[scikit-learn] Is there regression algo with 3-d input?
Stuart Reynolds
stuart at stuartreynolds.net
Wed Dec 5 23:50:32 EST 2018
Would the output be different if you simply wrapped the whole process with
reshaping 3D input to 2d?
On Wed, Dec 5, 2018 at 7:14 PM lampahome <pahome.chen at mirlab.org> wrote:
> I want to regress time series prediction per week, so the unit of train
> data X is the day ex: Mon, Tue, Wed...etc.
>
> Ex: train data X is like below
> X:
> [ [1,2,3,4,3,2,1]
> ,[2,2,3,4,3,2,2] ]
> Each data of each row is about the day of one week. So each row has 7 data.
>
> Now if I have another feature W in each day like weather, or traffic or
> else.
>
> I thought expand the X to 3d is reasonable because the W should be
> contained in each day in X.
>
> So what I thought X is:
> [ [ [1, W-Mon], [2, W-Tue] , [3, W-Wed] , [4, W-Thu] , [3, W-Fri] ,
> [2, W-Sat] , [1, W-Sun] ]
> , [ [2, W-Mon], [2, W-Tue] , [3, W-Wed] , [4, W-Thu] , [3, W-Fri] ,
> [2, W-Sat] , [2, W-Sun] ] ]
> It become a 3d input and contain every feature of each day.
>
> Does scikit have regression algo can accept the 3d input X ?
> I almost found algo can only accept 2d input X ex: *X* : array-like or
> sparse matrix, shape = [n_samples, n_features]
>
>
> _______________________________________________
> scikit-learn mailing list
> scikit-learn at python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20181205/3b87ebf7/attachment.html>
More information about the scikit-learn
mailing list