+        self.assertIsInstance(42, u)
+        self.assertIsInstance(3.14, u)
+        self.assertTrue(issubclass(int, u))
+        self.assertTrue(issubclass(float, u))
+
+    def test_union_any(self):
+        u = Union[Any]
+        self.assertEqual(u, Any)
+        u = Union[int, Any]
+        self.assertEqual(u, Any)
+        u = Union[Any, int]
+        self.assertEqual(u, Any)
+
+    def test_union_object(self):
+        u = Union[object]
+        self.assertEqual(u, object)
+        u = Union[int, object]
+        self.assertEqual(u, object)
+        u = Union[object, int]
+        self.assertEqual(u, object)
+
+    def test_union_any_object(self):
+        u = Union[object, Any]
+        self.assertEqual(u, Any)
+        u = Union[Any, object]
+        self.assertEqual(u, Any)
+
+    def test_unordered(self):
+        u1 = Union[int, float]
+        u2 = Union[float, int]
+        self.assertEqual(u1, u2)
+
+    def test_subclass(self):
+        u = Union[int, Employee]
+        self.assertIsInstance(Manager(), u)
+        self.assertTrue(issubclass(Manager, u))
+
+    def test_self_subclass(self):
+        self.assertTrue(issubclass(Union[KT, VT], Union))
+        self.assertFalse(issubclass(Union, Union[KT, VT]))
+
+    def test_multiple_inheritance(self):
+        u = Union[int, Employee]
+        self.assertIsInstance(ManagingFounder(), u)
+        self.assertTrue(issubclass(ManagingFounder, u))
+
+    def test_single_class_disappears(self):
+        t = Union[Employee]
+        self.assertIs(t, Employee)
+
+    def test_base_class_disappears(self):
+        u = Union[Employee, Manager, int]
+        self.assertEqual(u, Union[int, Employee])
+        u = Union[Manager, int, Employee]
+        self.assertEqual(u, Union[int, Employee])
+        u = Union[Employee, Manager]
+        self.assertIs(u, Employee)
+
+    def test_weird_subclasses(self):
+        u = Union[Employee, int, float]
+        v = Union[int, float]
+        self.assertTrue(issubclass(v, u))
+        w = Union[int, Manager]
+        self.assertTrue(issubclass(w, u))
+
+    def test_union_union(self):
+        u = Union[int, float]
+        v = Union[u, Employee]
+        self.assertEqual(v, Union[int, float, Employee])
+
+    def test_repr(self):
+        self.assertEqual(repr(Union), 'typing.Union')
+        u = Union[Employee, int]
+        self.assertEqual(repr(u), 'typing.Union[%s.Employee, int]' % __name__)
+        u = Union[int, Employee]
+        self.assertEqual(repr(u), 'typing.Union[int, %s.Employee]' % __name__)
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+            class C(Union):
+                pass
+        with self.assertRaises(TypeError):
+            class C(Union[int, str]):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Union()
+        u = Union[int, float]
+        with self.assertRaises(TypeError):
+            u()
+
+    def test_optional(self):
+        o = Optional[int]
+        u = Union[int, None]
+        self.assertEqual(o, u)
+        self.assertIsInstance(42, o)
+        self.assertIsInstance(None, o)
+        self.assertNotIsInstance(3.14, o)
+
+    def test_empty(self):
+        with self.assertRaises(TypeError):
+            Union[()]
+
+    def test_issubclass_union(self):
+        assert issubclass(Union[int, str], Union)
+        assert not issubclass(int, Union)
+
+    def test_isinstance_union(self):
+        # Nothing is an instance of bare Union.
+        assert not isinstance(42, Union)
+        assert not isinstance(int, Union)
+        assert not isinstance(Union[int, str], Union)
+
+
+class TypeVarUnionTests(TestCase):
+
+    def test_simpler(self):
+        A = TypeVar('A', int, str, float)
+        B = TypeVar('B', int, str)
+        assert issubclass(A, A)
+        assert issubclass(B, B)
+        assert not issubclass(B, A)
+        assert issubclass(A, Union[int, str, float])
+        assert not issubclass(Union[int, str, float], A)
+        assert not issubclass(Union[int, str], B)
+        assert issubclass(B, Union[int, str])
+        assert not issubclass(A, B)
+        assert not issubclass(Union[int, str, float], B)
+        assert not issubclass(A, Union[int, str])
+
+    def test_var_union_subclass(self):
+        self.assertTrue(issubclass(T, Union[int, T]))
+        self.assertTrue(issubclass(KT, Union[KT, VT]))
+
+    def test_var_union(self):
+        TU = TypeVar('TU', Union[int, float], None)
+        assert issubclass(int, TU)
+        assert issubclass(float, TU)
+        with self.assertRaises(TypeError):
+            isinstance(42, TU)
+        with self.assertRaises(TypeError):
+            isinstance('', TU)
+
+
+class TupleTests(TestCase):
+
+    def test_basics(self):
+        self.assertIsInstance((42, 3.14, ''), Tuple)
+        self.assertIsInstance((42, 3.14, ''), Tuple[int, float, str])
+        self.assertIsInstance((42,), Tuple[int])
+        self.assertNotIsInstance((3.14,), Tuple[int])
+        self.assertNotIsInstance((42, 3.14), Tuple[int, float, str])
+        self.assertNotIsInstance((42, 3.14, 100), Tuple[int, float, str])
+        self.assertNotIsInstance((42, 3.14, 100), Tuple[int, float])
+        self.assertTrue(issubclass(Tuple[int, str], Tuple))
+        self.assertTrue(issubclass(Tuple[int, str], Tuple[int, str]))
+        self.assertFalse(issubclass(int, Tuple))
+        self.assertFalse(issubclass(Tuple[float, str], Tuple[int, str]))
+        self.assertFalse(issubclass(Tuple[int, str, int], Tuple[int, str]))
+        self.assertFalse(issubclass(Tuple[int, str], Tuple[int, str, int]))
+        self.assertTrue(issubclass(tuple, Tuple))
+        self.assertFalse(issubclass(Tuple, tuple))  # Can't have it both ways.
+
+    def test_tuple_subclass(self):
+        class MyTuple(tuple):
+            pass
+        self.assertTrue(issubclass(MyTuple, Tuple))
+
+    def test_tuple_ellipsis(self):
+        t = Tuple[int, ...]
+        assert isinstance((), t)
+        assert isinstance((1,), t)
+        assert isinstance((1, 2), t)
+        assert isinstance((1, 2, 3), t)
+        assert not isinstance((3.14,), t)
+        assert not isinstance((1, 2, 3.14,), t)
+
+    def test_tuple_ellipsis_subclass(self):
+
+        class B:
+            pass
+
+        class C(B):
+            pass
+
+        assert not issubclass(Tuple[B], Tuple[B, ...])
+        assert issubclass(Tuple[C, ...], Tuple[B, ...])
+        assert not issubclass(Tuple[C, ...], Tuple[B])
+        assert not issubclass(Tuple[C], Tuple[B, ...])
+
+    def test_repr(self):
+        self.assertEqual(repr(Tuple), 'typing.Tuple')
+        self.assertEqual(repr(Tuple[()]), 'typing.Tuple[]')
+        self.assertEqual(repr(Tuple[int, float]), 'typing.Tuple[int, float]')
+        self.assertEqual(repr(Tuple[int, ...]), 'typing.Tuple[int, ...]')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            issubclass(42, Tuple)
+        with self.assertRaises(TypeError):
+            issubclass(42, Tuple[int])
+
+
+class CallableTests(TestCase):
+
+    def test_basics(self):
+        c = Callable[[int, float], str]
+
+        def flub(a: int, b: float) -> str:
+            return str(a * b)
+
+        def flob(a: int, b: int) -> str:
+            return str(a * b)
+
+        self.assertIsInstance(flub, c)
+        self.assertNotIsInstance(flob, c)
+
+    def test_self_subclass(self):
+        self.assertTrue(issubclass(Callable[[int], int], Callable))
+        self.assertFalse(issubclass(Callable, Callable[[int], int]))
+        self.assertTrue(issubclass(Callable[[int], int], Callable[[int], int]))
+        self.assertFalse(issubclass(Callable[[Employee], int],
+                                    Callable[[Manager], int]))
+        self.assertFalse(issubclass(Callable[[Manager], int],
+                                    Callable[[Employee], int]))
+        self.assertFalse(issubclass(Callable[[int], Employee],
+                                    Callable[[int], Manager]))
+        self.assertFalse(issubclass(Callable[[int], Manager],
+                                    Callable[[int], Employee]))
+
+    def test_eq_hash(self):
+        self.assertEqual(Callable[[int], int], Callable[[int], int])
+        self.assertEqual(len({Callable[[int], int], Callable[[int], int]}), 1)
+        self.assertNotEqual(Callable[[int], int], Callable[[int], str])
+        self.assertNotEqual(Callable[[int], int], Callable[[str], int])
+        self.assertNotEqual(Callable[[int], int], Callable[[int, int], int])
+        self.assertNotEqual(Callable[[int], int], Callable[[], int])
+        self.assertNotEqual(Callable[[int], int], Callable)
+
+    def test_with_none(self):
+        c = Callable[[None], None]
+
+        def flub(self: None) -> None:
+            pass
+
+        def flab(self: Any) -> None:
+            pass
+
+        def flob(self: None) -> Any:
+            pass
+
+        self.assertIsInstance(flub, c)
+        self.assertIsInstance(flab, c)
+        self.assertNotIsInstance(flob, c)  # Test contravariance.
+
+    def test_with_subclasses(self):
+        c = Callable[[Employee, Manager], Employee]
+
+        def flub(a: Employee, b: Employee) -> Manager:
+            return Manager()
+
+        def flob(a: Manager, b: Manager) -> Employee:
+            return Employee()
+
+        self.assertIsInstance(flub, c)
+        self.assertNotIsInstance(flob, c)
+
+    def test_with_default_args(self):
+        c = Callable[[int], int]
+
+        def flub(a: int, b: float = 3.14) -> int:
+            return a
+
+        def flab(a: int, *, b: float = 3.14) -> int:
+            return a
+
+        def flob(a: int = 42) -> int:
+            return a
+
+        self.assertIsInstance(flub, c)
+        self.assertIsInstance(flab, c)
+        self.assertIsInstance(flob, c)
+
+    def test_with_varargs(self):
+        c = Callable[[int], int]
+
+        def flub(*args) -> int:
+            return 42
+
+        def flab(*args: int) -> int:
+            return 42
+
+        def flob(*args: float) -> int:
+            return 42
+
+        self.assertIsInstance(flub, c)
+        self.assertIsInstance(flab, c)
+        self.assertNotIsInstance(flob, c)
+
+    def test_with_method(self):
+
+        class C:
+
+            def imethod(self, arg: int) -> int:
+                self.last_arg = arg
+                return arg + 1
+
+            @classmethod
+            def cmethod(cls, arg: int) -> int:
+                cls.last_cls_arg = arg
+                return arg + 1
+
+            @staticmethod
+            def smethod(arg: int) -> int:
+                return arg + 1
+
+        ct = Callable[[int], int]
+        self.assertIsInstance(C().imethod, ct)
+        self.assertIsInstance(C().cmethod, ct)
+        self.assertIsInstance(C.cmethod, ct)
+        self.assertIsInstance(C().smethod, ct)
+        self.assertIsInstance(C.smethod, ct)
+        self.assertIsInstance(C.imethod, Callable[[Any, int], int])
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError):
+
+            class C(Callable):
+                pass
+
+        with self.assertRaises(TypeError):
+
+            class C(Callable[[int], int]):
+                pass
+
+    def test_cannot_instantiate(self):
+        with self.assertRaises(TypeError):
+            Callable()
+        c = Callable[[int], str]
+        with self.assertRaises(TypeError):
+            c()
+
+    def test_varargs(self):
+        ct = Callable[..., int]
+
+        def foo(a, b) -> int:
+            return 42
+
+        def bar(a=42) -> int:
+            return a
+
+        def baz(*, x, y, z) -> int:
+            return 100
+
+        self.assertIsInstance(foo, ct)
+        self.assertIsInstance(bar, ct)
+        self.assertIsInstance(baz, ct)
+
+    def test_repr(self):
+        ct0 = Callable[[], bool]
+        self.assertEqual(repr(ct0), 'typing.Callable[[], bool]')
+        ct2 = Callable[[str, float], int]
+        self.assertEqual(repr(ct2), 'typing.Callable[[str, float], int]')
+        ctv = Callable[..., str]
+        self.assertEqual(repr(ctv), 'typing.Callable[..., str]')
+
+
+XK = TypeVar('XK', str, bytes)
+XV = TypeVar('XV')
+
+
+class SimpleMapping(Generic[XK, XV]):
+
+    def __getitem__(self, key: XK) -> XV:
+        ...
