Python pandas Excel
Peter Otten
__peter__ at web.de
Sat Jul 18 04:20:56 EDT 2020
J Conrado wrote:
>
>
>
>
>
>
>
>
>
>
>
> HI,
>
>
> I have an excel file with several columns, the first day/month,/year and
> hour:
>
>
> Data
> 01/11/2017 00:00
> 01/11/2017 03:00
> 01/11/2017 06:00
> 01/11/2017 09:00
> 01/11/2017 12:00
> 01/11/2017 15:00
> 01/11/2017 18:00
> 01/11/2017 21:00
> 02/11/2017 00:00
> 02/11/2017 03:00
> 02/11/2017 06:00
> 02/11/2017 09:00
> 02/11/2017 12:00
> 02/11/2017 15:00
> 02/11/2017 18:00
> 02/11/2017 21:00
> 03/11/2017 00:00
> 03/11/2017 03:00
> 03/11/2017 06:00
> 03/11/2017 09:00
> 03/11/2017 12:00
> 03/11/2017 15:00
> 03/11/2017 18:00
> 03/11/2017 21:00
> 04/11/2017 00:00
> 04/11/2017 03:00
> 04/11/2017 06:00
> 04/11/2017 09:00
> 04/11/2017 12:00
> 04/11/2017 15:00
> 04/11/2017 18:00
> 04/11/2017 21:00
> 05/11/2017 00:00
> 05/11/2017 03:00
> 05/11/2017 06:00
> 05/11/2017 09:00
> 05/11/2017 12:00
> 05/11/2017 15:00
> 05/11/2017 18:00
> 05/11/2017 21:00
> 06/11/2017 00:00
> 06/11/2017 03:00
> 06/11/2017 06:00
> 06/11/2017 09:00
> 06/11/2017 12:00
> 06/11/2017 15:00
> 06/11/2017 18:00
> 06/11/2017 21:00
> 07/11/2017 00:00
> 07/11/2017 03:00
> 07/11/2017 06:00
> 07/11/2017 09:00
> 07/11/2017 12:00
> 07/11/2017 15:00
> 07/11/2017 18:00
> 07/11/2017 21:00
> 08/11/2017 00:00
> 08/11/2017 03:00
> 08/11/2017 06:00
> 08/11/2017 09:00
> 08/11/2017 12:00
> 08/11/2017 15:00
> 08/11/2017 21:00
> 09/11/2017 00:00
> 09/11/2017 03:00
> 09/11/2017 06:00
> 09/11/2017 09:00
> 09/11/2017 12:00
> 09/11/2017 15:00
> 09/11/2017 18:00
> 09/11/2017 21:00
> 10/11/2017 00:00
> 10/11/2017 03:00
> 10/11/2017 06:00
> 10/11/2017 09:00
> 10/11/2017 12:00
> 10/11/2017 15:00
> 10/11/2017 18:00
> 10/11/2017 21:00
> 11/11/2017 00:00
> 11/11/2017 03:00
> 11/11/2017 06:00
> 11/11/2017 09:00
> 11/11/2017 12:00
> 11/11/2017 15:00
> 11/11/2017 18:00
> 11/11/2017 21:00
> 12/11/2017 00:00
> 12/11/2017 03:00
> 12/11/2017 06:00
> 12/11/2017 09:00
> 12/11/2017 12:00
> 12/11/2017 15:00
> 12/11/2017 18:00
> 12/11/2017 21:00
> 13/11/2017 00:00
> 13/11/2017 03:00
> 13/11/2017 06:00
> 13/11/2017 09:00
> 13/11/2017 12:00
> 13/11/2017 15:00
> 13/11/2017 18:00
> 13/11/2017 21:00
> 14/11/2017 00:00
> 14/11/2017 03:00
> 14/11/2017 06:00
> 14/11/2017 09:00
> 14/11/2017 12:00
> 14/11/2017 15:00
> 14/11/2017 18:00
> 14/11/2017 21:00
> 15/11/2017 00:00
> 15/11/2017 03:00
> 15/11/2017 06:00
> 15/11/2017 09:00
> 15/11/2017 12:00
> 15/11/2017 15:00
> 15/11/2017 18:00
> 15/11/2017 21:00
> 16/11/2017 00:00
> 16/11/2017 03:00
> 16/11/2017 06:00
> 16/11/2017 09:00
> 16/11/2017 12:00
> 16/11/2017 15:00
> 16/11/2017 18:00
> 16/11/2017 21:00
> 17/11/2017 00:00
> 17/11/2017 03:00
> 17/11/2017 06:00
> 17/11/2017 09:00
> 17/11/2017 12:00
> 17/11/2017 15:00
> 17/11/2017 18:00
> 18/11/2017 00:00
> 18/11/2017 03:00
> 18/11/2017 06:00
> 18/11/2017 09:00
> 18/11/2017 12:00
> 18/11/2017 15:00
> 18/11/2017 18:00
> 18/11/2017 21:00
> 19/11/2017 00:00
