<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html; charset=UTF-8">
</head>
<body>
<div class="cooked">
<p>Dear scikit-learn community</p>
<p>I am very glad to announce the release of <a
href="https://lorentzenchr.github.io/model-diagnostics/"
rel="noopener nofollow ugc">model-diagnostics</a> 1.2 with its
new <code>plot_marginal</code> and <code>compute_marginal</code>.</p>
<p>Model-diagnostics helps you to assess calibration and
performance of most supervised model - be it machine learning or
statistical - for point predictions (like the mean, a quantile,
or the probability for binary classification). The focus is on
visualization and user-friendliness while well backed by
statistical theory.</p>
<p>The new <code>plot_marginal</code>, for instance, gives a
great overview of the calibration as well as the model effect by
a single feature, see <a
href="https://github.com/lorentzenchr/model-diagnostics/releases"
rel="noopener nofollow ugc">1.2 release notes</a>:<br>
<img
src="https://discuss.scientific-python.org/uploads/default/original/1X/c30da7cd7c1b3cebc6e8ae2781974a73651907e6.png"
alt="image" data-base62-sha1="rPwmxajPZoqVWclVX6afSwOlv3U"
style="aspect-ratio: 465 / 341;" width="465" height="341"></p>
<p>Best,</p>
<p>Christian</p>
</div>
<p></p>
</body>
</html>