[Scipy-svn] r2150 - in trunk/Lib: linalg misc sandbox/models sandbox/xplt stats
scipy-svn at scipy.org
scipy-svn at scipy.org
Sat Aug 5 03:52:54 EDT 2006
Author: oliphant
Date: 2006-08-05 02:52:47 -0500 (Sat, 05 Aug 2006)
New Revision: 2150
Modified:
trunk/Lib/linalg/decomp.py
trunk/Lib/misc/pilutil.py
trunk/Lib/sandbox/models/bsplines.py
trunk/Lib/sandbox/models/utils.py
trunk/Lib/sandbox/xplt/colorbar.py
trunk/Lib/sandbox/xplt/slice3.py
trunk/Lib/stats/distributions.py
Log:
Make use of flatnonzero
Modified: trunk/Lib/linalg/decomp.py
===================================================================
--- trunk/Lib/linalg/decomp.py 2006-08-05 07:27:52 UTC (rev 2149)
+++ trunk/Lib/linalg/decomp.py 2006-08-05 07:52:47 UTC (rev 2150)
@@ -32,7 +32,7 @@
_I = cast['F'](1j)
def _make_complex_eigvecs(w,vin,cmplx_tcode):
v = numpy.array(vin,dtype=cmplx_tcode)
- ind = numpy.nonzero(numpy.not_equal(w.imag,0.0))
+ ind = numpy.flatnonzero(numpy.not_equal(w.imag,0.0))
vnew = numpy.zeros((v.shape[0],len(ind)>>1),cmplx_tcode)
vnew.real = numpy.take(vin,ind[::2],1)
vnew.imag = numpy.take(vin,ind[1::2],1)
Modified: trunk/Lib/misc/pilutil.py
===================================================================
--- trunk/Lib/misc/pilutil.py 2006-08-05 07:27:52 UTC (rev 2149)
+++ trunk/Lib/misc/pilutil.py 2006-08-05 07:52:47 UTC (rev 2150)
@@ -157,9 +157,9 @@
# Check for 3 in datacube shape --- 'RGB' or 'YCbCr'
if channel_axis is None:
if (3 in shape):
- ca = numpy.nonzero(asarray(shape) == 3)[0]
+ ca = numpy.flatnonzero(asarray(shape) == 3)[0]
else:
- ca = numpy.nonzero(asarray(shape) == 4)
+ ca = numpy.flatnonzero(asarray(shape) == 4)
if len(ca):
ca = ca[0]
else:
Modified: trunk/Lib/sandbox/models/bsplines.py
===================================================================
--- trunk/Lib/sandbox/models/bsplines.py 2006-08-05 07:27:52 UTC (rev 2149)
+++ trunk/Lib/sandbox/models/bsplines.py 2006-08-05 07:52:47 UTC (rev 2150)
@@ -161,7 +161,7 @@
# throw out rows with zeros (this happens at boundary points!)
- mask = N.nonzero(1 - N.alltrue(N.equal(bt, 0), axis=0))
+ mask = N.flatnonzero(1 - N.alltrue(N.equal(bt, 0), axis=0))
bt = bt[:,mask]
y = y[mask]
Modified: trunk/Lib/sandbox/models/utils.py
===================================================================
--- trunk/Lib/sandbox/models/utils.py 2006-08-05 07:27:52 UTC (rev 2149)
+++ trunk/Lib/sandbox/models/utils.py 2006-08-05 07:52:47 UTC (rev 2150)
@@ -40,10 +40,8 @@
"""
Erase columns of zeros: can save some time in pseudoinverse.
"""
-
colsum = N.add.reduce(matrix**2, 0)
-
- val = [matrix[:,i] for i in N.nonzero(colsum)]
+ val = [matrix[:,i] for i in N.flatnonzero(colsum)]
return N.array(N.transpose(val))
def rank(X, cond=1.0e-12):
Modified: trunk/Lib/sandbox/xplt/colorbar.py
===================================================================
--- trunk/Lib/sandbox/xplt/colorbar.py 2006-08-05 07:27:52 UTC (rev 2149)
+++ trunk/Lib/sandbox/xplt/colorbar.py 2006-08-05 07:52:47 UTC (rev 2150)
@@ -9,6 +9,7 @@
from numpy import *
from gist import *
from slice3 import *
+from numpy.oldnumeric import nonzero
def nice_levels (z, n = 8) :
"""nice_levels(z, n = 8) finds approximately n "nice values"
Modified: trunk/Lib/sandbox/xplt/slice3.py
===================================================================
--- trunk/Lib/sandbox/xplt/slice3.py 2006-08-05 07:27:52 UTC (rev 2149)
+++ trunk/Lib/sandbox/xplt/slice3.py 2006-08-05 07:52:47 UTC (rev 2150)
@@ -22,6 +22,7 @@
from numpy import *
from gistC import *
from gistfuncs import *
+from numpy.oldnumeric import nonzero
#
# Caveats:
Modified: trunk/Lib/stats/distributions.py
===================================================================
--- trunk/Lib/stats/distributions.py 2006-08-05 07:27:52 UTC (rev 2149)
+++ trunk/Lib/stats/distributions.py 2006-08-05 07:52:47 UTC (rev 2150)
@@ -17,7 +17,7 @@
any, argsort, argmax, vectorize, r_, asarray, nan, inf, pi, isnan, isinf
import numpy
import numpy.random as mtrand
-from numpy.oldnumeric import nonzero
+from numpy import flatnonzero as nonzero
__all__ = [
'rv_continuous',
More information about the Scipy-svn
mailing list