[Python-checkins] cpython: Issue27181 add geometric mean.

steven.daprano python-checkins at python.org
Tue Aug 9 00:18:49 EDT 2016


https://hg.python.org/cpython/rev/9eb5edfcf604
changeset:   102577:9eb5edfcf604
user:        Steven D'Aprano <steve at pearwood.info>
date:        Tue Aug 09 13:58:10 2016 +1000
summary:
  Issue27181 add geometric mean.

files:
  Lib/statistics.py           |  267 ++++++++++++++++++++++
  Lib/test/test_statistics.py |  285 ++++++++++++++++++++++++
  2 files changed, 552 insertions(+), 0 deletions(-)


diff --git a/Lib/statistics.py b/Lib/statistics.py
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -303,6 +303,230 @@
         yield x
 
 
+class _nroot_NS:
+    """Hands off! Don't touch!
+
+    Everything inside this namespace (class) is an even-more-private
+    implementation detail of the private _nth_root function.
+    """
+    # This class exists only to be used as a namespace, for convenience
+    # of being able to keep the related functions together, and to
+    # collapse the group in an editor. If this were C# or C++, I would
+    # use a Namespace, but the closest Python has is a class.
+    #
+    # FIXME possibly move this out into a separate module?
+    # That feels like overkill, and may encourage people to treat it as
+    # a public feature.
+    def __init__(self):
+        raise TypeError('namespace only, do not instantiate')
+
+    def nth_root(x, n):
+        """Return the positive nth root of numeric x.
+
+        This may be more accurate than ** or pow():
+
+        >>> math.pow(1000, 1.0/3)  #doctest:+SKIP
+        9.999999999999998
+
+        >>> _nth_root(1000, 3)
+        10.0
+        >>> _nth_root(11**5, 5)
+        11.0
+        >>> _nth_root(2, 12)
+        1.0594630943592953
+
+        """
+        if not isinstance(n, int):
+            raise TypeError('degree n must be an int')
+        if n < 2:
+            raise ValueError('degree n must be 2 or more')
+        if isinstance(x, decimal.Decimal):
+            return _nroot_NS.decimal_nroot(x, n)
+        elif isinstance(x, numbers.Real):
+            return _nroot_NS.float_nroot(x, n)
+        else:
+            raise TypeError('expected a number, got %s') % type(x).__name__
+
+    def float_nroot(x, n):
+        """Handle nth root of Reals, treated as a float."""
+        assert isinstance(n, int) and n > 1
+        if x < 0:
+            if n%2 == 0:
+                raise ValueError('domain error: even root of negative number')
+            else:
+                return -_nroot_NS.nroot(-x, n)
+        elif x == 0:
+            return math.copysign(0.0, x)
+        elif x > 0:
+            try:
+                isinfinity = math.isinf(x)
+            except OverflowError:
+                return _nroot_NS.bignum_nroot(x, n)
+            else:
+                if isinfinity:
+                    return float('inf')
+                else:
+                    return _nroot_NS.nroot(x, n)
+        else:
+            assert math.isnan(x)
+            return float('nan')
+
+    def nroot(x, n):
+        """Calculate x**(1/n), then improve the answer."""
+        # This uses math.pow() to calculate an initial guess for the root,
+        # then uses the iterated nroot algorithm to improve it.
+        #
+        # By my testing, about 8% of the time the iterated algorithm ends
+        # up converging to a result which is less accurate than the initial
+        # guess. [FIXME: is this still true?] In that case, we use the
+        # guess instead of the "improved" value. This way, we're never
+        # less accurate than math.pow().
+        r1 = math.pow(x, 1.0/n)
+        eps1 = abs(r1**n - x)
+        if eps1 == 0.0:
+            # r1 is the exact root, so we're done. By my testing, this
+            # occurs about 80% of the time for x < 1 and 30% of the
+            # time for x > 1.
+            return r1
+        else:
+            try:
+                r2 = _nroot_NS.iterated_nroot(x, n, r1)
+            except RuntimeError:
+                return r1
+            else:
+                eps2 = abs(r2**n - x)
+                if eps1 < eps2:
+                    return r1
+                return r2
+
+    def iterated_nroot(a, n, g):
+        """Return the nth root of a, starting with guess g.
+
+        This is a special case of Newton's Method.
+        https://en.wikipedia.org/wiki/Nth_root_algorithm
+        """
+        np = n - 1
+        def iterate(r):
+            try:
+                return (np*r + a/math.pow(r, np))/n
