<div dir="ltr">Yes, some can use a shared model to predict multiple outputs (ElasticNet, DecisionTreeRegressor, MLPRegressor), others can't. Those that can't can be trivially extended to the multiple output case with MultiOutputRegressor, by learning each output independently.</div><br><div class="gmail_quote"><div dir="ltr">On Tue, 11 Dec 2018 at 20:11, lampahome <<a href="mailto:pahome.chen@mirlab.org" target="_blank">pahome.chen@mirlab.org</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">As title, apart from sklearn.multioutput.MultiOutputRegressor, almost regression algo in sklearn only can predict 1-d output.<div><br></div><div>Ex: predict 1-d output</div><div>sklearn.linear_model.SGDRegressor</div>fit(X, y, coef_init=None, intercept_init=None, sample_weight=None)<div>y : numpy array, shape (n_samples,)  </div><div><br></div><div>Ex: predict multiple output</div>sklearn.linear_model.ElasticNet<div>fit(X, y, check_input=True)</div><div>y : ndarray, shape (n_samples,) or (n_samples, n_targets)  <br></div><div><br></div><div>There're two kind of output for regression methods.</div><div><br></div><div>What's the difference?</div><div><br></div></div>
_______________________________________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/mailman/listinfo/scikit-learn</a><br>
</blockquote></div>