[scikit-learn] Getting weight coefficient of logistic regression from a pipeline
Andreas Mueller
t3kcit at gmail.com
Mon Aug 28 14:55:08 EDT 2017
Have you called "fit" on the pipeline?
On 08/28/2017 02:12 PM, Raga Markely wrote:
> Thank you, Andreas.
>
> When I try
>
> pipe_lr.named_steps['clf'].coef_
>
>
> I get:
>
> AttributeError: 'LogisticRegression' object has no attribute 'coef_'
>
>
> And when I try:
>
> pipe_lr.named_steps['clf']
>
>
> I get:
>
> LogisticRegression(C=0.1, class_weight=None, dual=False,
> fit_intercept=True, intercept_scaling=1, max_iter=100,
> multi_class='ovr', n_jobs=1, penalty='l2', random_state=None,
> solver='liblinear', tol=0.0001, verbose=0, warm_start=False)
>
>
> I wonder what I am missing?
>
> Thanks,
> Raga
>
>
> On Mon, Aug 28, 2017 at 12:01 PM, Andreas Mueller <t3kcit at gmail.com
> <mailto:t3kcit at gmail.com>> wrote:
>
> Can can get the coefficients on the scaled data with
> pipeline_lr.named_steps_['clf'].coef_
> though
>
>
> On 08/28/2017 12:08 AM, Raga Markely wrote:
>> No problem, thank you!
>>
>> Best,
>> Raga
>>
>> On Mon, Aug 28, 2017 at 12:01 AM, Joel Nothman
>> <joel.nothman at gmail.com <mailto:joel.nothman at gmail.com>> wrote:
>>
>> No, we do not have a way to get the coefficients with respect
>> to the input (pre-scaling) space.
>>
>> On 28 August 2017 at 13:20, Raga Markely
>> <raga.markely at gmail.com <mailto:raga.markely at gmail.com>> wrote:
>>
>> Hello,
>>
>> I am wondering if it's possible to get the weight
>> coefficients of logistic regression from a pipeline?
>>
>> For instance, I have the followings:
>>
>> clf_lr = LogisticRegression(penalty='l1', C=0.1)
>> pipe_lr = Pipeline([['sc', StandardScaler()], ['clf',
>> clf_lr]])
>> pipe_lr.fit(X, y)
>>
>>
>> Does pipe_lr have an attribute that I can call to get the
>> weight coefficient?
>>
>> Or do I have to get it from the classifier as follows?
>>
>> X_std = StandardScaler().fit_transform(X)
>> clf_lr = LogisticRegression(penalty='l1', C=0.1)
>> clf_lr.fit(X_std, y)
>> clf_lr.coef_
>>
>>
>> Thank you,
>> Raga
>>
>>
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn at python.org <mailto:scikit-learn at python.org>
>> https://mail.python.org/mailman/listinfo/scikit-learn
>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>>
>>
>>
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn at python.org <mailto:scikit-learn at python.org>
>> https://mail.python.org/mailman/listinfo/scikit-learn
>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>>
>>
>>
>>
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn at python.org <mailto:scikit-learn at python.org>
>> https://mail.python.org/mailman/listinfo/scikit-learn
>> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn at python.org <mailto:scikit-learn at python.org>
> https://mail.python.org/mailman/listinfo/scikit-learn
> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
>
>
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn at python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20170828/d1814c04/attachment-0001.html>
More information about the scikit-learn
mailing list