[scikit-learn] Unclear help file about sklearn.decomposition.pca
Andreas Mueller
t3kcit at gmail.com
Tue Oct 17 11:40:40 EDT 2017
In general scikit-learn avoids automatic preprocessing.
That's a convention to give the user more control and decrease
surprising behavior (ostensibly).
So scikit-learn will usually do what the algorithm is supposed to do,
and nothing more.
I'm not sure what the best way do document this is, as this has come up
with different models.
For example the R wrapper of libsvm does automatic scaling, while we
apply the SVM.
We could add "this model does not do any automatic preprocessing" to all
docstrings, but that seems
a bit redundant. We could add it to
https://github.com/scikit-learn/scikit-learn/pull/9517, but
that is probably not where you would have looked.
Other suggestions welcome.
On 10/16/2017 03:29 PM, Ismael Lemhadri wrote:
> Thank you all for your feedback.
> The initial problem I came with wasnt the definition of PCA but what
> the sklearn method does. In practice I would always make sure the data
> is both centered and scaled before performing PCA. This is the
> recommended method because without scaling, the biggest direction
> could wrongly seem to explain a huge fraction of the variance.
> So my point was simply to clarify in the help file and the user guide
> what the PCA class does precisely to leave no unclarity to the reader.
> Moving forward I have now submitted a pull request on github as
> initially suggested by Roman on this thread.
> Best,
> Ismael
>
> On Mon, 16 Oct 2017 at 11:49 AM, <scikit-learn-request at python.org
> <mailto:scikit-learn-request at python.org>> wrote:
>
> Send scikit-learn mailing list submissions to
> scikit-learn at python.org <mailto:scikit-learn at python.org>
>
> To subscribe or unsubscribe via the World Wide Web, visit
> https://mail.python.org/mailman/listinfo/scikit-learn
> or, via email, send a message with subject or body 'help' to
> scikit-learn-request at python.org
> <mailto:scikit-learn-request at python.org>
>
> You can reach the person managing the list at
> scikit-learn-owner at python.org <mailto:scikit-learn-owner at python.org>
>
> When replying, please edit your Subject line so it is more specific
> than "Re: Contents of scikit-learn digest..."
>
>
> Today's Topics:
>
> 1. Re: 1. Re: unclear help file for sklearn.decomposition.pca
> (Andreas Mueller)
> 2. Re: 1. Re: unclear help file for sklearn.decomposition.pca
> (Oliver Tomic)
>
>
> ----------------------------------------------------------------------
>
> Message: 1
> Date: Mon, 16 Oct 2017 14:44:51 -0400
> From: Andreas Mueller <t3kcit at gmail.com <mailto:t3kcit at gmail.com>>
> To: scikit-learn at python.org <mailto:scikit-learn at python.org>
> Subject: Re: [scikit-learn] 1. Re: unclear help file for
> sklearn.decomposition.pca
> Message-ID: <35142868-fce9-6cb3-eba3-015a0b106163 at gmail.com
> <mailto:35142868-fce9-6cb3-eba3-015a0b106163 at gmail.com>>
> Content-Type: text/plain; charset="utf-8"; Format="flowed"
>
>
>
> On 10/16/2017 02:27 PM, Ismael Lemhadri wrote:
> > @Andreas Muller:
> > My references do not assume centering, e.g.
> > http://ufldl.stanford.edu/wiki/index.php/PCA
> > any reference?
> >
> It kinda does but is not very clear about it:
>
> This data has already been pre-processed so that each of the
> features\textstyle x_1and\textstyle x_2have about the same mean (zero)
> and variance.
>
>
>
> Wikipedia is much clearer:
> Consider a datamatrix
> <https://en.wikipedia.org/wiki/Matrix_%28mathematics%29>,*X*, with
> column-wise zeroempirical mean
> <https://en.wikipedia.org/wiki/Empirical_mean>(the sample mean of each
> column has been shifted to zero), where each of the/n/rows
> represents a
> different repetition of the experiment, and each of the/p/columns
> gives
> a particular kind of feature (say, the results from a particular
> sensor).
