<!DOCTYPE html>
<html>
  <head>

    <meta http-equiv="content-type" content="text/html; charset=UTF-8">
  </head>
  <body>
    <div class="cooked">
      <p>Dear scikit-learn community</p>
      <p>I am very glad to announce the release of <a
          href="https://lorentzenchr.github.io/model-diagnostics/"
          rel="noopener nofollow ugc">model-diagnostics</a> 1.2 with its
        new <code>plot_marginal</code> and <code>compute_marginal</code>.</p>
      <p>Model-diagnostics helps you to assess calibration and
        performance of most supervised model - be it machine learning or
        statistical - for point predictions (like the mean, a quantile,
        or the probability for binary classification). The focus is on
        visualization and user-friendliness while well backed by
        statistical theory.</p>
      <p>The new <code>plot_marginal</code>, for instance, gives a
        great overview of the calibration as well as the model effect by
        a single feature, see <a
href="https://github.com/lorentzenchr/model-diagnostics/releases"
          rel="noopener nofollow ugc">1.2 release notes</a>:<br>
        <img
src="https://discuss.scientific-python.org/uploads/default/original/1X/c30da7cd7c1b3cebc6e8ae2781974a73651907e6.png"
          alt="image" data-base62-sha1="rPwmxajPZoqVWclVX6afSwOlv3U"
          style="aspect-ratio: 465 / 341;" width="465" height="341"></p>
      <p>Best,</p>
      <p>Christian</p>
    </div>
    <p></p>
  </body>
</html>