<div dir="ltr">Hello,<div><br></div><div>Following up on the recent release, there is a 12-minute video with scikit-learn v1.5.0 Highlights available on the YouTube channel:</div><div><a href="https://youtu.be/mOpU-zremz4" target="_blank">https://youtu.be/mOpU-zremz4</a><br></div><div><br></div><div>Video major topics include:</div><div>a) TunedThresholdClassifierCV class<br>>Among the new features, this new release introduces the TunedThresholdClassifierCV class that can adjust the decision threshold of any binary classifier to assign custom costs or gains to true/false positives/negatives. This is especially powerful to implement cost-sensitive learning, in particular when used in conjunction of per-individual side-metadata used in the cost function, thanks to our meta-data routing infrastructure.<br>(<a href="https://scikit-learn.org/stable/auto_examples/model_selection/plot_cost_sensitive_learning.html#sphx-glr-auto-examples-model-selection-plot-cost-sensitive-learning-py" target="_blank">https://scikit-learn.org/stable/auto_examples/model_selection/plot_cost_sensitive_learning.html#sphx-glr-auto-examples-model-selection-plot-cost-sensitive-learning-py</a>)<br><br></div><div>b) new pydata sphinx website theme highlights<br></div><div><br></div><div><div><div dir="ltr" class="gmail_signature" data-smartmail="gmail_signature"><div dir="ltr">---<div>Reshama Shaikh</div></div></div></div><br></div></div><br><div class="gmail_quote"><div dir="ltr" class="gmail_attr">On Tue, May 21, 2024 at 3:04 PM Jérémie du Boisberranger <<a href="mailto:jeremie.du-boisberranger@inria.fr" target="_blank">jeremie.du-boisberranger@inria.fr</a>> wrote:<br></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left:1px solid rgb(204,204,204);padding-left:1ex"><u></u>

  

    
  
  <div>
    <p>
    </p>
    <div style="font-family:-moz-fixed;font-size:12px" lang="x-unicode">Hi
      everyone,
      <br>
      <br>
      We're happy to announce the 1.5.0 release which you can install
      via pip or conda:
      <br>
      <br>
          pip install -U scikit-learn
      <br>
      <br>
      or
      <br>
      <br>
          conda install -c conda-forge scikit-learn
      <br>
      <br>
      <br>
      You can read the release highlights under <a href="https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_5_0.html" target="_blank">https://scikit-learn.org/stable/auto_examples/release_highlights/plot_release_highlights_1_5_0.html</a>
      and the long list of the changes under <a href="https://scikit-learn.org/stable/whats_new/v1.5.html" target="_blank">https://scikit-learn.org/stable/whats_new/v1.5.html</a>
      <br>
    </div>
    <div style="font-family:-moz-fixed;font-size:12px" lang="x-unicode"><br>
    </div>
    <div style="font-family:-moz-fixed;font-size:12px" lang="x-unicode">This
      release also comes with a new theme for the <a href="https://scikit-learn.org" target="_blank">https://scikit-learn.org</a> website !<br>
    </div>
    <div style="font-family:-moz-fixed;font-size:12px" lang="x-unicode"><br>
      This version supports Python versions 3.9 to 3.12.
      <br>
      <br>
      Thanks to all contributors who helped on this release !
      <br>
      <br>
      Jérémie,
      <br>
      On behalf of the scikit-learn maintainers team.
      <br>
      <br>
    </div>
  </div>

_______________________________________________<br>
scikit-learn mailing list<br>
<a href="mailto:scikit-learn@python.org" target="_blank">scikit-learn@python.org</a><br>
<a href="https://mail.python.org/mailman/listinfo/scikit-learn" rel="noreferrer" target="_blank">https://mail.python.org/mailman/listinfo/scikit-learn</a><br>
</blockquote></div>