[scikit-learn] Compiled trees

Ali Zude zude07 at yahoo.com
Thu Aug 11 17:39:30 EDT 2016


Dear All,
I am trying to speed up the prediction of Random Forests. I've used compiledtress, which was useful, but since I have 6 models and once I've loaded all of them I got "Multiprocessing exception:" 

here is my models in the code:
...model1=joblib.load('/models/model1.pkl'') model2=joblib.load('/models/model2.pkl') model3=joblib.load('/models/model3.pkl') model4=compiledtrees.CompiledRegressionPredictor(joblib.load('/models/model4.pkl')) model5=compiledtrees.CompiledRegressionPredictor(joblib.load('/models/model4.pkl')) model6=compiledtrees.CompiledRegressionPredictor(joblib.load('/models/model4.pkl')) 
model1=compiledtrees.CompiledRegressionPredictor(model1) model2=compiledtrees.CompiledRegressionPredictor(model2) model3=compiledtrees.CompiledRegressionPredictor(model3)....
Now I'm trying to use MultiOutputRegressor(RandomForestRegressor()), however, I could not find any tool to do model selection, can anyone help me either to solve the first problem or the second one
Best regards
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20160811/56cb4f26/attachment.html>


More information about the scikit-learn mailing list