+            except OverflowError:
+                # If r is large enough, r**np may overflow. If that
+                # happens, r**-np will be small, but not necessarily zero.
+                return (np*r + a*math.pow(r, -np))/n
+        # With a good guess, such as g = a**(1/n), this will converge in
+        # only a few iterations. However a poor guess can take thousands
+        # of iterations to converge, if at all. We guard against poor
+        # guesses by setting an upper limit to the number of iterations.
+        r1 = g
+        r2 = iterate(g)
+        for i in range(1000):
+            if r1 == r2:
+                break
+            # Use Floyd's cycle-finding algorithm to avoid being trapped
+            # in a cycle.
+            # https://en.wikipedia.org/wiki/Cycle_detection#Tortoise_and_hare
+            r1 = iterate(r1)
+            r2 = iterate(iterate(r2))
+        else:
+            # If the guess is particularly bad, the above may fail to
+            # converge in any reasonable time.
+            raise RuntimeError('nth-root failed to converge')
+        return r2
+
+    def decimal_nroot(x, n):
+        """Handle nth root of Decimals."""
+        assert isinstance(x, decimal.Decimal)
+        assert isinstance(n, int)
+        if x.is_snan():
+            # Signalling NANs always raise.
+            raise decimal.InvalidOperation('nth-root of snan')
+        if x.is_qnan():
+            # Quiet NANs only raise if the context is set to raise,
+            # otherwise return a NAN.
+            ctx = decimal.getcontext()
+            if ctx.traps[decimal.InvalidOperation]:
+                raise decimal.InvalidOperation('nth-root of nan')
+            else:
+                # Preserve the input NAN.
+                return x
+        if x.is_infinite():
+            return x
+        # FIXME this hasn't had the extensive testing of the float
+        # version _iterated_nroot so there's possibly some buggy
+        # corner cases buried in here. Can it overflow? Fail to
+        # converge or get trapped in a cycle? Converge to a less
+        # accurate root?
+        np = n - 1
+        def iterate(r):
+            return (np*r + x/r**np)/n
+        r0 = x**(decimal.Decimal(1)/n)
+        assert isinstance(r0, decimal.Decimal)
+        r1 = iterate(r0)
+        while True:
+            if r1 == r0:
+                return r1
+            r0, r1 = r1, iterate(r1)
+
+    def bignum_nroot(x, n):
+        """Return the nth root of a positive huge number."""
+        assert x > 0
+        # I state without proof that ⁿ√x ≈ ⁿ√2·ⁿ√(x//2)
+        # and that for sufficiently big x the error is acceptible.
+        # We now halve x until it is small enough to get the root.
+        m = 0
+        while True:
+            x //= 2
+            m += 1
+            try:
+                y = float(x)
+            except OverflowError:
+                continue
+            break
+        a = _nroot_NS.nroot(y, n)
+        # At this point, we want the nth-root of 2**m, or 2**(m/n).
+        # We can write that as 2**(q + r/n) = 2**q * ⁿ√2**r where q = m//n.
+        q, r = divmod(m, n)
+        b = 2**q * _nroot_NS.nroot(2**r, n)
+        return a * b
+
+
+# This is the (private) function for calculating nth roots:
+_nth_root = _nroot_NS.nth_root
+assert type(_nth_root) is type(lambda: None)
+
+
+def _product(values):
+    """Return product of values as (exponent, mantissa)."""
+    errmsg = 'mixed Decimal and float is not supported'
+    prod = 1
+    for x in values:
+        if isinstance(x, float):
+            break
+        prod *= x
+    else:
+        return (0, prod)
+    if isinstance(prod, Decimal):
+        raise TypeError(errmsg)
+    # Since floats can overflow easily, we calculate the product as a
+    # sort of poor-man's BigFloat. Given that:
+    #
+    #   x = 2**p * m  # p == power or exponent (scale), m = mantissa
+    #
+    # we can calculate the product of two (or more) x values as:
+    #
+    #   x1*x2 = 2**p1*m1 * 2**p2*m2 = 2**(p1+p2)*(m1*m2)
+    #
+    mant, scale = 1, 0  #math.frexp(prod)  # FIXME
+    for y in chain([x], values):
+        if isinstance(y, Decimal):
+            raise TypeError(errmsg)
+        m1, e1 = math.frexp(y)
+        m2, e2 = math.frexp(mant)
+        scale += (e1 + e2)
+        mant = m1*m2
+    return (scale, mant)
+
+
 # === Measures of central tendency (averages) ===
 
 def mean(data):
@@ -331,6 +555,49 @@
     return _convert(total/n, T)
 
