[scikit-learn] ANN Scikit-learn 0.18 released

Maciek Wójcikowski maciek at wojcikowski.pl
Tue Oct 11 08:39:07 EDT 2016


Hi Piotr,

I've been there - most probably some package is blocking you to update via
numpy dependency. Try to update numpy first and the conflicting package
should pop up: "conda update numpy=1.11"

----
Pozdrawiam,  |  Best regards,
Maciek Wójcikowski
maciek at wojcikowski.pl

2016-10-11 14:32 GMT+02:00 Piotr Bialecki <piotr.bialecki at hotmail.de>:

> Congratulations to all contributors!
>
> I would like to update to the new version using conda, but apparently it
> is not available:
>
> ~$ conda update scikit-learn
> Fetching package metadata .......
> Solving package specifications: ..........
>
> # All requested packages already installed.
> # packages in environment at /home/pbialecki/anaconda2:
> #
> scikit-learn              0.17.1              np110py27_2
>
> Should I reinstall scikit?
>
>
> Best regards,
> Piotr
>
>
>
> On 03.10.2016 18:23, Raghav R V wrote:
>
> Hi Brown,
>
> Thanks for the email. There is a working PR here at
> <https://github.com/scikit-learn/scikit-learn/pull/7388>
> https://github.com/scikit-learn/scikit-learn/pull/7388
>
> Would you be kind to take a look at it and comment how helpful the
> proposed API is for your use case?
>
> Thanks
>
>
> On Mon, Oct 3, 2016 at 6:05 AM, Brown J.B. <jbbrown at kuhp.kyoto-u.ac.jp>
> wrote:
>
>> Hello community,
>>
>> Congratulations on the release of 0.19 !
>> While I'm merely a casual user and wish I could contribute more often, I
>> thank everyone for their time and efforts!
>>
>> 2016-10-01 1:58 GMT+09:00 Andreas Mueller < <t3kcit at gmail.com>
>> t3kcit at gmail.com>:
>>
>> We've got a lot in the works already for 0.19.
>>>>
>>>> * multiple metrics for cross validation (#7388 et al.)
>>>>
>>>
>> I've done something like this in my internal model building and selection
>> libraries.
>> My solution has been to have
>>   -each metric object be able to explain a "distance from optimal"
>>   -a metric collection object, which can be built by either explicit
>> instantiation or calculation using data
>>   -a pareto curve calculation object
>>   -a ranker for the points on the pareto curve, with the ability to
>> select the N-best points.
>>
>> While there are certainly smarter interfaces and implementations, here is
>> an example of one of my doctests that may help get this PR started.
>> My apologies that my old docstring argument notation doesn't match the
>> commonly used standards.
>>
>> Hope this helps,
>> J.B. Brown
>> Kyoto University
>>
>>  26 class TrialRanker(object):
>>
>>  27     """An object for handling the generic mechanism of selecting
>> optimal
>>  28     trials from a colletion of trials."""
>>
>>  43     def SelectBest(self, metricSets, paretoAlg,
>>
>>  44                    preProcessor=None):
>>
>>  45         """Select the best [metricSets] by using
>> the
>>  46         [paretoAlg] pareto selection object.  Note that it is
>> actually
>>  47         the [paretoAlg] that specifies how many optimal [metricSets]
>> to
>>  48         select.
>>
>>  49
>>
>>  50         Data may be pre-processed into a form necessary for the
>> [paretoAlg]
>>  51         by using the [preProcessor] that is a
>> MetricSetConverter.
>>  52
>>
>>  53         Return: an EvaluatedMetricSet if [paretoAlg] selects only
>> one
>>  54         metric set, otherwise a list of EvaluatedMetricSet
>> objects.
>>  55
>>
>>  56         >>> from pareto.paretoDecorators import
>> MinNormSelector
>>  57         >>> from pareto import OriginBasePareto
>>
>>  58         >>> pAlg = MinNormSelector(OriginBasePare
>> to())
>>  59
>>
>>  60         >>> from metrics.TwoClassMetrics import Accuracy,
>> Sensitivity
>>  61         >>> from metrics.metricSet import
>> EvaluatedMetricSet
>>  62         >>> met1 = EvaluatedMetricSet.BuildByExpl
>> icitValue(
>>  63         ...           [(Accuracy, 0.7), (Sensitivity,
>> 0.9)])
>>  64         >>> met1.SetTitle("Example1")
>>
>>  65         >>> met1.associatedData = range(5)  # property
>> set/get
>>  66         >>> met2 = EvaluatedMetricSet.BuildByExpl
>> icitValue(
>>  67         ...           [(Accuracy, 0.8), (Sensitivity,
>> 0.6)])
>>  68         >>> met2.SetTitle("Example2")
>>
>>  69         >>> met2.SetAssociatedData("abcdef")  # explicit method
>> call
>>  70         >>> met3 = EvaluatedMetricSet.BuildByExpl
>> icitValue(
>>  71         ...           [(Accuracy, 0.5), (Sensitivity,
>> 0.5)])
>>  72         >>> met3.SetTitle("Example3")
>>
>>  73         >>> met3.associatedData = float
>>
>>  74
>>
>>  75         >>> from metrics.metricSet.converters import
>> OptDistConverter
>>  76
>>
>>  77         >>> ranker = TrialRanker()  # pAlg selects
>> met1
>>  78         >>> best = ranker.SelectBest((met1,met2,m
>> et3),
>>  79         ...                          pAlg,
>> OptDistConverter())
>>  80         >>> best.VerboseDescription(True)
>>
>>  81         >>> str(best)
>>
>>  82         'Example1: 2 metrics; Accuracy=0.700;
>> Sensitivity=0.900'
>>  83         >>> best.associatedData
>>
>>  84         [0, 1, 2, 3, 4]
>>
>>  85
>>
>>  86         >>> pAlg = MinNormSelector(OriginBasePareto(),
>> nSelect=2)
>>  87         >>> best = ranker.SelectBest((met1,met2,m
>> et3),
>>  88         ...                          pAlg,
>> OptDistConverter())
>>  89         >>> for metSet in best:
>>
>>  90         ...     metSet.VerboseDescription(True
>> )
>>  91         ...     str(metSet)
>>
>>  92         ...     str(metSet.associatedData)
>>
>>  93         'Example1: 2 metrics; Accuracy=0.700;
>> Sensitivity=0.900'
>>  94         '[0, 1, 2, 3, 4]'
>>
>>  95         'Example2: 2 metrics; Accuracy=0.800;
>> Sensitivity=0.600'
>>  96         'abcdef'
>>
>>  97
>>
>>  98         >>> from metrics.TwoClassMetrics import
>> PositivePredictiveValue
>>  99         >>> met4 = EvaluatedMetricSet.BuildByExpl
>> icitValue(
>> 100         ...         [(Accuracy, 0.7), (PositivePredictiveValue,
>> 0.5)])
>> 101         >>> best = ranker.SelectBest((met1,met2,m
>> et3,met4),
>> 102         ...                          pAlg,
>> OptDistConverter())
>> 103         Traceback (most recent call last):
>>
>> 104         ...
>>
>> 105         ValueError: Metric sets contain differing
>> Metrics.
>>
>>
>>
>>
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn at python.org
>> https://mail.python.org/mailman/listinfo/scikit-learn
>>
>>
>
>
> _______________________________________________
> scikit-learn mailing listscikit-learn at python.orghttps://mail.python.org/mailman/listinfo/scikit-learn
>
>
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn at python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
>
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20161011/557ea150/attachment-0001.html>


More information about the scikit-learn mailing list