> 19/11/2017 03:00
> 19/11/2017 06:00
> 19/11/2017 09:00
> 19/11/2017 12:00
> 19/11/2017 15:00
> 19/11/2017 18:00
> 19/11/2017 21:00
> 20/11/2017 00:00
> 20/11/2017 03:00
> 20/11/2017 06:00
> 20/11/2017 09:00
> 20/11/2017 12:00
> 20/11/2017 15:00
> 20/11/2017 18:00
> 20/11/2017 21:00
> 21/11/2017 00:00
> 21/11/2017 03:00
> 21/11/2017 06:00
> 21/11/2017 09:00
> 21/11/2017 12:00
> 21/11/2017 15:00
> 21/11/2017 18:00
> 22/11/2017 03:00
> 22/11/2017 06:00
> 22/11/2017 09:00
> 22/11/2017 12:00
> 22/11/2017 15:00
> 22/11/2017 18:00
> 22/11/2017 21:00
> 23/11/2017 00:00
> 23/11/2017 03:00
> 23/11/2017 06:00
> 23/11/2017 09:00
> 23/11/2017 12:00
> 23/11/2017 15:00
> 23/11/2017 18:00
> 23/11/2017 21:00
> 24/11/2017 00:00
> 24/11/2017 03:00
> 24/11/2017 06:00
> 24/11/2017 09:00
> 24/11/2017 12:00
> 24/11/2017 15:00
> 24/11/2017 18:00
> 24/11/2017 21:00
> 25/11/2017 00:00
> 25/11/2017 03:00
> 25/11/2017 06:00
> 25/11/2017 09:00
> 25/11/2017 12:00
> 25/11/2017 15:00
> 25/11/2017 18:00
> 25/11/2017 21:00
> 26/11/2017 00:00
> 26/11/2017 03:00
> 26/11/2017 06:00
> 26/11/2017 09:00
> 26/11/2017 12:00
> 26/11/2017 15:00
> 26/11/2017 18:00
> 26/11/2017 21:00
> 27/11/2017 03:00
> 27/11/2017 06:00
> 27/11/2017 09:00
> 27/11/2017 12:00
> 27/11/2017 15:00
> 27/11/2017 18:00
> 27/11/2017 21:00
> 28/11/2017 06:00
> 28/11/2017 09:00
> 28/11/2017 12:00
> 28/11/2017 15:00
> 28/11/2017 18:00
> 28/11/2017 21:00
> 29/11/2017 00:00
> 29/11/2017 03:00
> 29/11/2017 06:00
> 29/11/2017 09:00
> 29/11/2017 12:00
> 29/11/2017 15:00
> 29/11/2017 18:00
> 29/11/2017 21:00
> 30/11/2017 00:00
> 30/11/2017 03:00
> 30/11/2017 06:00
> 30/11/2017 09:00
> 30/11/2017 12:00
> 30/11/2017 15:00
> 30/11/2017 18:00
> 30/11/2017 21:00
>
>
> This is the value tha a have using pandas:
>
>
> print(data)
>
>
> 0 2017-01-11 00:00:00
> 1 2017-01-11 03:00:00
> 2 2017-01-11 06:00:00
> 3 2017-01-11 09:00:00
> 4 2017-01-11 12:00:00
> ...
> 228 2017-11-30 09:00:00
> 229 2017-11-30 12:00:00
> 230 2017-11-30 15:00:00
> 231 2017-11-30 18:00:00
> 232 2017-11-30 21:00:00
>
> Please, how can I get four arrays for day, month, year and hour this
> column of my excel.
df["year"] = df["timestamp"].apply(lambda ts: ts.year)
A self-contained demonstration:
$ cat tmp.py
import pandas as pd
import operator
# Create sample data.
df = pd.DataFrame({
"timestamp": pd.date_range("2020-01-01 01:00", periods=5)
})
print(df)
# Extract "year" etc. attributes from the "timestamp" column
# into the year etc. columns.
for name in "year month day hour".split():
df[name] = df["timestamp"].apply(operator.attrgetter(name))
# Remove "timestamp" column.
del df["timestamp"]
print(df)
$ python3 tmp.py
timestamp
0 2020-01-01 01:00:00
1 2020-01-02 01:00:00
2 2020-01-03 01:00:00
3 2020-01-04 01:00:00
4 2020-01-05 01:00:00
[5 rows x 1 columns]
year month day hour
0 2020 1 1 1
1 2020 1 2 1
2 2020 1 3 1
3 2020 1 4 1
4 2020 1 5 1
[5 rows x 4 columns]
$
More information about the Python-list
mailing list