+
+    def __setitem__(self, key: XK, value: XV):
+        ...
+
+    def get(self, key: XK, default: XV = None) -> XV:
+        ...
+
+
+class MySimpleMapping(SimpleMapping):
+
+    def __init__(self):
+        self.store = {}
+
+    def __getitem__(self, key: str):
+        return self.store[key]
+
+    def __setitem__(self, key: str, value):
+        self.store[key] = value
+
+    def get(self, key: str, default=None):
+        try:
+            return self.store[key]
+        except KeyError:
+            return default
+
+
+class ProtocolTests(TestCase):
+
+    def test_supports_int(self):
+        assert issubclass(int, typing.SupportsInt)
+        assert not issubclass(str, typing.SupportsInt)
+
+    def test_supports_float(self):
+        assert issubclass(float, typing.SupportsFloat)
+        assert not issubclass(str, typing.SupportsFloat)
+
+    def test_supports_complex(self):
+
+        # Note: complex itself doesn't have __complex__.
+        class C:
+            def __complex__(self):
+                return 0j
+
+        assert issubclass(C, typing.SupportsComplex)
+        assert not issubclass(str, typing.SupportsComplex)
+
+    def test_supports_bytes(self):
+
+        # Note: bytes itself doesn't have __bytes__.
+        class B:
+            def __bytes__(self):
+                return b''
+
+        assert issubclass(B, typing.SupportsBytes)
+        assert not issubclass(str, typing.SupportsBytes)
+
+    def test_supports_abs(self):
+        assert issubclass(float, typing.SupportsAbs)
+        assert issubclass(int, typing.SupportsAbs)
+        assert not issubclass(str, typing.SupportsAbs)
+
+    def test_supports_round(self):
+        assert issubclass(float, typing.SupportsRound)
+        assert issubclass(int, typing.SupportsRound)
+        assert not issubclass(str, typing.SupportsRound)
+
+    def test_reversible(self):
+        assert issubclass(list, typing.Reversible)
+        assert not issubclass(int, typing.Reversible)
+
+
+class GenericTests(TestCase):
+
+    def test_basics(self):
+        X = SimpleMapping[str, Any]
+        Y = SimpleMapping[XK, str]
+        X[str, str]
+        Y[str, str]
+        with self.assertRaises(TypeError):
+            X[int, str]
+        with self.assertRaises(TypeError):
+            Y[str, bytes]
+
+    def test_repr(self):
+        self.assertEqual(repr(SimpleMapping),
+                         __name__ + '.' + 'SimpleMapping[~XK, ~XV]')
+        self.assertEqual(repr(MySimpleMapping),
+                         __name__ + '.' + 'MySimpleMapping[~XK, ~XV]')
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            B = SimpleMapping[XK, Any]
+
+            class C(Generic[B]):
+                pass
+
+    def test_repr_2(self):
+        PY32 = sys.version_info[:2] < (3, 3)
+
+        class C(Generic[T]):
+            pass
+
+        assert C.__module__ == __name__
+        if not PY32:
+            assert C.__qualname__ == 'GenericTests.test_repr_2.<locals>.C'
+        assert repr(C).split('.')[-1] == 'C[~T]'
+        X = C[int]
+        assert X.__module__ == __name__
+        if not PY32:
+            assert X.__qualname__ == 'C'
+        assert repr(X).split('.')[-1] == 'C[int]'
+
+        class Y(C[int]):
+            pass
+
+        assert Y.__module__ == __name__
+        if not PY32:
+            assert Y.__qualname__ == 'GenericTests.test_repr_2.<locals>.Y'
+        assert repr(Y).split('.')[-1] == 'Y[int]'
+
+    def test_eq_1(self):
+        assert Generic == Generic
+        assert Generic[T] == Generic[T]
+        assert Generic[KT] != Generic[VT]
+
+    def test_eq_2(self):
+
+        class A(Generic[T]):
+            pass
+
+        class B(Generic[T]):
+            pass
+
+        assert A == A
+        assert A != B
+        assert A[T] == A[T]
+        assert A[T] != B[T]
+
+    def test_multiple_inheritance(self):
+
+        class A(Generic[T, VT]):
+            pass
+
+        class B(Generic[KT, T]):
+            pass
+
+        class C(A, Generic[KT, VT], B):
+            pass
+
+        assert C.__parameters__ == (T, VT, KT)
+
+    def test_nested(self):
+
+        class G(Generic):
+            pass
+
+        class Visitor(G[T]):
+
+            a = None
+
+            def set(self, a: T):
+                self.a = a
+
+            def get(self):
+                return self.a
+
+            def visit(self) -> T:
+                return self.a
+
+        V = Visitor[typing.List[int]]
+
+        class IntListVisitor(V):
+
+            def append(self, x: int):
+                self.a.append(x)
+
+        a = IntListVisitor()
+        a.set([])
+        a.append(1)
+        a.append(42)
+        assert a.get() == [1, 42]
+
+    def test_type_erasure(self):
+        T = TypeVar('T')
+
+        class Node(Generic[T]):
+            def __init__(self, label: T, left: 'Node[T]' = None, right: 'Node[T]' = None):
+                self.label = label  # type: T
+                self.left = left  # type: Optional[Node[T]]
+                self.right = right  # type: Optional[Node[T]]
+
+        def foo(x: T):
+            a = Node(x)
+            b = Node[T](x)
+            c = Node[Any](x)
+            assert type(a) is Node
+            assert type(b) is Node
+            assert type(c) is Node
+
+        foo(42)
+
+
+class VarianceTests(TestCase):
+
+    def test_invariance(self):
+        # Because of invariance, List[subclass of X] is not a subclass
+        # of List[X], and ditto for MutableSequence.
+        assert not issubclass(typing.List[Manager], typing.List[Employee])
+        assert not issubclass(typing.MutableSequence[Manager],
+                              typing.MutableSequence[Employee])
+        # It's still reflexive.
+        assert issubclass(typing.List[Employee], typing.List[Employee])
+        assert issubclass(typing.MutableSequence[Employee],
+                          typing.MutableSequence[Employee])
+
+    def test_covariance_tuple(self):
+        # Check covariace for Tuple (which are really special cases).
+        assert issubclass(Tuple[Manager], Tuple[Employee])
+        assert not issubclass(Tuple[Employee], Tuple[Manager])
+        # And pairwise.
+        assert issubclass(Tuple[Manager, Manager], Tuple[Employee, Employee])
+        assert not issubclass(Tuple[Employee, Employee],
+                              Tuple[Manager, Employee])
+        # And using ellipsis.
+        assert issubclass(Tuple[Manager, ...], Tuple[Employee, ...])
+        assert not issubclass(Tuple[Employee, ...], Tuple[Manager, ...])
+
+    def test_covariance_sequence(self):
+        # Check covariance for Sequence (which is just a generic class
+        # for this purpose, but using a covariant type variable).
+        assert issubclass(typing.Sequence[Manager], typing.Sequence[Employee])
+        assert not issubclass(typing.Sequence[Employee],
+                              typing.Sequence[Manager])
+
+    def test_covariance_mapping(self):
+        # Ditto for Mapping (a generic class with two parameters).
+        assert issubclass(typing.Mapping[Employee, Manager],
+                          typing.Mapping[Employee, Employee])
+        assert issubclass(typing.Mapping[Manager, Employee],
+                          typing.Mapping[Employee, Employee])
+        assert not issubclass(typing.Mapping[Employee, Manager],
+                              typing.Mapping[Manager, Manager])
+        assert not issubclass(typing.Mapping[Manager, Employee],
+                              typing.Mapping[Manager, Manager])
+
+
+class CastTests(TestCase):
+
+    def test_basics(self):
+        assert cast(int, 42) == 42
+        assert cast(float, 42) == 42
+        assert type(cast(float, 42)) is int
+        assert cast(Any, 42) == 42
+        assert cast(list, 42) == 42
+        assert cast(Union[str, float], 42) == 42
+        assert cast(AnyStr, 42) == 42
+        assert cast(None, 42) == 42
+
+    def test_errors(self):
+        # Bogus calls are not expected to fail.