 
+def geometric_mean(data):
+    """Return the geometric mean of data.
+
+    The geometric mean is appropriate when averaging quantities which
+    are multiplied together rather than added, for example growth rates.
+    Suppose an investment grows by 10% in the first year, falls by 5% in
+    the second, then grows by 12% in the third, what is the average rate
+    of growth over the three years?
+
+    >>> geometric_mean([1.10, 0.95, 1.12])
+    1.0538483123382172
+
+    giving an average growth of 5.385%. Using the arithmetic mean will
+    give approximately 5.667%, which is too high.
+
+    ``StatisticsError`` will be raised if ``data`` is empty, or any
+    element is less than zero.
+    """
+    if iter(data) is data:
+        data = list(data)
+    errmsg = 'geometric mean does not support negative values'
+    n = len(data)
+    if n < 1:
+        raise StatisticsError('geometric_mean requires at least one data point')
+    elif n == 1:
+        x = data[0]
+        if isinstance(g, (numbers.Real, Decimal)):
+            if x < 0:
+                raise StatisticsError(errmsg)
+            return x
+        else:
+            raise TypeError('unsupported type')
+    else:
+        scale, prod = _product(_fail_neg(data, errmsg))
+        r = _nth_root(prod, n)
+        if scale:
+            p, q = divmod(scale, n)
+            s = 2**p * _nth_root(2**q, n)
+        else:
+            s = 1
+        return s*r
+
+
 def harmonic_mean(data):
     """Return the harmonic mean of data.
 
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -1010,6 +1010,291 @@
         self.assertEqual(errmsg, msg)
 
