decorator and API
Gerard flanagan
grflanagan at gmail.com
Thu Sep 18 06:31:45 EDT 2008
Lee Harr wrote:
> I have a class with certain methods from which I want to select
> one at random, with weighting.
>
> The way I have done it is this ....
>
>
>
> import random
>
> def weight(value):
> def set_weight(method):
> method.weight = value
> return method
> return set_weight
>
> class A(object):
> def actions(self):
> 'return a list of possible actions'
>
> return [getattr(self, method)
> for method in dir(self)
> if method.startswith('action_')]
>
> def action(self):
> 'Select a possible action using weighted choice'
>
> actions = self.actions()
> weights = [method.weight for method in actions]
> total = sum(weights)
>
> choice = random.randrange(total)
>
> while choice> weights[0]:
> choice -= weights[0]
> weights.pop(0)
> actions.pop(0)
>
> return actions[0]
>
>
> @weight(10)
> def action_1(self):
> print "A.action_1"
>
> @weight(20)
> def action_2(self):
> print "A.action_2"
>
>
> a = A()
> a.action()()
>
>
>
>
> The problem I have now is that if I subclass A and want to
> change the weighting of one of the methods, I am not sure
> how to do that.
>
> One idea I had was to override the method using the new
> weight in the decorator, and then call the original method:
>
> class B(A):
> @weight(50)
> def action_1(self):
> A.action_1(self)
>
>
> That works, but it feels messy.
>
>
> Another idea was to store the weightings as a dictionary
> on each instance, but I could not see how to update that
> from a decorator.
>
> I like the idea of having the weights in a dictionary, so I
> am looking for a better API, or a way to re-weight the
> methods using a decorator.
>
> Any suggestions appreciated.
>
Here is another approach:
8<-------------------------------------------------------------------
import random
from bisect import bisect
#by George Sakkis
def take_random_action(obj, actions, weights):
total = float(sum(weights))
cum_norm_weights = [0.0]*len(weights)
for i in xrange(len(weights)):
cum_norm_weights[i] = cum_norm_weights[i-1] + weights[i]/total
return actions[bisect(cum_norm_weights, random.random())](obj)
class randomiser(object):
_cache = []
@classmethod
def alert(cls, func):
assert hasattr(func, 'weight')
cls._cache.append(func)
@classmethod
def register(cls, name, obj):
actions = {}
weights = []
for klass in obj.__class__.__mro__:
for val in klass.__dict__.itervalues():
if hasattr(val, '__name__'):
key = val.__name__
if key in actions:
continue
elif val in cls._cache:
actions[key] = val
weights.append(val.weight)
actions = actions.values()
#setattr(cls, name, classmethod(lambda cls:
random.choice(actions)(obj)))
setattr(cls, name, classmethod(lambda cls:
take_random_action(obj, actions, weights)))
def randomised(weight):
def wrapper(func):
func.weight = weight
randomiser.alert(func)
return func
return wrapper
class A(object):
@randomised(20)
def foo(self):
print 'foo'
@randomised(10)
def bar(self):
print 'bar'
class B(A):
@randomised(50)
def foo(self):
print 'foo'
8<-------------------------------------------------------------------
randomiser.register('a', A())
randomiser.register('b', B())
print 'A'
randomiser.a()
randomiser.a()
randomiser.a()
randomiser.a()
randomiser.a()
randomiser.a()
print 'B'
randomiser.b()
randomiser.b()
randomiser.b()
randomiser.b()
randomiser.b()
randomiser.b()
More information about the Python-list
mailing list