+        cast(42, 42)
+        cast('hello', 42)
+
+
+class ForwardRefTests(TestCase):
+
+    def test_basics(self):
+
+        class Node(Generic[T]):
+
+            def __init__(self, label: T):
+                self.label = label
+                self.left = self.right = None
+
+            def add_both(self,
+                         left: 'Optional[Node[T]]',
+                         right: 'Node[T]' = None,
+                         stuff: int = None,
+                         blah=None):
+                self.left = left
+                self.right = right
+
+            def add_left(self, node: Optional['Node[T]']):
+                self.add_both(node, None)
+
+            def add_right(self, node: 'Node[T]' = None):
+                self.add_both(None, node)
+
+        t = Node[int]
+        both_hints = get_type_hints(t.add_both, globals(), locals())
+        assert both_hints['left'] == both_hints['right'] == Optional[Node[T]]
+        assert both_hints['stuff'] == Optional[int]
+        assert 'blah' not in both_hints
+
+        left_hints = get_type_hints(t.add_left, globals(), locals())
+        assert left_hints['node'] == Optional[Node[T]]
+
+        right_hints = get_type_hints(t.add_right, globals(), locals())
+        assert right_hints['node'] == Optional[Node[T]]
+
+    def test_union_forward(self):
+
+        def foo(a: Union['T']):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Union[T]})
+
+    def test_tuple_forward(self):
+
+        def foo(a: Tuple['T']):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Tuple[T]})
+
+    def test_callable_forward(self):
+
+        def foo(a: Callable[['T'], 'T']):
+            pass
+
+        self.assertEqual(get_type_hints(foo, globals(), locals()),
+                         {'a': Callable[[T], T]})
+
+    def test_syntax_error(self):
+
+        with self.assertRaises(SyntaxError):
+            Generic['/T']
+
+    def test_delayed_syntax_error(self):
+
+        def foo(a: 'Node[T'):
+            pass
+
+        with self.assertRaises(SyntaxError):
+            get_type_hints(foo)
+
+    def test_type_error(self):
+
+        def foo(a: Tuple['42']):
+            pass
+
+        with self.assertRaises(TypeError):
+            get_type_hints(foo)
+
+    def test_name_error(self):
+
+        def foo(a: 'Noode[T]'):
+            pass
+
+        with self.assertRaises(NameError):
+            get_type_hints(foo, locals())
+
+    def test_no_type_check(self):
+
+        @no_type_check
+        def foo(a: 'whatevers') -> {}:
+            pass
+
+        th = get_type_hints(foo)
+        self.assertEqual(th, {})
+
+    def test_no_type_check_class(self):
+
+        @no_type_check
+        class C:
+            def foo(a: 'whatevers') -> {}:
+                pass
+
+        cth = get_type_hints(C.foo)
+        self.assertEqual(cth, {})
+        ith = get_type_hints(C().foo)
+        self.assertEqual(ith, {})
+
+    def test_meta_no_type_check(self):
+
+        @no_type_check_decorator
+        def magic_decorator(deco):
+            return deco
+
+        self.assertEqual(magic_decorator.__name__, 'magic_decorator')
+
+        @magic_decorator
+        def foo(a: 'whatevers') -> {}:
+            pass
+
+        @magic_decorator
+        class C:
+            def foo(a: 'whatevers') -> {}:
+                pass
+
+        self.assertEqual(foo.__name__, 'foo')
+        th = get_type_hints(foo)
+        self.assertEqual(th, {})
+        cth = get_type_hints(C.foo)
+        self.assertEqual(cth, {})
+        ith = get_type_hints(C().foo)
+        self.assertEqual(ith, {})
+
+    def test_default_globals(self):
+        code = ("class C:\n"
+                "    def foo(self, a: 'C') -> 'D': pass\n"
+                "class D:\n"
+                "    def bar(self, b: 'D') -> C: pass\n"
+                )
+        ns = {}
+        exec(code, ns)
+        hints = get_type_hints(ns['C'].foo)
+        assert hints == {'a': ns['C'], 'return': ns['D']}
+
+
+class OverloadTests(TestCase):
+
+    def test_overload_exists(self):
+        from typing import overload
+
+    def test_overload_fails(self):
+        from typing import overload
+
+        with self.assertRaises(RuntimeError):
+            @overload
+            def blah():
+                pass
+
+
+class CollectionsAbcTests(TestCase):
+
+    def test_hashable(self):
+        assert isinstance(42, typing.Hashable)
+        assert not isinstance([], typing.Hashable)
+
+    def test_iterable(self):
+        assert isinstance([], typing.Iterable)
+        assert isinstance([], typing.Iterable[int])
+        assert not isinstance(42, typing.Iterable)
+
+    def test_iterator(self):
+        it = iter([])
+        assert isinstance(it, typing.Iterator)
+        assert isinstance(it, typing.Iterator[int])
+        assert not isinstance(42, typing.Iterator)
+
+    def test_sized(self):
+        assert isinstance([], typing.Sized)
+        assert not isinstance(42, typing.Sized)
+
+    def test_container(self):
+        assert isinstance([], typing.Container)
+        assert not isinstance(42, typing.Container)
+
+    def test_abstractset(self):
+        assert isinstance(set(), typing.AbstractSet)
+        assert not isinstance(42, typing.AbstractSet)
+
+    def test_mutableset(self):
+        assert isinstance(set(), typing.MutableSet)
+        assert not isinstance(frozenset(), typing.MutableSet)
+
+    def test_mapping(self):
+        assert isinstance({}, typing.Mapping)
+        assert not isinstance(42, typing.Mapping)
+
+    def test_mutablemapping(self):
+        assert isinstance({}, typing.MutableMapping)
+        assert not isinstance(42, typing.MutableMapping)
+
+    def test_sequence(self):
+        assert isinstance([], typing.Sequence)
+        assert not isinstance(42, typing.Sequence)
+
+    def test_mutablesequence(self):
+        assert isinstance([], typing.MutableSequence)
+        assert not isinstance((), typing.MutableSequence)
+
+    def test_bytestring(self):
+        assert isinstance(b'', typing.ByteString)
+        assert isinstance(bytearray(b''), typing.ByteString)
+
+    def test_list(self):
+        assert issubclass(list, typing.List)
+        assert isinstance([], typing.List)
+        assert not isinstance((), typing.List)
+        t = typing.List[int]
+        assert isinstance([], t)
+        assert isinstance([42], t)
+        assert not isinstance([''], t)
+
+    def test_set(self):
+        assert issubclass(set, typing.Set)
+        assert not issubclass(frozenset, typing.Set)
+        assert isinstance(set(), typing.Set)
+        assert not isinstance({}, typing.Set)
+        t = typing.Set[int]
+        assert isinstance(set(), t)
+        assert isinstance({42}, t)
+        assert not isinstance({''}, t)
+
+    def test_frozenset(self):
+        assert issubclass(frozenset, typing.FrozenSet)
+        assert not issubclass(set, typing.FrozenSet)
+        assert isinstance(frozenset(), typing.FrozenSet)
+        assert not isinstance({}, typing.FrozenSet)
+        t = typing.FrozenSet[int]
+        assert isinstance(frozenset(), t)
+        assert isinstance(frozenset({42}), t)
+        assert not isinstance(frozenset({''}), t)
+        assert not isinstance({42}, t)
+
+    def test_mapping_views(self):
+        # TODO: These tests are kind of lame.
+        assert isinstance({}.keys(), typing.KeysView)
+        assert isinstance({}.items(), typing.ItemsView)
+        assert isinstance({}.values(), typing.ValuesView)
+
+    def test_dict(self):
+        assert issubclass(dict, typing.Dict)
+        assert isinstance({}, typing.Dict)
+        assert not isinstance([], typing.Dict)
+        t = typing.Dict[int, str]
+        assert isinstance({}, t)
+        assert isinstance({42: ''}, t)
+        assert not isinstance({42: 42}, t)
+        assert not isinstance({'': 42}, t)
+        assert not isinstance({'': ''}, t)
+
+    def test_no_list_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.List()
+        with self.assertRaises(TypeError):
+            typing.List[T]()
+        with self.assertRaises(TypeError):
+            typing.List[int]()
+
+    def test_list_subclass_instantiation(self):
+
+        class MyList(typing.List[int]):
+            pass
+
+        a = MyList()
+        assert isinstance(a, MyList)
+
+    def test_no_dict_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Dict()
+        with self.assertRaises(TypeError):
+            typing.Dict[KT, VT]()
+        with self.assertRaises(TypeError):
+            typing.Dict[str, int]()
+
+    def test_dict_subclass_instantiation(self):
+
+        class MyDict(typing.Dict[str, int]):
+            pass
+
+        d = MyDict()
+        assert isinstance(d, MyDict)
+
+    def test_no_set_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Set()
+        with self.assertRaises(TypeError):
+            typing.Set[T]()
+        with self.assertRaises(TypeError):
+            typing.Set[int]()
+
+    def test_set_subclass_instantiation(self):
+
+        class MySet(typing.Set[int]):
+            pass
+
+        d = MySet()
+        assert isinstance(d, MySet)
+
+    def test_no_frozenset_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.FrozenSet()
+        with self.assertRaises(TypeError):
+            typing.FrozenSet[T]()
+        with self.assertRaises(TypeError):
+            typing.FrozenSet[int]()
+
+    def test_frozenset_subclass_instantiation(self):
+
+        class MyFrozenSet(typing.FrozenSet[int]):
+            pass
+
+        d = MyFrozenSet()
+        assert isinstance(d, MyFrozenSet)
+
+    def test_no_tuple_instantiation(self):
+        with self.assertRaises(TypeError):
+            Tuple()
+        with self.assertRaises(TypeError):
+            Tuple[T]()
+        with self.assertRaises(TypeError):
+            Tuple[int]()
+
+    def test_generator(self):
+        def foo():
+            yield 42
+        g = foo()
+        assert issubclass(type(g), typing.Generator)
+        assert isinstance(g, typing.Generator)
+        assert not isinstance(foo, typing.Generator)
+        assert issubclass(typing.Generator[Manager, Employee, Manager],
+                          typing.Generator[Employee, Manager, Employee])
+        assert not issubclass(typing.Generator[Manager, Manager, Manager],
+                              typing.Generator[Employee, Employee, Employee])
+
+    def test_no_generator_instantiation(self):
+        with self.assertRaises(TypeError):
+            typing.Generator()
+        with self.assertRaises(TypeError):
+            typing.Generator[T, T, T]()
+        with self.assertRaises(TypeError):
+            typing.Generator[int, int, int]()
+
+    def test_subclassing(self):
+
+        class MMA(typing.MutableMapping):
+            pass
+
+        with self.assertRaises(TypeError):  # It's abstract
+            MMA()
+
+        class MMC(MMA):
+            def __len__(self):
+                return 0
+
+        assert len(MMC()) == 0
+
+        class MMB(typing.MutableMapping[KT, VT]):
+            def __len__(self):
+                return 0
+
+        assert len(MMB()) == 0
+        assert len(MMB[str, str]()) == 0
+        assert len(MMB[KT, VT]()) == 0
+
+    def test_recursive_dict(self):
+        D = typing.Dict[int, 'D']  # Uses a _ForwardRef
+        assert isinstance({}, D)  # Easy
+        assert isinstance({0: {}}, D)  # Touches _ForwardRef
+        assert isinstance({0: {0: {}}}, D)  # Etc...
+
+
+class NamedTupleTests(TestCase):
+
+    def test_basics(self):
+        Emp = NamedTuple('Emp', [('name', str), ('id', int)])
+        assert issubclass(Emp, tuple)
+        joe = Emp('Joe', 42)
+        jim = Emp(name='Jim', id=1)
+        assert isinstance(joe, Emp)
+        assert isinstance(joe, tuple)
+        assert joe.name == 'Joe'
+        assert joe.id == 42
+        assert jim.name == 'Jim'
+        assert jim.id == 1
+        assert Emp.__name__ == 'Emp'
+        assert Emp._fields == ('name', 'id')
+        assert Emp._field_types == dict(name=str, id=int)
+
+
+class IOTests(TestCase):
+
+    def test_io(self):
+
+        def stuff(a: IO) -> AnyStr:
+            return a.readline()
+
+        a = stuff.__annotations__['a']
+        assert a.__parameters__ == (AnyStr,)
+
+    def test_textio(self):
+
+        def stuff(a: TextIO) -> str:
+            return a.readline()
+
+        a = stuff.__annotations__['a']
+        assert a.__parameters__ == (str,)
+
+    def test_binaryio(self):
+
+        def stuff(a: BinaryIO) -> bytes:
+            return a.readline()
+
+        a = stuff.__annotations__['a']
+        assert a.__parameters__ == (bytes,)
+
+    def test_io_submodule(self):
+        from typing.io import IO, TextIO, BinaryIO, __all__, __name__
+        assert IO is typing.IO
+        assert TextIO is typing.TextIO
+        assert BinaryIO is typing.BinaryIO
+        assert set(__all__) == set(['IO', 'TextIO', 'BinaryIO'])
+        assert __name__ == 'typing.io'
+
+
+class RETests(TestCase):
+    # Much of this is really testing _TypeAlias.