 
+class Test_Product(NumericTestCase):
+    """Test the private _product function."""
+
+    def test_ints(self):
+        data = [1, 2, 5, 7, 9]
+        self.assertEqual(statistics._product(data), (0, 630))
+        self.assertEqual(statistics._product(data*100), (0, 630**100))
+
+    def test_floats(self):
+        data = [1.0, 2.0, 4.0, 8.0]
+        self.assertEqual(statistics._product(data), (8, 0.25))
+
+    def test_overflow(self):
+        # Test with floats that overflow.
+        data = [1e300]*5
+        self.assertEqual(statistics._product(data), (5980, 0.6928287951283193))
+
+    def test_fractions(self):
+        F = Fraction
+        data = [F(14, 23), F(69, 1), F(665, 529), F(299, 105), F(1683, 39)]
+        exp, mant = statistics._product(data)
+        self.assertEqual(exp, 0)
+        self.assertEqual(mant, F(2*3*7*11*17*19, 23))
+        self.assertTrue(isinstance(mant, F))
+        # Mixed Fraction and int.
+        data = [3, 25, F(2, 15)]
+        exp, mant = statistics._product(data)
+        self.assertEqual(exp, 0)
+        self.assertEqual(mant, F(10))
+        self.assertTrue(isinstance(mant, F))
+
+    @unittest.expectedFailure
+    def test_decimal(self):
+        D = Decimal
+        data = [D('24.5'), D('17.6'), D('0.025'), D('1.3')]
+        assert False
+
+    def test_mixed_decimal_float(self):
+        # Test that mixed Decimal and float raises.
+        self.assertRaises(TypeError, statistics._product, [1.0, Decimal(1)])
+        self.assertRaises(TypeError, statistics._product, [Decimal(1), 1.0])
+
+
+class Test_Nth_Root(NumericTestCase):
+    """Test the functionality of the private _nth_root function."""
+
+    def setUp(self):
+        self.nroot = statistics._nth_root
+
+    # --- Special values (infinities, NANs, zeroes) ---
+
+    def test_float_NAN(self):
+        # Test that the root of a float NAN is a float NAN.
+        NAN = float('nan')
+        for n in range(2, 9):
+            with self.subTest(n=n):
+                result = self.nroot(NAN, n)
+                self.assertTrue(math.isnan(result))
+
+    def test_decimal_QNAN(self):
+        # Test the  behaviour when taking the root of a Decimal quiet NAN.
+        NAN = decimal.Decimal('nan')
+        with decimal.localcontext() as ctx:
+            ctx.traps[decimal.InvalidOperation] = 1
+            self.assertRaises(decimal.InvalidOperation, self.nroot, NAN, 5)
+            ctx.traps[decimal.InvalidOperation] = 0
+            self.assertTrue(self.nroot(NAN, 5).is_qnan())
+
+    def test_decimal_SNAN(self):
+        # Test that taking the root of a Decimal sNAN always raises.
+        sNAN = decimal.Decimal('snan')
+        with decimal.localcontext() as ctx:
+            ctx.traps[decimal.InvalidOperation] = 1
+            self.assertRaises(decimal.InvalidOperation, self.nroot, sNAN, 5)
+            ctx.traps[decimal.InvalidOperation] = 0
+            self.assertRaises(decimal.InvalidOperation, self.nroot, sNAN, 5)
+
+    def test_inf(self):
+        # Test that the root of infinity is infinity.
+        for INF in (float('inf'), decimal.Decimal('inf')):
+            for n in range(2, 9):
+                with self.subTest(n=n, inf=INF):
+                    self.assertEqual(self.nroot(INF, n), INF)
+
+    def testNInf(self):
+        # Test that the root of -inf is -inf for odd n.
+        for NINF in (float('-inf'), decimal.Decimal('-inf')):
+            for n in range(3, 11, 2):
+                with self.subTest(n=n, inf=NINF):
+                    self.assertEqual(self.nroot(NINF, n), NINF)
+
+    # FIXME: need to check Decimal zeroes too.
+    def test_zero(self):
+        # Test that the root of +0.0 is +0.0.
+        for n in range(2, 11):
+            with self.subTest(n=n):
+                result = self.nroot(+0.0, n)
+                self.assertEqual(result, 0.0)
+                self.assertEqual(sign(result), +1)
+
+    # FIXME: need to check Decimal zeroes too.
+    def test_neg_zero(self):
+        # Test that the root of -0.0 is -0.0.
+        for n in range(2, 11):
+            with self.subTest(n=n):
+                result = self.nroot(-0.0, n)
+                self.assertEqual(result, 0.0)
+                self.assertEqual(sign(result), -1)
+
+    # --- Test return types ---
+
+    def check_result_type(self, x, n, outtype):
+        self.assertIsInstance(self.nroot(x, n), outtype)
+        class MySubclass(type(x)):
+            pass
+        self.assertIsInstance(self.nroot(MySubclass(x), n), outtype)
+
+    def testDecimal(self):
+        # Test that Decimal arguments return Decimal results.
+        self.check_result_type(decimal.Decimal('33.3'), 3, decimal.Decimal)
+
+    def testFloat(self):
+        # Test that other arguments return float results.
+        for x in (0.2, Fraction(11, 7), 91):
+            self.check_result_type(x, 6, float)
+
+    # --- Test bad input ---
+
+    def testBadOrderTypes(self):
+        # Test that nroot raises correctly when n has the wrong type.
+        for n in (5.0, 2j, None, 'x', b'x', [], {}, set(), sign):
+            with self.subTest(n=n):
+                self.assertRaises(TypeError, self.nroot, 2.5, n)
+
+    def testBadOrderValues(self):
+        # Test that nroot raises correctly when n has a wrong value.
+        for n in (1, 0, -1, -2, -87):
+            with self.subTest(n=n):
+                self.assertRaises(ValueError, self.nroot, 2.5, n)
+
+    def testBadTypes(self):
+        # Test that nroot raises correctly when x has the wrong type.