> https://en.wikipedia.org/wiki/Principal_component_analysis#Details
>
> I'm a bit surprised to find that ESL says "The SVD of the centered
> matrix X is another way of expressing the principal components of the
> variables in X",
> so they assume scaling? They don't really have a great treatment
> of PCA,
> though.
>
> Bishop <http://www.springer.com/us/book/9780387310732> and Murphy
> <https://mitpress.mit.edu/books/machine-learning-0> are pretty clear
> that they subtract the mean (or assume zero mean) but don't
> standardize.
> -------------- next part --------------
> An HTML attachment was scrubbed...
> URL:
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171016/81b3014b/attachment-0001.html>
>
> ------------------------------
>
> Message: 2
> Date: Mon, 16 Oct 2017 20:48:29 +0200
> From: Oliver Tomic <olivertomic at zoho.com
> <mailto:olivertomic at zoho.com>>
> To: "Scikit-learn mailing list" <scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
> Cc: <scikit-learn at python.org <mailto:scikit-learn at python.org>>
> Subject: Re: [scikit-learn] 1. Re: unclear help file for
> sklearn.decomposition.pca
> Message-ID: <15f26840d65.e97b33c25239.3934951873824890747 at zoho.com
> <mailto:15f26840d65.e97b33c25239.3934951873824890747 at zoho.com>>
> Content-Type: text/plain; charset="utf-8"
>
> Dear Ismael,
>
>
>
> PCA should always involve at the least centering, or, if the
> variables are to contribute equally, scaling. Here is a reference
> from the scientific area named "chemometrics". In Chemometrics PCA
> used not only for dimensionality reduction, but also for
> interpretation of variance by use of scores, loadings, correlation
> loadings, etc.
>
>
>
> If you scroll down to subsection "Preprocessing" you will find
> more info on centering and scaling.
>
>
> http://pubs.rsc.org/en/content/articlehtml/2014/ay/c3ay41907j
>
>
>
> best
>
> Oliver
>
>
>
>
> ---- On Mon, 16 Oct 2017 20:27:11 +0200 Ismael Lemhadri
> <lemhadri at stanford.edu <mailto:lt%3Blemhadri at stanford.edu>>
> wrote ----
>
>
>
>
> @Andreas Muller:
>
> My references do not assume centering, e.g.
> http://ufldl.stanford.edu/wiki/index.php/PCA
>
> any reference?
>
>
>
>
>
>
>
> On Mon, Oct 16, 2017 at 10:20 AM,
> <scikit-learn-request at python.org
> <mailto:lt%3Bscikit-learn-request at python.org>> wrote:
>
> Send scikit-learn mailing list submissions to
>
> scikit-learn at python.org <mailto:scikit-learn at python.org>
>
>
>
> To subscribe or unsubscribe via the World Wide Web, visit
>
> https://mail.python.org/mailman/listinfo/scikit-learn
>
> or, via email, send a message with subject or body 'help' to
>
> scikit-learn-request at python.org
> <mailto:scikit-learn-request at python.org>
>
>
>
> You can reach the person managing the list at
>
> scikit-learn-owner at python.org <mailto:scikit-learn-owner at python.org>
>
>
>
> When replying, please edit your Subject line so it is more specific
>
> than "Re: Contents of scikit-learn digest..."