+
+    def test_basics(self):
+        pat = re.compile('[a-z]+', re.I)
+        assert issubclass(pat.__class__, Pattern)
+        assert isinstance(pat, Pattern[str])
+        assert not isinstance(pat, Pattern[bytes])
+        assert issubclass(type(pat), Pattern)
+        assert issubclass(type(pat), Pattern[str])
+
+        mat = pat.search('12345abcde.....')
+        assert issubclass(mat.__class__, Match)
+        assert issubclass(mat.__class__, Match[str])
+        assert issubclass(mat.__class__, Match[bytes])  # Sad but true.
+        assert issubclass(type(mat), Match)
+        assert issubclass(type(mat), Match[str])
+
+        p = Pattern[Union[str, bytes]]
+        assert isinstance(pat, p)
+        assert issubclass(Pattern[str], Pattern)
+        assert issubclass(Pattern[str], p)
+
+        m = Match[Union[bytes, str]]
+        assert isinstance(mat, m)
+        assert issubclass(Match[bytes], Match)
+        assert issubclass(Match[bytes], m)
+
+    def test_errors(self):
+        with self.assertRaises(TypeError):
+            # Doesn't fit AnyStr.
+            Pattern[int]
+        with self.assertRaises(TypeError):
+            # Can't change type vars?
+            Match[T]
+        m = Match[Union[str, bytes]]
+        with self.assertRaises(TypeError):
+            # Too complicated?
+            m[str]
+
+    def test_repr(self):
+        assert repr(Pattern) == 'Pattern[~AnyStr]'
+        assert repr(Pattern[str]) == 'Pattern[str]'
+        assert repr(Pattern[bytes]) == 'Pattern[bytes]'
+        assert repr(Match) == 'Match[~AnyStr]'
+        assert repr(Match[str]) == 'Match[str]'
+        assert repr(Match[bytes]) == 'Match[bytes]'
+
+    def test_re_submodule(self):
+        from typing.re import Match, Pattern, __all__, __name__
+        assert Match is typing.Match
+        assert Pattern is typing.Pattern
+        assert set(__all__) == set(['Match', 'Pattern'])
+        assert __name__ == 'typing.re'
+
+    def test_cannot_subclass(self):
+        with self.assertRaises(TypeError) as ex:
+
+            class A(typing.Match):
+                pass
+
+        assert str(ex.exception) == "A type alias cannot be subclassed"
+
+
+class AllTests(TestCase):
+    """Tests for __all__."""
+
+    def test_all(self):
+        from typing import __all__ as a
+        # Just spot-check the first and last of every category.
+        assert 'AbstractSet' in a
+        assert 'ValuesView' in a
+        assert 'cast' in a
+        assert 'overload' in a
+        assert 'io' in a
+        assert 're' in a
+        # Spot-check that stdlib modules aren't exported.
+        assert 'os' not in a
+        assert 'sys' not in a
+
+
+if __name__ == '__main__':
+    main()
diff --git a/Lib/typing.py b/Lib/typing.py
new file mode 100644
--- /dev/null
+++ b/Lib/typing.py
@@ -0,0 +1,1714 @@
+# TODO:
+# - Generic[T, T] is invalid
+# - Look for TODO below
+
+# TODO nits:
+# Get rid of asserts that are the caller's fault.
+# Docstrings (e.g. ABCs).
+
+import abc
+from abc import abstractmethod, abstractproperty
+import collections
+import functools
+import re as stdlib_re  # Avoid confusion with the re we export.
+import sys
+import types
+try:
+    import collections.abc as collections_abc
+except ImportError:
+    import collections as collections_abc  # Fallback for PY3.2.
+
+
+# Please keep __all__ alphabetized within each category.
+__all__ = [
+    # Super-special typing primitives.
+    'Any',
+    'Callable',
+    'Generic',
+    'Optional',
+    'TypeVar',
+    'Union',
+    'Tuple',
+
+    # ABCs (from collections.abc).
+    'AbstractSet',  # collections.abc.Set.
+    'ByteString',
+    'Container',
+    'Hashable',
+    'ItemsView',
+    'Iterable',
+    'Iterator',
+    'KeysView',
+    'Mapping',
+    'MappingView',
+    'MutableMapping',
+    'MutableSequence',
+    'MutableSet',
+    'Sequence',
+    'Sized',
+    'ValuesView',
+
+    # Structural checks, a.k.a. protocols.
+    'Reversible',
+    'SupportsAbs',
+    'SupportsFloat',
+    'SupportsInt',
+    'SupportsRound',
+
+    # Concrete collection types.
+    'Dict',
+    'List',
+    'Set',
+    'NamedTuple',  # Not really a type.
+    'Generator',
+
+    # One-off things.
+    'AnyStr',
+    'cast',
+    'get_type_hints',
+    'no_type_check',
+    'no_type_check_decorator',
+    'overload',
+
+    # Submodules.
+    'io',
+    're',
+]
+
+
+def _qualname(x):
+    if sys.version_info[:2] >= (3, 3):
+        return x.__qualname__
+    else:
+        # Fall back to just name.
+        return x.__name__
+
+
+class TypingMeta(type):
+    """Metaclass for every type defined below.
+
+    This overrides __new__() to require an extra keyword parameter
+    '_root', which serves as a guard against naive subclassing of the
+    typing classes.  Any legitimate class defined using a metaclass
+    derived from TypingMeta (including internal subclasses created by
+    e.g.  Union[X, Y]) must pass _root=True.
+
+    This also defines a dummy constructor (all the work is done in
+    __new__) and a nicer repr().
+    """
+
+    _is_protocol = False
+
+    def __new__(cls, name, bases, namespace, *, _root=False):
+        if not _root:
+            raise TypeError("Cannot subclass %s" %
+                            (', '.join(map(_type_repr, bases)) or '()'))
+        return super().__new__(cls, name, bases, namespace)
+
+    def __init__(self, *args, **kwds):
+        pass
+
+    def _eval_type(self, globalns, localns):
+        """Override this in subclasses to interpret forward references.
+
+        For example, Union['C'] is internally stored as
+        Union[_ForwardRef('C')], which should evaluate to _Union[C],
+        where C is an object found in globalns or localns (searching
+        localns first, of course).
+        """
+        return self
+
+    def _has_type_var(self):
+        return False
+
+    def __repr__(self):
+        return '%s.%s' % (self.__module__, _qualname(self))
+
+
+class Final:
+    """Mix-in class to prevent instantiation."""
+
+    def __new__(self, *args, **kwds):
+        raise TypeError("Cannot instantiate %r" % self.__class__)
+
+
+class _ForwardRef(TypingMeta):
+    """Wrapper to hold a forward reference."""
+
+    def __new__(cls, arg):
+        if not isinstance(arg, str):
+            raise TypeError('ForwardRef must be a string -- got %r' % (arg,))
+        try:
+            code = compile(arg, '<string>', 'eval')
+        except SyntaxError:
+            raise SyntaxError('ForwardRef must be an expression -- got %r' %
+                              (arg,))
+        self = super().__new__(cls, arg, (), {}, _root=True)
+        self.__forward_arg__ = arg
+        self.__forward_code__ = code
+        self.__forward_evaluated__ = False
+        self.__forward_value__ = None
+        typing_globals = globals()
+        frame = sys._getframe(1)
+        while frame is not None and frame.f_globals is typing_globals:
+            frame = frame.f_back
+        assert frame is not None
+        self.__forward_frame__ = frame
+        return self
+
+    def _eval_type(self, globalns, localns):
+        if not isinstance(localns, dict):
+            raise TypeError('ForwardRef localns must be a dict -- got %r' %
+                            (localns,))
+        if not isinstance(globalns, dict):
+            raise TypeError('ForwardRef globalns must be a dict -- got %r' %
+                            (globalns,))
+        if not self.__forward_evaluated__:
+            if globalns is None and localns is None:
+                globalns = localns = {}
+            elif globalns is None:
+                globalns = localns
+            elif localns is None:
+                localns = globalns
+            self.__forward_value__ = _type_check(
+                eval(self.__forward_code__, globalns, localns),
+                "Forward references must evaluate to types.")
+            self.__forward_evaluated__ = True
+        return self.__forward_value__
+
+    def __subclasscheck__(self, cls):
+        if not self.__forward_evaluated__:
+            globalns = self.__forward_frame__.f_globals
+            localns = self.__forward_frame__.f_locals
+            try:
+                self._eval_type(globalns, localns)
+            except NameError:
+                return False  # Too early.
+        return issubclass(cls, self.__forward_value__)
+
+    def __instancecheck__(self, obj):
+        if not self.__forward_evaluated__:
+            globalns = self.__forward_frame__.f_globals
+            localns = self.__forward_frame__.f_locals
+            try:
+                self._eval_type(globalns, localns)
+            except NameError:
+                return False  # Too early.
+        return isinstance(obj, self.__forward_value__)
+
+    def __repr__(self):
+        return '_ForwardRef(%r)' % (self.__forward_arg__,)
+
+
+class _TypeAlias:
+    """Internal helper class for defining generic variants of concrete types.
+
+    Note that this is not a type; let's call it a pseudo-type.  It can
+    be used in instance and subclass checks, e.g. isinstance(m, Match)
+    or issubclass(type(m), Match).  However, it cannot be itself the
+    target of an issubclass() call; e.g. issubclass(Match, C) (for
+    some arbitrary class C) raises TypeError rather than returning
+    False.
+    """
+
+    def __new__(cls, *args, **kwds):
+        """Constructor.
+
+        This only exists to give a better error message in case
+        someone tries to subclass a type alias (not a good idea).
+        """
+        if (len(args) == 3 and
+            isinstance(args[0], str) and
+            isinstance(args[1], tuple)):
+            # Close enough.
+            raise TypeError("A type alias cannot be subclassed")
+        return object.__new__(cls)
+
+    def __init__(self, name, type_var, impl_type, type_checker):
+        """Initializer.
+
+        Args:
+            name: The name, e.g. 'Pattern'.
+            type_var: The type parameter, e.g. AnyStr, or the
+                specific type, e.g. str.
+            impl_type: The implementation type.
+            type_checker: Function that takes an impl_type instance.
+                and returns a value that should be a type_var instance.
+        """
+        assert isinstance(name, str), repr(name)
+        assert isinstance(type_var, type), repr(type_var)
+        assert isinstance(impl_type, type), repr(impl_type)
+        assert not isinstance(impl_type, TypingMeta), repr(impl_type)
+        self.name = name
+        self.type_var = type_var
+        self.impl_type = impl_type
+        self.type_checker = type_checker
+
+    def __repr__(self):
+        return "%s[%s]" % (self.name, _type_repr(self.type_var))
+
+    def __getitem__(self, parameter):
+        assert isinstance(parameter, type), repr(parameter)
+        if not isinstance(self.type_var, TypeVar):
+            raise TypeError("%s cannot be further parameterized." % self)
+        if self.type_var.__constraints__:
+            if not issubclass(parameter, Union[self.type_var.__constraints__]):
+                raise TypeError("%s is not a valid substitution for %s." %
+                                (parameter, self.type_var))
+        return self.__class__(self.name, parameter,
+                              self.impl_type, self.type_checker)
+
+    def __instancecheck__(self, obj):
+        return (isinstance(obj, self.impl_type) and
+                isinstance(self.type_checker(obj), self.type_var))
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if isinstance(cls, _TypeAlias):
+            # Covariance.  For now, we compare by name.