+        for x in (None, 'x', b'x', [], {}, set(), sign):
+            with self.subTest(x=x):
+                self.assertRaises(TypeError, self.nroot, x, 3)
+
+    def testNegativeEvenPower(self):
+        # Test negative x with even n raises correctly.
+        x = random.uniform(-20.0, -0.1)
+        assert x < 0
+        for n in range(2, 9, 2):
+            with self.subTest(x=x, n=n):
+                self.assertRaises(ValueError, self.nroot, x, n)
+
+    # --- Test that nroot is never worse than calling math.pow() ---
+
+    def check_error_is_no_worse(self, x, n):
+        y = math.pow(x, n)
+        with self.subTest(x=x, n=n, y=y):
+            err1 = abs(self.nroot(y, n) - x)
+            err2 = abs(math.pow(y, 1.0/n) - x)
+            self.assertLessEqual(err1, err2)
+
+    def testCompareWithPowSmall(self):
+        # Compare nroot with pow for small values of x.
+        for i in range(200):
+            x = random.uniform(1e-9, 1.0-1e-9)
+            n = random.choice(range(2, 16))
+            self.check_error_is_no_worse(x, n)
+
+    def testCompareWithPowMedium(self):
+        # Compare nroot with pow for medium-sized values of x.
+        for i in range(200):
+            x = random.uniform(1.0, 100.0)
+            n = random.choice(range(2, 16))
+            self.check_error_is_no_worse(x, n)
+
+    def testCompareWithPowLarge(self):
+        # Compare nroot with pow for largish values of x.
+        for i in range(200):
+            x = random.uniform(100.0, 10000.0)
+            n = random.choice(range(2, 16))
+            self.check_error_is_no_worse(x, n)
+
+    def testCompareWithPowHuge(self):
+        # Compare nroot with pow for huge values of x.
+        for i in range(200):
+            x = random.uniform(1e20, 1e50)
+            # We restrict the order here to avoid an Overflow error.
+            n = random.choice(range(2, 7))
+            self.check_error_is_no_worse(x, n)
+
+    # --- Test for numerically correct answers ---
+
+    def testExactPowers(self):
+        # Test that small integer powers are calculated exactly.
+        for i in range(1, 51):
+            for n in range(2, 16):
+                if (i, n) == (35, 13):
+                    # See testExpectedFailure35p13
+                    continue
+                with self.subTest(i=i, n=n):
+                    x = i**n
+                    self.assertEqual(self.nroot(x, n), i)
+
+    def testExactPowersNegatives(self):
+        # Test that small negative integer powers are calculated exactly.
+        for i in range(-1, -51, -1):
+            for n in range(3, 16, 2):
+                if (i, n) == (-35, 13):
+                    # See testExpectedFailure35p13
+                    continue
+                with self.subTest(i=i, n=n):
+                    x = i**n
+                    assert sign(x) == -1
+                    self.assertEqual(self.nroot(x, n), i)
+
+    def testExpectedFailure35p13(self):
+        # Test the expected failure 35**13 is almost exact.
+        x = 35**13
+        err = abs(self.nroot(x, 13) - 35)
+        self.assertLessEqual(err, 0.000000001)
+        err = abs(self.nroot(-x, 13) + 35)
+        self.assertLessEqual(err, 0.000000001)
+
+    def testOne(self):
+        # Test that the root of 1.0 is 1.0.
+        for n in range(2, 11):
+            with self.subTest(n=n):
+                self.assertEqual(self.nroot(1.0, n), 1.0)
+
+    def testFraction(self):
+        # Test Fraction results.
+        x = Fraction(89, 75)
+        self.assertEqual(self.nroot(x**12, 12), float(x))
+
+    def testInt(self):
+        # Test int results.
+        x = 276
+        self.assertEqual(self.nroot(x**24, 24), x)
+
+    def testBigInt(self):
+        # Test that ints too big to convert to floats work.
+        bignum = 10**20  # That's not that big...
+        self.assertEqual(self.nroot(bignum**280, 280), bignum)
+        # Can we make it bigger?
+        hugenum = bignum**50
+        # Make sure that it is too big to convert to a float.
+        try:
+            y = float(hugenum)
+        except OverflowError:
+            pass
+        else:
+            raise AssertionError('hugenum is not big enough')
+        self.assertEqual(self.nroot(hugenum, 50), float(bignum))
+
+    def testDecimal(self):
+        # Test Decimal results.
+        for s in '3.759 64.027 5234.338'.split():
+            x = decimal.Decimal(s)
+            with self.subTest(x=x):
+                a = self.nroot(x**5, 5)
+                self.assertEqual(a, x)
+                a = self.nroot(x**17, 17)
+                self.assertEqual(a, x)
+
+    def testFloat(self):
+        # Test float results.
+        for x in (3.04e-16, 18.25, 461.3, 1.9e17):
+            with self.subTest(x=x):
+                self.assertEqual(self.nroot(x**3, 3), x)
+                self.assertEqual(self.nroot(x**8, 8), x)
+                self.assertEqual(self.nroot(x**11, 11), x)
+
+
+class Test_NthRoot_NS(unittest.TestCase):
+    """Test internals of the nth_root function, hidden in _nroot_NS."""
+
+    def test_class_cannot_be_instantiated(self):
+        # Test that _nroot_NS cannot be instantiated.
+        # It should be a namespace, like in C++ or C#, but Python
+        # lacks that feature and so we have to make do with a class.
+        self.assertRaises(TypeError, statistics._nroot_NS)
+
+
 # === Tests for public functions ===
 
 class UnivariateCommonMixin:

-- 
Repository URL: https://hg.python.org/cpython


More information about the Python-checkins mailing list