>
>
>
>
>
> Today's Topics:
>
>
>
> 1. Re: unclear help file for sklearn.decomposition.pca
>
> (Andreas Mueller)
>
>
>
>
>
> ----------------------------------------------------------------------
>
>
>
> Message: 1
>
> Date: Mon, 16 Oct 2017 13:19:57 -0400
>
> From: Andreas Mueller <t3kcit at gmail.com
> <mailto:lt%3Bt3kcit at gmail.com>>
>
> To: scikit-learn at python.org <mailto:scikit-learn at python.org>
>
> Subject: Re: [scikit-learn] unclear help file for
>
> sklearn.decomposition.pca
>
> Message-ID: <04fc445c-d8f3-a3a9-4ab2-0535826a2d03 at gmail.com
> <mailto:lt%3B04fc445c-d8f3-a3a9-4ab2-0535826a2d03 at gmail.com>>
>
> Content-Type: text/plain; charset="utf-8"; Format="flowed"
>
>
>
> The definition of PCA has a centering step, but no scaling step.
>
>
>
> On 10/16/2017 11:16 AM, Ismael Lemhadri wrote:
>
> > Dear Roman,
>
> > My concern is actually not about not mentioning the scaling
> but about
>
> > not mentioning the centering.
>
> > That is, the sklearn PCA removes the mean but it does not
> mention it
>
> > in the help file.
>
> > This was quite messy for me to debug as I expected it to
> either: 1/
>
> > center and scale simultaneously or / not scale and not
> center either.
>
> > It would be beneficial to explicit the behavior in the help
> file in my
>
> > opinion.
>
> > Ismael
>
> >
>
> > On Mon, Oct 16, 2017 at 8:02 AM,
> <scikit-learn-request at python.org
> <mailto:lt%3Bscikit-learn-request at python.org>
>
> > <mailto:scikit-learn-request at python.org
> <mailto:scikit-learn-request at python.org>>> wrote:
>
> >
>
> > Send scikit-learn mailing list submissions to
>
> > scikit-learn at python.org <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> >
>
> > To subscribe or unsubscribe via the World Wide Web, visit
>
> > https://mail.python.org/mailman/listinfo/scikit-learn
>
> >
> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
> > or, via email, send a message with subject or body 'help' to
>
> > scikit-learn-request at python.org
> <mailto:scikit-learn-request at python.org>
>
> > <mailto:scikit-learn-request at python.org
> <mailto:scikit-learn-request at python.org>>
>
> >
>
> > You can reach the person managing the list at
>
> > scikit-learn-owner at python.org
> <mailto:scikit-learn-owner at python.org>
> <mailto:scikit-learn-owner at python.org
> <mailto:scikit-learn-owner at python.org>>
>
> >
>
> > When replying, please edit your Subject line so it is
> more specific
>
> > than "Re: Contents of scikit-learn digest..."
>
> >
>
> >
>
> > Today's Topics:
>
> >
>
> > ? ?1. unclear help file for sklearn.decomposition.pca
> (Ismael
>
> > Lemhadri)
>
> > ? ?2. Re: unclear help file for sklearn.decomposition.pca
>
> > ? ? ? (Roman Yurchak)
>
> > ? ?3. Question about LDA's coef_ attribute (Serafeim Loukas)
>
> > ? ?4. Re: Question about LDA's coef_ attribute
> (Alexandre Gramfort)
>
> > ? ?5. Re: Question about LDA's coef_ attribute (Serafeim
> Loukas)
>
> >
>
> >
>
> >
> ----------------------------------------------------------------------
>
> >
>
> > Message: 1
>
> > Date: Sun, 15 Oct 2017 18:42:56 -0700
>
> > From: Ismael Lemhadri <lemhadri at stanford.edu
> <mailto:lt%3Blemhadri at stanford.edu>
>
> > <mailto:lemhadri at stanford.edu
> <mailto:lemhadri at stanford.edu>>>
>
> > To: scikit-learn at python.org
> <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> > Subject: [scikit-learn] unclear help file for
>
> > ? ? ? ? sklearn.decomposition.pca
>
> > Message-ID:
>
> > ? ? ? ?