+            return (cls.name == self.name and
+                    issubclass(cls.type_var, self.type_var))
+        else:
+            # Note that this is too lenient, because the
+            # implementation type doesn't carry information about
+            # whether it is about bytes or str (for example).
+            return issubclass(cls, self.impl_type)
+
+
+def _has_type_var(t):
+    return t is not None and isinstance(t, TypingMeta) and t._has_type_var()
+
+
+def _eval_type(t, globalns, localns):
+    if isinstance(t, TypingMeta):
+        return t._eval_type(globalns, localns)
+    else:
+        return t
+
+
+def _type_check(arg, msg):
+    """Check that the argument is a type, and return it.
+
+    As a special case, accept None and return type(None) instead.
+    Also, _TypeAlias instances (e.g. Match, Pattern) are acceptable.
+
+    The msg argument is a human-readable error message, e.g.
+
+        "Union[arg, ...]: arg should be a type."
+
+    We append the repr() of the actual value (truncated to 100 chars).
+    """
+    if arg is None:
+        return type(None)
+    if isinstance(arg, str):
+        arg = _ForwardRef(arg)
+    if not isinstance(arg, (type, _TypeAlias)):
+        raise TypeError(msg + " Got %.100r." % (arg,))
+    return arg
+
+
+def _type_repr(obj):
+    """Return the repr() of an object, special-casing types.
+
+    If obj is a type, we return a shorter version than the default
+    type.__repr__, based on the module and qualified name, which is
+    typically enough to uniquely identify a type.  For everything
+    else, we fall back on repr(obj).
+    """
+    if isinstance(obj, type) and not isinstance(obj, TypingMeta):
+        if obj.__module__ == 'builtins':
+            return _qualname(obj)
+        else:
+            return '%s.%s' % (obj.__module__, _qualname(obj))
+    else:
+        return repr(obj)
+
+
+class AnyMeta(TypingMeta):
+    """Metaclass for Any."""
+
+    def __new__(cls, name, bases, namespace, _root=False):
+        self = super().__new__(cls, name, bases, namespace, _root=_root)
+        return self
+
+    def __instancecheck__(self, instance):
+        return True
+
+    def __subclasscheck__(self, cls):
+        if not isinstance(cls, type):
+            return super().__subclasscheck__(cls)  # To TypeError.
+        return True
+
+
+class Any(Final, metaclass=AnyMeta, _root=True):
+    """Special type indicating an unconstrained type.
+
+    - Any object is an instance of Any.
+    - Any class is a subclass of Any.
+    - As a special case, Any and object are subclasses of each other.
+    """
+
+
+class TypeVar(TypingMeta, metaclass=TypingMeta, _root=True):
+    """Type variable.
+
+    Usage::
+
+      T = TypeVar('T')  # Can be anything
+      A = TypeVar('A', str, bytes)  # Must be str or bytes
+
+    Type variables exist primarily for the benefit of static type
+    checkers.  They serve as the parameters for generic types as well
+    as for generic function definitions.  See class Generic for more
+    information on generic types.  Generic functions work as follows:
+
+      def repeat(x: T, n: int) -> Sequence[T]:
+          '''Return a list containing n references to x.'''
+          return [x]*n
+
+      def longest(x: A, y: A) -> A:
+          '''Return the longest of two strings.'''
+          return x if len(x) >= len(y) else y
+
+    The latter example's signature is essentially the overloading
+    of (str, str) -> str and (bytes, bytes) -> bytes.  Also note
+    that if the arguments are instances of some subclass of str,
+    the return type is still plain str.
+
+    At runtime, isinstance(x, T) will raise TypeError.  However,
+    issubclass(C, T) is true for any class C, and issubclass(str, A)
+    and issubclass(bytes, A) are true, and issubclass(int, A) is
+    false.
+
+    Type variables may be marked covariant or contravariant by passing
+    covariant=True or contravariant=True.  See PEP 484 for more
+    details.  By default type variables are invariant.
+
+    Type variables can be introspected. e.g.:
+
+      T.__name__ == 'T'
+      T.__constraints__ == ()
+      T.__covariant__ == False
+      T.__contravariant__ = False
+      A.__constraints__ == (str, bytes)
+    """
+
+    def __new__(cls, name, *constraints, bound=None,
+                covariant=False, contravariant=False):
+        self = super().__new__(cls, name, (Final,), {}, _root=True)
+        if covariant and contravariant:
+            raise ValueError("Bivariant type variables are not supported.")
+        self.__covariant__ = bool(covariant)
+        self.__contravariant__ = bool(contravariant)
+        if constraints and bound is not None:
+            raise TypeError("Constraints cannot be combined with bound=...")
+        if constraints and len(constraints) == 1:
+            raise TypeError("A single constraint is not allowed")
+        msg = "TypeVar(name, constraint, ...): constraints must be types."
+        self.__constraints__ = tuple(_type_check(t, msg) for t in constraints)
+        if bound:
+            self.__bound__ = _type_check(bound, "Bound must be a type.")
+        else:
+            self.__bound__ = None
+        return self
+
+    def _has_type_var(self):
+        return True
+
+    def __repr__(self):
+        if self.__covariant__:
+            prefix = '+'
+        elif self.__contravariant__:
+            prefix = '-'
+        else:
+            prefix = '~'
+        return prefix + self.__name__
+
+    def __instancecheck__(self, instance):
+        raise TypeError("Type variables cannot be used with isinstance().")
+
+    def __subclasscheck__(self, cls):
+        # TODO: Make this raise TypeError too?
+        if cls is self:
+            return True
+        if cls is Any:
+            return True
+        if self.__bound__ is not None:
+            return issubclass(cls, self.__bound__)
+        if self.__constraints__:
+            return any(issubclass(cls, c) for c in self.__constraints__)
+        return True
+
+
+# Some unconstrained type variables.  These are used by the container types.
+T = TypeVar('T')  # Any type.
+KT = TypeVar('KT')  # Key type.
+VT = TypeVar('VT')  # Value type.
+T_co = TypeVar('T_co', covariant=True)  # Any type covariant containers.
+V_co = TypeVar('V_co', covariant=True)  # Any type covariant containers.
+KT_co = TypeVar('KT_co', covariant=True)  # Key type covariant containers.
+VT_co = TypeVar('VT_co', covariant=True)  # Value type covariant containers.
+T_contra = TypeVar('T_contra', contravariant=True)  # Ditto contravariant.
+
+# A useful type variable with constraints.  This represents string types.
+# TODO: What about bytearray, memoryview?
+AnyStr = TypeVar('AnyStr', bytes, str)
+
+
+class UnionMeta(TypingMeta):
+    """Metaclass for Union."""
+
+    def __new__(cls, name, bases, namespace, parameters=None, _root=False):
+        if parameters is None:
+            return super().__new__(cls, name, bases, namespace, _root=_root)
+        if not isinstance(parameters, tuple):
+            raise TypeError("Expected parameters=<tuple>")
+        # Flatten out Union[Union[...], ...] and type-check non-Union args.
+        params = []
+        msg = "Union[arg, ...]: each arg must be a type."
+        for p in parameters:
+            if isinstance(p, UnionMeta):
+                params.extend(p.__union_params__)
+            else:
+                params.append(_type_check(p, msg))
+        # Weed out strict duplicates, preserving the first of each occurrence.
+        all_params = set(params)
+        if len(all_params) < len(params):
+            new_params = []
+            for t in params:
+                if t in all_params:
+                    new_params.append(t)
+                    all_params.remove(t)
+            params = new_params
+            assert not all_params, all_params
+        # Weed out subclasses.
+        # E.g. Union[int, Employee, Manager] == Union[int, Employee].
+        # If Any or object is present it will be the sole survivor.
+        # If both Any and object are present, Any wins.
+        # Never discard type variables, except against Any.
+        # (In particular, Union[str, AnyStr] != AnyStr.)
+        all_params = set(params)
+        for t1 in params:
+            if t1 is Any:
+                return Any
+            if isinstance(t1, TypeVar):
+                continue
+            if any(issubclass(t1, t2)
+                   for t2 in all_params - {t1} if not isinstance(t2, TypeVar)):
+                all_params.remove(t1)
+        # It's not a union if there's only one type left.
+        if len(all_params) == 1:
+            return all_params.pop()
+        # Create a new class with these params.
+        self = super().__new__(cls, name, bases, {}, _root=True)
+        self.__union_params__ = tuple(t for t in params if t in all_params)
+        self.__union_set_params__ = frozenset(self.__union_params__)
+        return self
+
+    def _eval_type(self, globalns, localns):
+        p = tuple(_eval_type(t, globalns, localns)
+                  for t in self.__union_params__)
+        if p == self.__union_params__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  p, _root=True)
+
+    def _has_type_var(self):
+        if self.__union_params__:
+            for t in self.__union_params__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__union_params__:
+            r += '[%s]' % (', '.join(_type_repr(t)
+                                     for t in self.__union_params__))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__union_params__ is not None:
+            raise TypeError(
+                "Cannot subscript an existing Union. Use Union[u, t] instead.")
+        if parameters == ():
+            raise TypeError("Cannot take a Union of no types.")
+        if not isinstance(parameters, tuple):
+            parameters = (parameters,)
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), parameters, _root=True)
+
+    def __eq__(self, other):
+        if not isinstance(other, UnionMeta):
+            return NotImplemented
+        return self.__union_set_params__ == other.__union_set_params__
+
+    def __hash__(self):
+        return hash(self.__union_set_params__)
+
+    def __instancecheck__(self, instance):
+        return (self.__union_set_params__ is not None and
+                any(isinstance(instance, t) for t in self.__union_params__))
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if self.__union_params__ is None:
+            return isinstance(cls, UnionMeta)
+        elif isinstance(cls, UnionMeta):
+            if cls.__union_params__ is None:
+                return False
+            return all(issubclass(c, self) for c in (cls.__union_params__))
+        elif isinstance(cls, TypeVar):
+            if cls in self.__union_params__:
+                return True
+            if cls.__constraints__:
+                return issubclass(Union[cls.__constraints__], self)
+            return False
+        else:
+            return any(issubclass(cls, t) for t in self.__union_params__)
+
+
+class Union(Final, metaclass=UnionMeta, _root=True):
+    """Union type; Union[X, Y] means either X or Y.
+
+    To define a union, use e.g. Union[int, str].  Details:
+
+    - The arguments must be types and there must be at least one.
+
+    - None as an argument is a special case and is replaced by
+      type(None).
+
+    - Unions of unions are flattened, e.g.::
+
+        Union[Union[int, str], float] == Union[int, str, float]
+
+    - Unions of a single argument vanish, e.g.::
+
+        Union[int] == int  # The constructor actually returns int
+
+    - Redundant arguments are skipped, e.g.::
+
+        Union[int, str, int] == Union[int, str]
+
+    - When comparing unions, the argument order is ignored, e.g.::
+
+        Union[int, str] == Union[str, int]
+
+    - When two arguments have a subclass relationship, the least
+      derived argument is kept, e.g.::
+
+        class Employee: pass
+        class Manager(Employee): pass
+        Union[int, Employee, Manager] == Union[int, Employee]
+        Union[Manager, int, Employee] == Union[int, Employee]
+        Union[Employee, Manager] == Employee
+
+    - Corollary: if Any is present it is the sole survivor, e.g.::
+
+        Union[int, Any] == Any
+
+    - Similar for object::
+
+        Union[int, object] == object
+
+    - To cut a tie: Union[object, Any] == Union[Any, object] == Any.
