<div dir="ltr"><div class="gmail_default" style="font-size:small">Hi,</div><div class="gmail_default" style="font-size:small"><br></div><div class="gmail_default" style="font-size:small">It's easy to write a meta-estimator and store it. You can write one for yourself in a few lines of code. This might help: <a href="https://github.com/adrinjalali/talks/blob/master/2022/sklearn-estimator-ODSC/custom_estimators_solved.ipynb">https://github.com/adrinjalali/talks/blob/master/2022/sklearn-estimator-ODSC/custom_estimators_solved.ipynb</a></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Thu, Nov 10, 2022 at 8:30 PM Fernando Marcos Wittmann <<a href="mailto:fernando.wittmann@gmail.com">fernando.wittmann@gmail.com</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><div dir="ltr">Hello,<div><br></div><div>I'm dealing with a problem without much data. As a solution, I'm training 10 estimators using a 10-Fold CV-Schema. Now, I wanted to persist those models. In order to avoid having to save 10 estimators, I was thinking about saving a single VotingRegressor with those pre-trained models or maybe writing a custom estimator to be used only for inference. Has anyone dealt with similar problems?</div><div><br></div><div>TLDR: Looking for an easy way to store multiple models created using cross-validation as a single model.</div><div><br></div><div>More context: I'll be using mlflow sklearn autolog, so it will be waaay more convenient to log only a single model instead of multiple models in each experiment. </div><div><br></div><div>Thanks!</div></div>
_______________________________________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/mailman/listinfo/scikit-learn</a><br>
</blockquote></div>