>
> >
> <CANpSPFTgv+Oz7f97dandmrBBayqf_o9w=18oKHCFN0u5DNzj+g at mail.gmail.com
> <mailto:18oKHCFN0u5DNzj%2Bg at mail.gmail.com>
>
> > <mailto:18oKHCFN0u5DNzj%2Bg at mail.gmail.com
> <mailto:18oKHCFN0u5DNzj%252Bg at mail.gmail.com>>>
>
> > Content-Type: text/plain; charset="utf-8"
>
> >
>
> > Dear all,
>
> > The help file for the PCA class is unclear about the
> preprocessing
>
> > performed to the data.
>
> > You can check on line 410 here:
>
> >
> https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a/sklearn/
>
> > decomposition/pca.py#L410
>
> >
> <https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a/sklearn/%0Adecomposition/pca.py#L410>
>
> > that the matrix is centered but NOT scaled, before
> performing the
>
> > singular
>
> > value decomposition.
>
> > However, the help files do not make any mention of it.
>
> > This is unclear for someone who, like me, just wanted to
> compare
>
> > that the
>
> > PCA and np.linalg.svd give the same results. In academic
> settings,
>
> > students
>
> > are often asked to compare different methods and to
> check that
>
> > they yield
>
> > the same results. I expect that many students have
> confronted this
>
> > problem
>
> > before...
>
> > Best,
>
> > Ismael Lemhadri
>
> > -------------- next part --------------
>
> > An HTML attachment was scrubbed...
>
> > URL:
>
> >
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171015/c465bde7/attachment-0001.html
>
> >
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171015/c465bde7/attachment-0001.html>>
>
> >
>
> > ------------------------------
>
> >
>
> > Message: 2
>
> > Date: Mon, 16 Oct 2017 15:16:45 +0200
>
> > From: Roman Yurchak <rth.yurchak at gmail.com
> <mailto:lt%3Brth.yurchak at gmail.com>
>
> > <mailto:rth.yurchak at gmail.com
> <mailto:rth.yurchak at gmail.com>>>
>
> > To: Scikit-learn mailing list
> <scikit-learn at python.org <mailto:lt%3Bscikit-learn at python.org>
>
> > <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>>
>
> > Subject: Re: [scikit-learn] unclear help file for
>
> > ? ? ? ? sklearn.decomposition.pca
>
> > Message-ID:
> <b2abdcfd-4736-929e-6304-b93832932043 at gmail.com
> <mailto:lt%3Bb2abdcfd-4736-929e-6304-b93832932043 at gmail.com>
>
> >
> <mailto:b2abdcfd-4736-929e-6304-b93832932043 at gmail.com
> <mailto:b2abdcfd-4736-929e-6304-b93832932043 at gmail.com>>>
>
> > Content-Type: text/plain; charset=utf-8; format=flowed
>
> >
>
> > Ismael,
>
> >
>
> > as far as I saw the sklearn.decomposition.PCA doesn't
> mention
>
> > scaling at
>
> > all (except for the whiten parameter which is
> post-transformation
>
> > scaling).
>
> >
>
> > So since it doesn't mention it, it makes sense that it
> doesn't do any
>
> > scaling of the input. Same as np.linalg.svd.
>
> >
>
> > You can verify that PCA and np.linalg.svd yield the same
> results, with
>
> >
>
> > ```
>
> > ?>>> import numpy as np
>
> > ?>>> from sklearn.decomposition import PCA
>
> > ?>>> import numpy.linalg
>
> > ?>>> X = np.random.RandomState(42).rand(10, 4)
>
> > ?>>> n_components = 2
>
> > ?>>> PCA(n_components,
> svd_solver='full').fit_transform(X)
>
> > ```
>
> >
>
> > and
>
> >
>
> > ```
>
> > ?>>> U, s, V = np.linalg.svd(X -
> X.mean(axis=0), full_matrices=False)
>
> > ?>>> (X - X.mean(axis=0)).dot(V[:n_components].T)
>
> > ```
>
> >
>
> > --
>
> > Roman
>
> >
>
> > On 16/10/17 03:42, Ismael Lemhadri wrote:
>
> > > Dear all,
>
> > > The help file for the PCA class is unclear about
> the preprocessing
>
> > > performed to the data.
