<html xmlns:v="urn:schemas-microsoft-com:vml" xmlns:o="urn:schemas-microsoft-com:office:office" xmlns:w="urn:schemas-microsoft-com:office:word" xmlns:m="http://schemas.microsoft.com/office/2004/12/omml" xmlns="http://www.w3.org/TR/REC-html40">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<meta name="Generator" content="Microsoft Word 12 (filtered medium)">
<style><!--
/* Font Definitions */
@font-face
        {font-family:宋体;
        panose-1:2 1 6 0 3 1 1 1 1 1;}
@font-face
        {font-family:"Cambria Math";
        panose-1:2 4 5 3 5 4 6 3 2 4;}
@font-face
        {font-family:Calibri;
        panose-1:2 15 5 2 2 2 4 3 2 4;}
@font-face
        {font-family:"\@宋体";
        panose-1:2 1 6 0 3 1 1 1 1 1;}
/* Style Definitions */
p.MsoNormal, li.MsoNormal, div.MsoNormal
        {margin:0cm;
        margin-bottom:.0001pt;
        font-size:12.0pt;
        font-family:宋体;}
a:link, span.MsoHyperlink
        {mso-style-priority:99;
        color:blue;
        text-decoration:underline;}
a:visited, span.MsoHyperlinkFollowed
        {mso-style-priority:99;
        color:purple;
        text-decoration:underline;}
span.EmailStyle17
        {mso-style-type:personal-reply;
        font-family:"Calibri","sans-serif";
        color:#1F497D;}
.MsoChpDefault
        {mso-style-type:export-only;}
@page WordSection1
        {size:612.0pt 792.0pt;
        margin:72.0pt 90.0pt 72.0pt 90.0pt;}
div.WordSection1
        {page:WordSection1;}
--></style><!--[if gte mso 9]><xml>
<o:shapedefaults v:ext="edit" spidmax="1026" />
</xml><![endif]--><!--[if gte mso 9]><xml>
<o:shapelayout v:ext="edit">
<o:idmap v:ext="edit" data="1" />
</o:shapelayout></xml><![endif]-->
</head>
<body lang="ZH-CN" link="blue" vlink="purple">
<div class="WordSection1">
<div>
<div>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D">Hi all</span><span style="font-size:10.5pt;color:#1F497D">:</span><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D">        I uses a ‘Car Evaluation’ dataset from
<a href="http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data">http://archive.ics.uci.edu/ml/machine-learning-databases/car/car.data</a> to test the effect of MLP.  (I transfer some class in the data to digit value, e.g. ‘low’ to 1 ‘med’ to
 2, ‘high ’to 3, the final dataset’s input is 6 dimension, output label is 4 dimension)<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D">        However, the accuracy rate is not satisfied comparing to the result in Matlab which use BP algorithm too, I wonder if I should tune the
 parameter of MLP for better?<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D">Attachment:<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D">main code in matlab: accuracy 100% after train<o:p></o:p></span></p>
<p class="MsoNormal" style="text-indent:35.0pt;text-autospace:none"><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New";color:black">net=newff([-1 1;-1 1;-1 1;-1 1;-1 1;-1 1;],[10 4],{</span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New";color:#A020F0">'tansig'</span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New";color:black">,</span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New";color:#A020F0">'logsig'</span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New";color:black">},</span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New";color:#A020F0">'trainlm'</span><span lang="EN-US" style="font-size:10.0pt;font-family:"Courier New";color:black">);<o:p></o:p></span></p>
<p class="MsoNormal" style="text-indent:42.0pt;text-autospace:none"><span lang="EN-US" style="font-family:"Courier New""><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D">main code in MLP Code: accuracy 70% after fit<o:p></o:p></span></p>
<p class="MsoNormal" style="text-indent:21.0pt"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D">clf = MLPClassifier(solver='sgd', activation='logistic', max_iter=2000, learning_rate='adaptive',warm_start = True)<o:p></o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
<p class="MsoNormal"><span lang="EN-US" style="font-size:10.5pt;font-family:"Calibri","sans-serif";color:#1F497D"><o:p> </o:p></span></p>
</div>
</div>
</div>
</body>
</html>