+
+    - You cannot subclass or instantiate a union.
+
+    - You cannot write Union[X][Y] (what would it mean?).
+
+    - You can use Optional[X] as a shorthand for Union[X, None].
+    """
+
+    # Unsubscripted Union type has params set to None.
+    __union_params__ = None
+    __union_set_params__ = None
+
+
+class OptionalMeta(TypingMeta):
+    """Metaclass for Optional."""
+
+    def __new__(cls, name, bases, namespace, _root=False):
+        return super().__new__(cls, name, bases, namespace, _root=_root)
+
+    def __getitem__(self, arg):
+        arg = _type_check(arg, "Optional[t] requires a single type.")
+        return Union[arg, type(None)]
+
+
+class Optional(Final, metaclass=OptionalMeta, _root=True):
+    """Optional type.
+
+    Optional[X] is equivalent to Union[X, type(None)].
+    """
+
+
+class TupleMeta(TypingMeta):
+    """Metaclass for Tuple."""
+
+    def __new__(cls, name, bases, namespace, parameters=None,
+                use_ellipsis=False, _root=False):
+        self = super().__new__(cls, name, bases, namespace, _root=_root)
+        self.__tuple_params__ = parameters
+        self.__tuple_use_ellipsis__ = use_ellipsis
+        return self
+
+    def _has_type_var(self):
+        if self.__tuple_params__:
+            for t in self.__tuple_params__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def _eval_type(self, globalns, localns):
+        tp = self.__tuple_params__
+        if tp is None:
+            return self
+        p = tuple(_eval_type(t, globalns, localns) for t in tp)
+        if p == self.__tuple_params__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  p, _root=True)
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__tuple_params__ is not None:
+            params = [_type_repr(p) for p in self.__tuple_params__]
+            if self.__tuple_use_ellipsis__:
+                params.append('...')
+            r += '[%s]' % (
+                ', '.join(params))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__tuple_params__ is not None:
+            raise TypeError("Cannot re-parameterize %r" % (self,))
+        if not isinstance(parameters, tuple):
+            parameters = (parameters,)
+        if len(parameters) == 2 and parameters[1] == Ellipsis:
+            parameters = parameters[:1]
+            use_ellipsis = True
+            msg = "Tuple[t, ...]: t must be a type."
+        else:
+            use_ellipsis = False
+            msg = "Tuple[t0, t1, ...]: each t must be a type."
+        parameters = tuple(_type_check(p, msg) for p in parameters)
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), parameters,
+                              use_ellipsis=use_ellipsis, _root=True)
+
+    def __eq__(self, other):
+        if not isinstance(other, TupleMeta):
+            return NotImplemented
+        return self.__tuple_params__ == other.__tuple_params__
+
+    def __hash__(self):
+        return hash(self.__tuple_params__)
+
+    def __instancecheck__(self, t):
+        if not isinstance(t, tuple):
+            return False
+        if self.__tuple_params__ is None:
+            return True
+        if self.__tuple_use_ellipsis__:
+            p = self.__tuple_params__[0]
+            return all(isinstance(x, p) for x in t)
+        else:
+            return (len(t) == len(self.__tuple_params__) and
+                    all(isinstance(x, p)
+                        for x, p in zip(t, self.__tuple_params__)))
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if not isinstance(cls, type):
+            return super().__subclasscheck__(cls)  # To TypeError.
+        if issubclass(cls, tuple):
+            return True  # Special case.
+        if not isinstance(cls, TupleMeta):
+            return super().__subclasscheck__(cls)  # False.
+        if self.__tuple_params__ is None:
+            return True
+        if cls.__tuple_params__ is None:
+            return False  # ???
+        if cls.__tuple_use_ellipsis__ != self.__tuple_use_ellipsis__:
+            return False
+        # Covariance.
+        return (len(self.__tuple_params__) == len(cls.__tuple_params__) and
+                all(issubclass(x, p)
+                    for x, p in zip(cls.__tuple_params__,
+                                    self.__tuple_params__)))
+
+
+class Tuple(Final, metaclass=TupleMeta, _root=True):
+    """Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
+
+    Example: Tuple[T1, T2] is a tuple of two elements corresponding
+    to type variables T1 and T2.  Tuple[int, float, str] is a tuple
+    of an int, a float and a string.
+
+    To specify a variable-length tuple of homogeneous type, use Sequence[T].
+    """
+
+
+class CallableMeta(TypingMeta):
+    """Metaclass for Callable."""
+
+    def __new__(cls, name, bases, namespace, _root=False,
+                args=None, result=None):
+        if args is None and result is None:
+            pass  # Must be 'class Callable'.
+        else:
+            if args is not Ellipsis:
+                if not isinstance(args, list):
+                    raise TypeError("Callable[args, result]: "
+                                    "args must be a list."
+                                    " Got %.100r." % (args,))
+                msg = "Callable[[arg, ...], result]: each arg must be a type."
+                args = tuple(_type_check(arg, msg) for arg in args)
+            msg = "Callable[args, result]: result must be a type."
+            result = _type_check(result, msg)
+        self = super().__new__(cls, name, bases, namespace, _root=_root)
+        self.__args__ = args
+        self.__result__ = result
+        return self
+
+    def _has_type_var(self):
+        if self.__args__:
+            for t in self.__args__:
+                if _has_type_var(t):
+                    return True
+        return _has_type_var(self.__result__)
+
+    def _eval_type(self, globalns, localns):
+        if self.__args__ is None and self.__result__ is None:
+            return self
+        args = [_eval_type(t, globalns, localns) for t in self.__args__]
+        result = _eval_type(self.__result__, globalns, localns)
+        if args == self.__args__ and result == self.__result__:
+            return self
+        else:
+            return self.__class__(self.__name__, self.__bases__, {},
+                                  args=args, result=result, _root=True)
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__args__ is not None or self.__result__ is not None:
+            if self.__args__ is Ellipsis:
+                args_r = '...'
+            else:
+                args_r = '[%s]' % ', '.join(_type_repr(t)
+                                            for t in self.__args__)
+            r += '[%s, %s]' % (args_r, _type_repr(self.__result__))
+        return r
+
+    def __getitem__(self, parameters):
+        if self.__args__ is not None or self.__result__ is not None:
+            raise TypeError("This Callable type is already parameterized.")
+        if not isinstance(parameters, tuple) or len(parameters) != 2:
+            raise TypeError(
+                "Callable must be used as Callable[[arg, ...], result].")
+        args, result = parameters
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__), _root=True,
+                              args=args, result=result)
+
+    def __eq__(self, other):
+        if not isinstance(other, CallableMeta):
+            return NotImplemented
+        return (self.__args__ == other.__args__ and
+                self.__result__ == other.__result__)
+
+    def __hash__(self):
+        return hash(self.__args__) ^ hash(self.__result__)
+
+    def __instancecheck__(self, instance):
+        if not callable(instance):
+            return False
+        if self.__args__ is None and self.__result__ is None:
+            return True
+        assert self.__args__ is not None
+        assert self.__result__ is not None
+        my_args, my_result = self.__args__, self.__result__
+        import inspect  # TODO: Avoid this import.
+        # Would it be better to use Signature objects?
+        try:
+            (args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults,
+             annotations) = inspect.getfullargspec(instance)
+        except TypeError:
+            return False  # We can't find the signature.  Give up.
+        msg = ("When testing isinstance(<callable>, Callable[...], "
+               "<calleble>'s annotations must be types.")
+        if my_args is not Ellipsis:
+            if kwonlyargs and (not kwonlydefaults or
+                               len(kwonlydefaults) < len(kwonlyargs)):
+                return False
+            if isinstance(instance, types.MethodType):
+                # For methods, getfullargspec() includes self/cls,
+                # but it's not part of the call signature, so drop it.
+                del args[0]
+            min_call_args = len(args)
+            if defaults:
+                min_call_args -= len(defaults)
+            if varargs:
+                max_call_args = 999999999
+                if len(args) < len(my_args):
+                    args += [varargs] * (len(my_args) - len(args))
+            else:
+                max_call_args = len(args)
+            if not min_call_args <= len(my_args) <= max_call_args:
+                return False
+            for my_arg_type, name in zip(my_args, args):
+                if name in annotations:
+                    annot_type = _type_check(annotations[name], msg)
+                else:
+                    annot_type = Any
+                if not issubclass(my_arg_type, annot_type):
+                    return False
+                # TODO: If mutable type, check invariance?
+        if 'return' in annotations:
+            annot_return_type = _type_check(annotations['return'], msg)
+            # Note contravariance here!
+            if not issubclass(annot_return_type, my_result):
+                return False
+        # Can't find anything wrong...
+        return True
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if not isinstance(cls, CallableMeta):
+            return super().__subclasscheck__(cls)
+        if self.__args__ is None and self.__result__ is None:
+            return True
+        # We're not doing covariance or contravariance -- this is *invariance*.
+        return self == cls
+
+
+class Callable(Final, metaclass=CallableMeta, _root=True):
+    """Callable type; Callable[[int], str] is a function of (int) -> str.
+
+    The subscription syntax must always be used with exactly two
+    values: the argument list and the return type.  The argument list
+    must be a list of types; the return type must be a single type.
+
+    There is no syntax to indicate optional or keyword arguments,
+    such function types are rarely used as callback types.
+    """
+
+
+def _gorg(a):
+    """Return the farthest origin of a generic class."""
+    assert isinstance(a, GenericMeta)
+    while a.__origin__ is not None:
+        a = a.__origin__
+    return a
+
+
+def _geqv(a, b):
+    """Return whether two generic classes are equivalent.
+
+    The intention is to consider generic class X and any of its
+    parameterized forms (X[T], X[int], etc.)  as equivalent.
+
+    However, X is not equivalent to a subclass of X.
+
+    The relation is reflexive, symmetric and transitive.
+    """
+    assert isinstance(a, GenericMeta) and isinstance(b, GenericMeta)
+    # Reduce each to its origin.
+    return _gorg(a) is _gorg(b)
+
+
+class GenericMeta(TypingMeta, abc.ABCMeta):
+    """Metaclass for generic types."""
+
+    # TODO: Constrain more how Generic is used; only a few
+    # standard patterns should be allowed.
+
+    # TODO: Use a more precise rule than matching __name__ to decide
+    # whether two classes are the same.  Also, save the formal
+    # parameters.  (These things are related!  A solution lies in
+    # using origin.)
+
+    __extra__ = None
+
+    def __new__(cls, name, bases, namespace,
+                parameters=None, origin=None, extra=None):
+        if parameters is None:
+            # Extract parameters from direct base classes.  Only
+            # direct bases are considered and only those that are
+            # themselves generic, and parameterized with type
+            # variables.  Don't use bases like Any, Union, Tuple,
+            # Callable or type variables.
