Please improve these comprehensions (was meaning of [ ])
Rustom Mody
rustompmody at gmail.com
Wed Sep 6 08:00:47 EDT 2017
On Wednesday, September 6, 2017 at 4:29:56 PM UTC+5:30, Gregory Ewing wrote:
> Seems to me you're making life difficult for yourself (and
> very inefficient) by insisting on doing the whole computation
> with sets. If you want a set as a result, it's easy enough
> to construct one from the list at the end.
Sure with programmer hat firmly on that is the sensible view.
But there are equally legitimate other hats to consider:
Learning combinatorics for example.
And from that point of view Python (or Haskell or whatever) should be mostly
irrelevant. Whereas what should be relevant is what SICP calls ‘procedural
epistemology’: https://mitpress.mit.edu/sicp/front/node3.html
| Underlying our approach to this subject is our conviction that "computer
| science" is not a science and that its significance has little to do with
| computers. The computer revolution is a revolution in the way we think and in
| the way we express what we think. The essence of this change is the emergence
| of what might best be called procedural epistemology the study of the
| structure of knowledge from an imperative point of view, as opposed to the
| more declarative point of view taken by classical mathematical subjects.
| Mathematics provides a framework for dealing precisely with notions of "what
| is." Computation provides a framework for dealing precisely with notions of
| "how to."
Coming to the details in this case, the important difference between
permutations and combinations is not the numbers nPr and nCr but that a
permutation is a list and a combination is a set.
So this definition of permutations is fine (almost):
def perms(l):
if not l: return [[]]
x, xs = l[0], l[1:]
return [p[:i] + [x] + p[i:] for p in perms(xs) for i in range(0,len(l))]
>>> perms([1,2,3])
[[1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 3, 2], [3, 1, 2], [3, 2, 1]]
Because the abstract idea of a permutation is a list (sequence)
And the implementation here is faithful to that
[The outer being a list is a mild annoyance... We can let it pass]
However in this:
def c(n,r):
if r == 0:
return [[]]
elif len(n) == 0:
return []
else:
return [[n[0]] + l for l in c(n[1:],r-1)] + c(n[1:],r)
the [n[0]] + l is misguidingly overspecific, ie it suggests an order
which has no relevance or connection to the problem.
Note that *as a programmer* this may be fine
>From the pov of studying math, its wrong
Now if you want to agree with Chris in saying that python is unsuitable for
doing math, that's fine. [I am tending to agree myself]
I posted it because I genuinely thought I had missed some obvious way of
splitting a set into an (arbitrary) element and a rest without jumping through hoops. Evidently not
More information about the Python-list
mailing list