>
> > > You can check on line 410 here:
>
> > >
>
> >
> https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a/sklearn/decomposition/pca.py#L410
>
> >
> <https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a/sklearn/decomposition/pca.py#L410>
>
> > >
>
> >
> <https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a/sklearn/decomposition/pca.py#L410
>
> >
> <https://github.com/scikit-learn/scikit-learn/blob/ef5cb84a/sklearn/decomposition/pca.py#L410>>
>
> > > that the matrix is centered but NOT scaled, before
> performing the
>
> > > singular value decomposition.
>
> > > However, the help files do not make any mention of it.
>
> > > This is unclear for someone who, like me, just
> wanted to compare
>
> > that
>
> > > the PCA and np.linalg.svd give the same results. In
> academic
>
> > settings,
>
> > > students are often asked to compare different
> methods and to
>
> > check that
>
> > > they yield the same results. I expect that many
> students have
>
> > confronted
>
> > > this problem before...
>
> > > Best,
>
> > > Ismael Lemhadri
>
> > >
>
> > >
>
> > > _______________________________________________
>
> > > scikit-learn mailing list
>
> > > scikit-learn at python.org
> <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> > > https://mail.python.org/mailman/listinfo/scikit-learn
>
> >
> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
> > >
>
> >
>
> >
>
> >
>
> > ------------------------------
>
> >
>
> > Message: 3
>
> > Date: Mon, 16 Oct 2017 15:27:48 +0200
>
> > From: Serafeim Loukas <seralouk at gmail.com
> <mailto:lt%3Bseralouk at gmail.com> <mailto:seralouk at gmail.com
> <mailto:seralouk at gmail.com>>>
>
> > To: scikit-learn at python.org
> <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> > Subject: [scikit-learn] Question about LDA's coef_ attribute
>
> > Message-ID:
> <58C6D0DA-9DE5-4EF5-97C1-48159831F5A9 at gmail.com
> <mailto:lt%3B58C6D0DA-9DE5-4EF5-97C1-48159831F5A9 at gmail.com>
>
> >
> <mailto:58C6D0DA-9DE5-4EF5-97C1-48159831F5A9 at gmail.com
> <mailto:58C6D0DA-9DE5-4EF5-97C1-48159831F5A9 at gmail.com>>>
>
> > Content-Type: text/plain; charset="us-ascii"
>
> >
>
> > Dear Scikit-learn community,
>
> >
>
> > Since the documentation of the LDA
>
> >
> (http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
>
> >
> <http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html>
>
> >
> <http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
>
> >
> <http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html>>)
>
> > is not so clear, I would like to ask if the lda.coef_
> attribute
>
> > stores the eigenvectors from the SVD decomposition.
>
> >
>
> > Thank you in advance,
>
> > Serafeim
>
> > -------------- next part --------------
>
> > An HTML attachment was scrubbed...
>
> > URL:
>
> >
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171016/4263df5c/attachment-0001.html
>
> >
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171016/4263df5c/attachment-0001.html>>
>
> >
>
> > ------------------------------
>
> >
>
> > Message: 4
>
> > Date: Mon, 16 Oct 2017 16:57:52 +0200
>
> > From: Alexandre Gramfort <alexandre.gramfort at inria.fr
> <mailto:lt%3Balexandre.gramfort at inria.fr>
>
> > <mailto:alexandre.gramfort at inria.fr
> <mailto:alexandre.gramfort at inria.fr>>>
>
> > To: Scikit-learn mailing list
> <scikit-learn at python.org <mailto:lt%3Bscikit-learn at python.org>
>
> > <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>>
>
> > Subject: Re: [scikit-learn] Question about LDA's coef_
> attribute
>
> > Message-ID:
>
> > ? ? ? ?