+            params = None
+            for base in bases:
+                if isinstance(base, TypingMeta):
+                    if not isinstance(base, GenericMeta):
+                        raise TypeError(
+                            "You cannot inherit from magic class %s" %
+                            repr(base))
+                    if base.__parameters__ is None:
+                        continue  # The base is unparameterized.
+                    for bp in base.__parameters__:
+                        if _has_type_var(bp) and not isinstance(bp, TypeVar):
+                            raise TypeError(
+                                "Cannot inherit from a generic class "
+                                "parameterized with "
+                                "non-type-variable %s" % bp)
+                        if params is None:
+                            params = []
+                        if bp not in params:
+                            params.append(bp)
+            if params is not None:
+                parameters = tuple(params)
+        self = super().__new__(cls, name, bases, namespace, _root=True)
+        self.__parameters__ = parameters
+        if extra is not None:
+            self.__extra__ = extra
+        # Else __extra__ is inherited, eventually from the
+        # (meta-)class default above.
+        self.__origin__ = origin
+        return self
+
+    def _has_type_var(self):
+        if self.__parameters__:
+            for t in self.__parameters__:
+                if _has_type_var(t):
+                    return True
+        return False
+
+    def __repr__(self):
+        r = super().__repr__()
+        if self.__parameters__ is not None:
+            r += '[%s]' % (
+                ', '.join(_type_repr(p) for p in self.__parameters__))
+        return r
+
+    def __eq__(self, other):
+        if not isinstance(other, GenericMeta):
+            return NotImplemented
+        return (_geqv(self, other) and
+                self.__parameters__ == other.__parameters__)
+
+    def __hash__(self):
+        return hash((self.__name__, self.__parameters__))
+
+    def __getitem__(self, params):
+        if not isinstance(params, tuple):
+            params = (params,)
+        if not params:
+            raise TypeError("Cannot have empty parameter list")
+        msg = "Parameters to generic types must be types."
+        params = tuple(_type_check(p, msg) for p in params)
+        if self.__parameters__ is None:
+            for p in params:
+                if not isinstance(p, TypeVar):
+                    raise TypeError("Initial parameters must be "
+                                    "type variables; got %s" % p)
+        else:
+            if len(params) != len(self.__parameters__):
+                raise TypeError("Cannot change parameter count from %d to %d" %
+                                (len(self.__parameters__), len(params)))
+            for new, old in zip(params, self.__parameters__):
+                if isinstance(old, TypeVar):
+                    if not old.__constraints__:
+                        # Substituting for an unconstrained TypeVar is OK.
+                        continue
+                    if issubclass(new, Union[old.__constraints__]):
+                        # Specializing a constrained type variable is OK.
+                        continue
+                if not issubclass(new, old):
+                    raise TypeError(
+                        "Cannot substitute %s for %s in %s" %
+                        (_type_repr(new), _type_repr(old), self))
+
+        return self.__class__(self.__name__, self.__bases__,
+                              dict(self.__dict__),
+                              parameters=params,
+                              origin=self,
+                              extra=self.__extra__)
+
+    def __subclasscheck__(self, cls):
+        if cls is Any:
+            return True
+        if isinstance(cls, GenericMeta):
+            # For a class C(Generic[T]) where T is co-variant,
+            # C[X] is a subclass of C[Y] iff X is a subclass of Y.
+            origin = self.__origin__
+            if origin is not None and origin is cls.__origin__:
+                assert len(self.__parameters__) == len(origin.__parameters__)
+                assert len(cls.__parameters__) == len(origin.__parameters__)
+                for p_self, p_cls, p_origin in zip(self.__parameters__,
+                                                   cls.__parameters__,
+                                                   origin.__parameters__):
+                    if isinstance(p_origin, TypeVar):
+                        if p_origin.__covariant__:
+                            # Covariant -- p_cls must be a subclass of p_self.
+                            if not issubclass(p_cls, p_self):
+                                break
+                        elif p_origin.__contravariant__:
+                            # Contravariant.  I think it's the opposite. :-)
+                            if not issubclass(p_self, p_cls):
+                                break
+                        else:
+                            # Invariant -- p_cls and p_self must equal.
+                            if p_self != p_cls:
+                                break
+                    else:
+                        # If the origin's parameter is not a typevar,
+                        # insist on invariance.
+                        if p_self != p_cls:
+                            break
+                else:
+                    return True
+                # If we break out of the loop, the superclass gets a chance.
+        if super().__subclasscheck__(cls):
+            return True
+        if self.__extra__ is None or isinstance(cls, GenericMeta):
+            return False
+        return issubclass(cls, self.__extra__)
+
+    def __instancecheck__(self, obj):
+        if super().__instancecheck__(obj):
+            return True
+        if self.__extra__ is None:
+            return False
+        return isinstance(obj, self.__extra__)
+
+
+class Generic(metaclass=GenericMeta):
+    """Abstract base class for generic types.
+
+    A generic type is typically declared by inheriting from an
+    instantiation of this class with one or more type variables.
+    For example, a generic mapping type might be defined as::
+
+      class Mapping(Generic[KT, VT]):
+          def __getitem__(self, key: KT) -> VT:
+              ...
+          # Etc.
+
+    This class can then be used as follows::
+
+      def lookup_name(mapping: Mapping, key: KT, default: VT) -> VT:
+          try:
+              return mapping[key]
+          except KeyError:
+              return default
+
+    For clarity the type variables may be redefined, e.g.::
+
+      X = TypeVar('X')
+      Y = TypeVar('Y')
+      def lookup_name(mapping: Mapping[X, Y], key: X, default: Y) -> Y:
+          # Same body as above.
+    """
+
+    def __new__(cls, *args, **kwds):
+        next_in_mro = object
+        # Look for the last occurrence of Generic or Generic[...].
+        for i, c in enumerate(cls.__mro__[:-1]):
+            if isinstance(c, GenericMeta) and _gorg(c) is Generic:
+                next_in_mro = cls.__mro__[i+1]
+        return next_in_mro.__new__(_gorg(cls))
+
+
+def cast(typ, val):
+    """Cast a value to a type.
+
+    This returns the value unchanged.  To the type checker this
+    signals that the return value has the designated type, but at
+    runtime we intentionally don't check anything (we want this
+    to be as fast as possible).
+    """
+    return val
+
+
+def _get_defaults(func):
+    """Internal helper to extract the default arguments, by name."""
+    code = func.__code__
+    pos_count = code.co_argcount
+    kw_count = code.co_kwonlyargcount
+    arg_names = code.co_varnames
+    kwarg_names = arg_names[pos_count:pos_count + kw_count]
+    arg_names = arg_names[:pos_count]
+    defaults = func.__defaults__ or ()
+    kwdefaults = func.__kwdefaults__
+    res = dict(kwdefaults) if kwdefaults else {}
+    pos_offset = pos_count - len(defaults)
+    for name, value in zip(arg_names[pos_offset:], defaults):
+        assert name not in res
+        res[name] = value
+    return res
+
+
+def get_type_hints(obj, globalns=None, localns=None):
+    """Return type hints for a function or method object.
+
+    This is often the same as obj.__annotations__, but it handles
+    forward references encoded as string literals, and if necessary
+    adds Optional[t] if a default value equal to None is set.
+
+    BEWARE -- the behavior of globalns and localns is counterintuitive
+    (unless you are familiar with how eval() and exec() work).  The
+    search order is locals first, then globals.
+
+    - If no dict arguments are passed, an attempt is made to use the
+      globals from obj, and these are also used as the locals.  If the
+      object does not appear to have globals, an exception is raised.
+
+    - If one dict argument is passed, it is used for both globals and
+      locals.
+
+    - If two dict arguments are passed, they specify globals and
+      locals, respectively.
+    """
+    if getattr(obj, '__no_type_check__', None):
+        return {}
+    if globalns is None:
+        globalns = getattr(obj, '__globals__', {})
+        if localns is None:
+            localns = globalns
+    elif localns is None:
+        localns = globalns
+    defaults = _get_defaults(obj)
+    hints = dict(obj.__annotations__)
+    for name, value in hints.items():
+        if isinstance(value, str):
+            value = _ForwardRef(value)
+        value = _eval_type(value, globalns, localns)
+        if name in defaults and defaults[name] is None:
+            value = Optional[value]
+        hints[name] = value
+    return hints
+
+
+# TODO: Also support this as a class decorator.
+def no_type_check(arg):
+    """Decorator to indicate that annotations are not type hints.
+
+    The argument must be a class or function; if it is a class, it
+    applies recursively to all methods defined in that class (but not
+    to methods defined in its superclasses or subclasses).
+
+    This mutates the function(s) in place.
+    """
+    if isinstance(arg, type):
+        for obj in arg.__dict__.values():
+            if isinstance(obj, types.FunctionType):
+                obj.__no_type_check__ = True
+    else:
+        arg.__no_type_check__ = True
+    return arg
+
+
+def no_type_check_decorator(decorator):
+    """Decorator to give another decorator the @no_type_check effect.
+
+    This wraps the decorator with something that wraps the decorated
+    function in @no_type_check.
+    """
+
+    @functools.wraps(decorator)
+    def wrapped_decorator(*args, **kwds):
+        func = decorator(*args, **kwds)
+        func = no_type_check(func)
+        return func
+
+    return wrapped_decorator
+
+
+def overload(func):
+    raise RuntimeError("Overloading is only supported in library stubs")
+
+
+class _ProtocolMeta(GenericMeta):
+    """Internal metaclass for _Protocol.
+
+    This exists so _Protocol classes can be generic without deriving
+    from Generic.
+    """
+
+    def __subclasscheck__(self, cls):
+        if not self._is_protocol:
+            # No structural checks since this isn't a protocol.
+            return NotImplemented
+
+        if self is _Protocol:
+            # Every class is a subclass of the empty protocol.
+            return True
+
+        # Find all attributes defined in the protocol.
+        attrs = self._get_protocol_attrs()
+
+        for attr in attrs:
+            if not any(attr in d.__dict__ for d in cls.__mro__):
+                return False
+        return True
+
+    def _get_protocol_attrs(self):
+        # Get all Protocol base classes.
+        protocol_bases = []
+        for c in self.__mro__:
+            if getattr(c, '_is_protocol', False) and c.__name__ != '_Protocol':
+                protocol_bases.append(c)
+
+        # Get attributes included in protocol.
+        attrs = set()
+        for base in protocol_bases:
+            for attr in base.__dict__.keys():
+                # Include attributes not defined in any non-protocol bases.
+                for c in self.__mro__:
+                    if (c is not base and attr in c.__dict__ and
+                            not getattr(c, '_is_protocol', False)):
+                        break
+                else:
+                    if (not attr.startswith('_abc_') and
+                        attr != '__abstractmethods__' and
+                        attr != '_is_protocol' and
+                        attr != '__dict__' and
+                        attr != '_get_protocol_attrs' and
+                        attr != '__parameters__' and
+                        attr != '__origin__' and
+                        attr != '__module__'):
+                        attrs.add(attr)
+
+        return attrs
+
+
+class _Protocol(metaclass=_ProtocolMeta):
+    """Internal base class for protocol classes.
+
+    This implements a simple-minded structural isinstance check
+    (similar but more general than the one-offs in collections.abc
+    such as Hashable).
+    """
+
+    _is_protocol = True
+
+
+# Various ABCs mimicking those in collections.abc.
+# A few are simply re-exported for completeness.
+
+Hashable = collections_abc.Hashable  # Not generic.
