[Python-Dev] Active Objects in Python
Phillip J. Eby
pje at telecommunity.com
Tue Sep 27 19:40:22 CEST 2005
At 11:18 AM 9/27/2005 -0600, Bruce Eckel wrote:
>Yes, defining an class as "active" would:
>1) Install a worker thread and concurrent queue in each object of that
>class.
>2) Automatically turn method calls into tasks and enqueue them
>3) Prevent any other interaction other than enqueued messages
#3 is the sticky bit. Enforcing such restrictions in Python is
*hard*. Each active object would have to have its own sys.modules, for
example, because modules and classes in Python are mutable and use
dictionaries, and modifying them from two thread simultaneously would be fatal.
For built-in types it's not so bad, so they could be shared... except for
the fact that they have reference counts, which need lock protection as
well to avoid fouling up GC. So really, this idea doesn't really help with
GIL removal at all.
What it *does* help with, is effective use of multiprocessor machines on
platforms where fork() is available, if the API works across processes as
well as threads.
>So yes, the best way for this to work might be some kind of enforced
>implementation -- but forcing you to do something is not particularly
>Pythonic,
But keeping the interpreter from dumping core due to program bugs *is*
Pythonic, which is why the GIL would need to stay. :)
>so I would think that it would be possible to build an
>active object framework along with some checking tools to warn you if
>you are breaking the rules.
Well, you could pickle and unpickle the objects you send from one function
to another, and for cross-process communication, you'll need to do
something like that anyway, or else use that shared-memory objects
thing. PySHM? I don't remember its name, but it's an extension that lets
you store Python objects in shared memory and use them from multiple
processes, modulo certain strict limitations.
> But what's not clear is whether this would
>require knowledge of the innards of the Python interpreter (which I
>don't have) or if it could be built using libraries.
If you're not trying to get rid of the GIL or truly "enforce" things, you
can do everything you need for CSP in plain old Python. peak.events has a
generator-based microthread facility that's CSP-ish, for example, although
it doesn't have decorators for async methods. They're not hard to write,
though; Chandler has some for methods that get called across thread
barriers now. That is, methods that get called from Chandler's UI thread
but are run in the Twisted reactor thread. I've occasionally also thought
about implementing async C#'s "chord" features in Python for peak.events,
but I haven't actually had a use case that needed that much generality yet.
More information about the Python-Dev
mailing list