>
> >
> <CADeotZricOQhuHJMmW2Z14cqffEQyndYoxn-OgKAvTMQ7V0Y2g at mail.gmail.com
> <mailto:lt%3BCADeotZricOQhuHJMmW2Z14cqffEQyndYoxn-OgKAvTMQ7V0Y2g at mail.gmail.com>
>
> >
> <mailto:CADeotZricOQhuHJMmW2Z14cqffEQyndYoxn-OgKAvTMQ7V0Y2g at mail.gmail.com
> <mailto:CADeotZricOQhuHJMmW2Z14cqffEQyndYoxn-OgKAvTMQ7V0Y2g at mail.gmail.com>>>
>
> > Content-Type: text/plain; charset="UTF-8"
>
> >
>
> > no it stores the direction of the decision function to
> match the
>
> > API of
>
> > linear models.
>
> >
>
> > HTH
>
> > Alex
>
> >
>
> > On Mon, Oct 16, 2017 at 3:27 PM, Serafeim Loukas
>
> > <seralouk at gmail.com <mailto:lt%3Bseralouk at gmail.com>
> <mailto:seralouk at gmail.com <mailto:seralouk at gmail.com>>>
> wrote:
>
> > > Dear Scikit-learn community,
>
> > >
>
> > > Since the documentation of the LDA
>
> > >
>
> >
> (http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
>
> >
> <http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html>)
>
> > > is not so clear, I would like to ask if the
> lda.coef_ attribute
>
> > stores the
>
> > > eigenvectors from the SVD decomposition.
>
> > >
>
> > > Thank you in advance,
>
> > > Serafeim
>
> > >
>
> > > _______________________________________________
>
> > > scikit-learn mailing list
>
> > > scikit-learn at python.org
> <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> > > https://mail.python.org/mailman/listinfo/scikit-learn
>
> >
> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
> > >
>
> >
>
> >
>
> > ------------------------------
>
> >
>
> > Message: 5
>
> > Date: Mon, 16 Oct 2017 17:02:46 +0200
>
> > From: Serafeim Loukas <seralouk at gmail.com
> <mailto:lt%3Bseralouk at gmail.com> <mailto:seralouk at gmail.com
> <mailto:seralouk at gmail.com>>>
>
> > To: Scikit-learn mailing list
> <scikit-learn at python.org <mailto:lt%3Bscikit-learn at python.org>
>
> > <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>>
>
> > Subject: Re: [scikit-learn] Question about LDA's coef_
> attribute
>
> > Message-ID:
> <413210D2-56AE-41A4-873F-D171BB36539D at gmail.com
> <mailto:lt%3B413210D2-56AE-41A4-873F-D171BB36539D at gmail.com>
>
> >
> <mailto:413210D2-56AE-41A4-873F-D171BB36539D at gmail.com
> <mailto:413210D2-56AE-41A4-873F-D171BB36539D at gmail.com>>>
>
> > Content-Type: text/plain; charset="us-ascii"
>
> >
>
> > Dear Alex,
>
> >
>
> > Thank you for the prompt response.
>
> >
>
> > Are the eigenvectors stored in some variable ?
>
> > Does the lda.scalings_ attribute contain the eigenvectors ?
>
> >
>
> > Best,
>
> > Serafeim
>
> >
>
> > > On 16 Oct 2017, at 16:57, Alexandre Gramfort
>
> > <alexandre.gramfort at inria.fr
> <mailto:lt%3Balexandre.gramfort at inria.fr>
> <mailto:alexandre.gramfort at inria.fr
> <mailto:alexandre.gramfort at inria.fr>>>
>
> > wrote:
>
> > >
>
> > > no it stores the direction of the decision function
> to match the
>
> > API of
>
> > > linear models.