+
+
+class Iterable(Generic[T_co], extra=collections_abc.Iterable):
+    pass
+
+
+class Iterator(Iterable[T_co], extra=collections_abc.Iterator):
+    pass
+
+
+class SupportsInt(_Protocol):
+
+    @abstractmethod
+    def __int__(self) -> int:
+        pass
+
+
+class SupportsFloat(_Protocol):
+
+    @abstractmethod
+    def __float__(self) -> float:
+        pass
+
+
+class SupportsComplex(_Protocol):
+
+    @abstractmethod
+    def __complex__(self) -> complex:
+        pass
+
+
+class SupportsBytes(_Protocol):
+
+    @abstractmethod
+    def __bytes__(self) -> bytes:
+        pass
+
+
+class SupportsAbs(_Protocol[T]):
+
+    @abstractmethod
+    def __abs__(self) -> T:
+        pass
+
+
+class SupportsRound(_Protocol[T]):
+
+    @abstractmethod
+    def __round__(self, ndigits: int = 0) -> T:
+        pass
+
+
+class Reversible(_Protocol[T]):
+
+    @abstractmethod
+    def __reversed__(self) -> 'Iterator[T]':
+        pass
+
+
+Sized = collections_abc.Sized  # Not generic.
+
+
+class Container(Generic[T_co], extra=collections_abc.Container):
+    pass
+
+
+# Callable was defined earlier.
+
+
+class AbstractSet(Sized, Iterable[T_co], Container[T_co],
+                  extra=collections_abc.Set):
+    pass
+
+
+class MutableSet(AbstractSet[T], extra=collections_abc.MutableSet):
+    pass
+
+
+class Mapping(Sized, Iterable[KT_co], Container[KT_co], Generic[KT_co, VT_co],
+              extra=collections_abc.Mapping):
+    pass
+
+
+class MutableMapping(Mapping[KT, VT], extra=collections_abc.MutableMapping):
+    pass
+
+
+class Sequence(Sized, Iterable[T_co], Container[T_co],
+               extra=collections_abc.Sequence):
+    pass
+
+
+class MutableSequence(Sequence[T], extra=collections_abc.MutableSequence):
+    pass
+
+
+class ByteString(Sequence[int], extra=collections_abc.ByteString):
+    pass
+
+
+ByteString.register(type(memoryview(b'')))
+
+
+class _ListMeta(GenericMeta):
+
+    def __instancecheck__(self, obj):
+        if not super().__instancecheck__(obj):
+            return False
+        itemtype = self.__parameters__[0]
+        for x in obj:
+            if not isinstance(x, itemtype):
+                return False
+        return True
+
+
+class List(list, MutableSequence[T], metaclass=_ListMeta):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, List):
+            raise TypeError("Type List cannot be instantiated; "
+                            "use list() instead")
+        return list.__new__(cls, *args, **kwds)
+
+
+class _SetMeta(GenericMeta):
+
+    def __instancecheck__(self, obj):
+        if not super().__instancecheck__(obj):
+            return False
+        itemtype = self.__parameters__[0]
+        for x in obj:
+            if not isinstance(x, itemtype):
+                return False
+        return True
+
+
+class Set(set, MutableSet[T], metaclass=_SetMeta):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Set):
+            raise TypeError("Type Set cannot be instantiated; "
+                            "use set() instead")
+        return set.__new__(cls, *args, **kwds)
+
+
+class _FrozenSetMeta(_SetMeta):
+    """This metaclass ensures set is not a subclass of FrozenSet.
+
+    Without this metaclass, set would be considered a subclass of
+    FrozenSet, because FrozenSet.__extra__ is collections.abc.Set, and
+    set is a subclass of that.
+    """
+
+    def __subclasscheck__(self, cls):
+        if issubclass(cls, Set):
+            return False
+        return super().__subclasscheck__(cls)
+
+    def __instancecheck__(self, obj):
+        if issubclass(obj.__class__, Set):
+            return False
+        return super().__instancecheck__(obj)
+
+
+class FrozenSet(frozenset, AbstractSet[T_co], metaclass=_FrozenSetMeta):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, FrozenSet):
+            raise TypeError("Type FrozenSet cannot be instantiated; "
+                            "use frozenset() instead")
+        return frozenset.__new__(cls, *args, **kwds)
+
+
+class MappingView(Sized, Iterable[T_co], extra=collections_abc.MappingView):
+    pass
+
+
+class KeysView(MappingView[KT_co], AbstractSet[KT_co],
+               extra=collections_abc.KeysView):
+    pass
+
+
+# TODO: Enable Set[Tuple[KT_co, VT_co]] instead of Generic[KT_co, VT_co].
+class ItemsView(MappingView, Generic[KT_co, VT_co],
+                extra=collections_abc.ItemsView):
+    pass
+
+
+class ValuesView(MappingView[VT_co], extra=collections_abc.ValuesView):
+    pass
+
+
+class _DictMeta(GenericMeta):
+
+    def __instancecheck__(self, obj):
+        if not super().__instancecheck__(obj):
+            return False
+        keytype, valuetype = self.__parameters__
+        for key, value in obj.items():
+            if not (isinstance(key, keytype) and
+                    isinstance(value, valuetype)):
+                return False
+        return True
+
+
+class Dict(dict, MutableMapping[KT, VT], metaclass=_DictMeta):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Dict):
+            raise TypeError("Type Dict cannot be instantiated; "
+                            "use dict() instead")
+        return dict.__new__(cls, *args, **kwds)
+
+
+# Determine what base class to use for Generator.
+if hasattr(collections_abc, 'Generator'):
+    # Sufficiently recent versions of 3.5 have a Generator ABC.
+    _G_base = collections_abc.Generator
+else:
+    # Fall back on the exact type.
+    _G_base = types.GeneratorType
+
+
+class Generator(Iterator[T_co], Generic[T_co, T_contra, V_co],
+                extra=_G_base):
+
+    def __new__(cls, *args, **kwds):
+        if _geqv(cls, Generator):
+            raise TypeError("Type Generator cannot be instantiated; "
+                            "create a subclass instead")
+        return super().__new__(cls, *args, **kwds)
+
+
+def NamedTuple(typename, fields):
+    """Typed version of namedtuple.
+
+    Usage::
+
+        Employee = typing.NamedTuple('Employee', [('name', str), 'id', int)])
+
+    This is equivalent to::
+
+        Employee = collections.namedtuple('Employee', ['name', 'id'])
+
+    The resulting class has one extra attribute: _field_types,
+    giving a dict mapping field names to types.  (The field names
+    are in the _fields attribute, which is part of the namedtuple
+    API.)
+    """
+    fields = [(n, t) for n, t in fields]
+    cls = collections.namedtuple(typename, [n for n, t in fields])
+    cls._field_types = dict(fields)
+    return cls
+
+
+class IO(Generic[AnyStr]):
+    """Generic base class for TextIO and BinaryIO.
+
+    This is an abstract, generic version of the return of open().
+
+    NOTE: This does not distinguish between the different possible
+    classes (text vs. binary, read vs. write vs. read/write,
+    append-only, unbuffered).  The TextIO and BinaryIO subclasses
+    below capture the distinctions between text vs. binary, which is
+    pervasive in the interface; however we currently do not offer a
+    way to track the other distinctions in the type system.
+    """
+
+    @abstractproperty
+    def mode(self) -> str:
+        pass
+
+    @abstractproperty
+    def name(self) -> str:
+        pass
+
+    @abstractmethod
+    def close(self) -> None:
+        pass
+
+    @abstractmethod
+    def closed(self) -> bool:
+        pass
+
+    @abstractmethod
+    def fileno(self) -> int:
+        pass
+
+    @abstractmethod
+    def flush(self) -> None:
+        pass
+
+    @abstractmethod
+    def isatty(self) -> bool:
+        pass
+
+    @abstractmethod
+    def read(self, n: int = -1) -> AnyStr:
+        pass
+
+    @abstractmethod
+    def readable(self) -> bool:
+        pass
+
+    @abstractmethod
+    def readline(self, limit: int = -1) -> AnyStr:
+        pass
+
+    @abstractmethod
+    def readlines(self, hint: int = -1) -> List[AnyStr]:
+        pass
+
+    @abstractmethod
+    def seek(self, offset: int, whence: int = 0) -> int:
+        pass
+
+    @abstractmethod
+    def seekable(self) -> bool:
+        pass
+
+    @abstractmethod
+    def tell(self) -> int:
+        pass
+
+    @abstractmethod
+    def truncate(self, size: int = None) -> int:
+        pass
+
+    @abstractmethod
+    def writable(self) -> bool:
+        pass
+
+    @abstractmethod
+    def write(self, s: AnyStr) -> int:
+        pass
+
+    @abstractmethod
+    def writelines(self, lines: List[AnyStr]) -> None:
+        pass
+
+    @abstractmethod
+    def __enter__(self) -> 'IO[AnyStr]':
+        pass
+
+    @abstractmethod
+    def __exit__(self, type, value, traceback) -> None:
+        pass
+
+
+class BinaryIO(IO[bytes]):
+    """Typed version of the return of open() in binary mode."""
+
+    @abstractmethod
+    def write(self, s: Union[bytes, bytearray]) -> int:
+        pass
+
+    @abstractmethod
+    def __enter__(self) -> 'BinaryIO':
+        pass
+
+
+class TextIO(IO[str]):
+    """Typed version of the return of open() in text mode."""
+
+    @abstractproperty
+    def buffer(self) -> BinaryIO:
+        pass
+
+    @abstractproperty
+    def encoding(self) -> str:
+        pass
+
+    @abstractproperty
+    def errors(self) -> str:
+        pass
+
+    @abstractproperty
+    def line_buffering(self) -> bool:
+        pass
+
+    @abstractproperty
+    def newlines(self) -> Any:
+        pass
+
+    @abstractmethod
+    def __enter__(self) -> 'TextIO':
+        pass
+
+
+class io:
+    """Wrapper namespace for IO generic classes."""
+
+    __all__ = ['IO', 'TextIO', 'BinaryIO']
+    IO = IO
+    TextIO = TextIO
+    BinaryIO = BinaryIO
+
+io.__name__ = __name__ + '.io'
+sys.modules[io.__name__] = io
+
+
+Pattern = _TypeAlias('Pattern', AnyStr, type(stdlib_re.compile('')),
+                     lambda p: p.pattern)
+Match = _TypeAlias('Match', AnyStr, type(stdlib_re.match('', '')),
+                   lambda m: m.re.pattern)
+
+
+class re:
+    """Wrapper namespace for re type aliases."""
+
+    __all__ = ['Pattern', 'Match']
+    Pattern = Pattern
+    Match = Match
+
+re.__name__ = __name__ + '.re'
+sys.modules[re.__name__] = re
diff --git a/Misc/NEWS b/Misc/NEWS
--- a/Misc/NEWS
+++ b/Misc/NEWS
@@ -58,6 +58,8 @@
 Library
 -------
 
+- Issue #23973: PEP 484: Add the typing module.
+
 - Issue #20035: Replaced the ``tkinter._fix`` module used for setting up the
   Tcl/Tk environment on Windows with a private function in the ``_tkinter``
   module that makes no permanent changes to the environment.

-- 
Repository URL: https://hg.python.org/cpython


More information about the Python-checkins mailing list