mensanator at aol.com mensanator at aol.com
Thu Oct 18 04:32:02 CEST 2007

```On Oct 17, 4:58 pm, Ixiaus <parnel... at comcast.net> wrote:
> Thank you for the quick responses.
>
> I did not know that about integer literals beginning with a '0', so
> thank you for the explanation. I never really use PHP except for
> handling basic forms and silly web stuff, this is why I picked up
> Python because I want to teach myself a more powerful and broad
> programming language.
>
> With regard to why I asked: I wanted to learn about Binary math in
> conjunction with Python, so I wrote a small function that would return
> a base 10 number from a binary number. It is nice to know about the
> int() function now.
>
> Just for the sake of it, this was the function I came up with:
>
> def bin2dec(val):
>     li = list(val)
>     li.reverse()
>     res = [int(li[x])*2**x for x in range(len(li))]
>     res.reverse()
>     print sum(res)
>
> Now that I look at it, I probably don't need that last reverse()
>
> def bin2dec(val):
>     li = list(val)
>     li.reverse()
>     res = [int(li[x])*2**x for x in range(len(li))]
>     print sum(res)
>
> It basically does the same thing int(string, 2) does.
>
> Thank you for the responses!

You could also get ahold of the gmpy module. You get conversion
to binary and also some useful other binary functions as shown
below:

# the Collatz Conjecture in binary

import gmpy

n = 27
print '%4d %s' % (n,gmpy.digits(n,2).zfill(16))

sv = []  # sequence vector, blocks of contiguous LS 0's

while n != 1:
old_n = n
n = 3*n + 1                  # result always even
f = gmpy.scan1(n,0)          # find least significant 1 bit
n >>= f                      # remove LS 0's in one fell swoop
sv.append(f)                 # record f sequence
PopC = gmpy.popcount(n)      # count of 1 bits
HamD = gmpy.hamdist(n,old_n) # bits changed
print '%4d %s' % (n,gmpy.digits(n,2).zfill(16)),
print 'PopC:%2d  HamD:%2d' % (PopC,HamD)

print sv

##  27 0000000000011011
##  41 0000000000101001 PopC: 3  HamD: 3
##  31 0000000000011111 PopC: 5  HamD: 4
##  47 0000000000101111 PopC: 5  HamD: 2
##  71 0000000001000111 PopC: 4  HamD: 3
## 107 0000000001101011 PopC: 5  HamD: 3
## 161 0000000010100001 PopC: 3  HamD: 4
## 121 0000000001111001 PopC: 5  HamD: 4
##  91 0000000001011011 PopC: 5  HamD: 2
## 137 0000000010001001 PopC: 3  HamD: 4
## 103 0000000001100111 PopC: 5  HamD: 6
## 155 0000000010011011 PopC: 5  HamD: 6
## 233 0000000011101001 PopC: 5  HamD: 4
## 175 0000000010101111 PopC: 6  HamD: 3
## 263 0000000100000111 PopC: 4  HamD: 4
## 395 0000000110001011 PopC: 5  HamD: 3
## 593 0000001001010001 PopC: 4  HamD: 7
## 445 0000000110111101 PopC: 7  HamD: 7
## 167 0000000010100111 PopC: 5  HamD: 4
## 251 0000000011111011 PopC: 7  HamD: 4
## 377 0000000101111001 PopC: 6  HamD: 3
## 283 0000000100011011 PopC: 5  HamD: 3
## 425 0000000110101001 PopC: 5  HamD: 4
## 319 0000000100111111 PopC: 7  HamD: 4
## 479 0000000111011111 PopC: 8  HamD: 3
## 719 0000001011001111 PopC: 7  HamD: 3
##1079 0000010000110111 PopC: 6  HamD: 7
##1619 0000011001010011 PopC: 6  HamD: 4
##2429 0000100101111101 PopC: 8  HamD: 8
## 911 0000001110001111 PopC: 7  HamD: 7
##1367 0000010101010111 PopC: 7  HamD: 6
##2051 0000100000000011 PopC: 3  HamD: 6
##3077 0000110000000101 PopC: 4  HamD: 3
## 577 0000001001000001 PopC: 3  HamD: 5
## 433 0000000110110001 PopC: 5  HamD: 6
## 325 0000000101000101 PopC: 4  HamD: 5
##  61 0000000000111101 PopC: 5  HamD: 5
##  23 0000000000010111 PopC: 4  HamD: 3
##  35 0000000000100011 PopC: 3  HamD: 3
##  53 0000000000110101 PopC: 4  HamD: 3
##   5 0000000000000101 PopC: 2  HamD: 2
##   1 0000000000000001 PopC: 1  HamD: 1
##[1, 2, 1, 1, 1, 1, 2, 2, 1, 2, 1, 1, 2,
## 1, 1, 1, 2, 3, 1, 1, 2, 1, 2, 1, 1, 1,
## 1, 1, 3, 1, 1, 1, 4, 2, 2, 4, 3, 1, 1,
## 5, 4]

```