>
> > >
>
> > > HTH
>
> > > Alex
>
> > >
>
> > > On Mon, Oct 16, 2017 at 3:27 PM, Serafeim Loukas
>
> > <seralouk at gmail.com <mailto:lt%3Bseralouk at gmail.com>
> <mailto:seralouk at gmail.com <mailto:seralouk at gmail.com>>>
> wrote:
>
> > >> Dear Scikit-learn community,
>
> > >>
>
> > >> Since the documentation of the LDA
>
> > >>
>
> >
> (http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html
>
> >
> <http://scikit-learn.org/stable/modules/generated/sklearn.discriminant_analysis.LinearDiscriminantAnalysis.html>)
>
> > >> is not so clear, I would like to ask if the
> lda.coef_ attribute
>
> > stores the
>
> > >> eigenvectors from the SVD decomposition.
>
> > >>
>
> > >> Thank you in advance,
>
> > >> Serafeim
>
> > >>
>
> > >> _______________________________________________
>
> > >> scikit-learn mailing list
>
> > >> scikit-learn at python.org
> <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> > >>
> https://mail.python.org/mailman/listinfo/scikit-learn
>
> >
> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
> > >>
>
> > > _______________________________________________
>
> > > scikit-learn mailing list
>
> > > scikit-learn at python.org
> <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> > > https://mail.python.org/mailman/listinfo/scikit-learn
>
> >
> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
> >
>
> > -------------- next part --------------
>
> > An HTML attachment was scrubbed...
>
> > URL:
>
> >
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171016/505c7da3/attachment.html
>
> >
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171016/505c7da3/attachment.html>>
>
> >
>
> > ------------------------------
>
> >
>
> > Subject: Digest Footer
>
> >
>
> > _______________________________________________
>
> > scikit-learn mailing list
>
> > scikit-learn at python.org <mailto:scikit-learn at python.org>
> <mailto:scikit-learn at python.org
> <mailto:scikit-learn at python.org>>
>
> > https://mail.python.org/mailman/listinfo/scikit-learn
>
> >
> <https://mail.python.org/mailman/listinfo/scikit-learn>
>
> >
>
> >
>
> > ------------------------------
>
> >
>
> > End of scikit-learn Digest, Vol 19, Issue 25
>
> > ********************************************
>
> >
>
> >
>
> >
>
> >
>
> > _______________________________________________
>
> > scikit-learn mailing list
>
> > scikit-learn at python.org <mailto:scikit-learn at python.org>
>
> > https://mail.python.org/mailman/listinfo/scikit-learn
>
>
>
> -------------- next part --------------
>
> An HTML attachment was scrubbed...
>
> URL:
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171016/f47e63a9/attachment.html>
>
>
>
> ------------------------------
>
>
>
> Subject: Digest Footer
>
>
>
> _______________________________________________
>
> scikit-learn mailing list
>
> scikit-learn at python.org <mailto:scikit-learn at python.org>
>
> https://mail.python.org/mailman/listinfo/scikit-learn
>
>
>
>
>
> ------------------------------
>
>
>
> End of scikit-learn Digest, Vol 19, Issue 28
>
> ********************************************
>
>
>
>
>
>
> _______________________________________________
>
> scikit-learn mailing list
>
> scikit-learn at python.org <mailto:scikit-learn at python.org>
>
> https://mail.python.org/mailman/listinfo/scikit-learn
>
>
>
>
>
>
> -------------- next part --------------
> An HTML attachment was scrubbed...
> URL:
> <http://mail.python.org/pipermail/scikit-learn/attachments/20171016/620a9401/attachment.html>
>
> ------------------------------
>
> Subject: Digest Footer
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn at python.org <mailto:scikit-learn at python.org>
> https://mail.python.org/mailman/listinfo/scikit-learn
>
>
> ------------------------------
>
> End of scikit-learn Digest, Vol 19, Issue 31
> ********************************************
>
> --
>
> Sent from a mobile phone and may contain errors
>
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn at python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20171017/fae5d71c/attachment-0001.html>
More information about the scikit-learn
mailing list