[Scipy-svn] r2182 - in trunk/Lib: cluster integrate io linalg optimize sandbox/arraysetops sandbox/models sandbox/plt sandbox/stats sandbox/xplt signal special stats tests

scipy-svn at scipy.org scipy-svn at scipy.org
Tue Aug 29 03:22:25 EDT 2006


Author: oliphant
Date: 2006-08-29 02:22:11 -0500 (Tue, 29 Aug 2006)
New Revision: 2182

Modified:
   trunk/Lib/cluster/vq.py
   trunk/Lib/integrate/quadrature.py
   trunk/Lib/io/array_import.py
   trunk/Lib/linalg/basic.py
   trunk/Lib/optimize/minpack.py
   trunk/Lib/optimize/optimize.py
   trunk/Lib/sandbox/arraysetops/arraysetops.py
   trunk/Lib/sandbox/models/utils.py
   trunk/Lib/sandbox/plt/plot_objects.py
   trunk/Lib/sandbox/stats/anova.py
   trunk/Lib/sandbox/xplt/pl3d.py
   trunk/Lib/sandbox/xplt/plwf.py
   trunk/Lib/signal/signaltools.py
   trunk/Lib/signal/wavelets.py
   trunk/Lib/special/orthogonal.py
   trunk/Lib/stats/distributions.py
   trunk/Lib/tests/test_basic.py
Log:
Fix usages of take with no axis argument.

Modified: trunk/Lib/cluster/vq.py
===================================================================
--- trunk/Lib/cluster/vq.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/cluster/vq.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -20,7 +20,7 @@
 from numpy.random import randint
 from scipy.stats import std, mean
 from numpy import shape, zeros, subtract, sqrt, argmin, minimum, array, \
-     newaxis, arange, compress, equal, take, common_type, single, double
+     newaxis, arange, compress, equal, common_type, single, double, take
 
 def whiten(obs):
     """ Normalize a group of observations on a per feature basis

Modified: trunk/Lib/integrate/quadrature.py
===================================================================
--- trunk/Lib/integrate/quadrature.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/integrate/quadrature.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -37,7 +37,7 @@
         raise ValueError, "Gaussian quadrature is only available for " \
               "finite limits."
     y = (b-a)*(x+1)/2.0 + a
-    return (b-a)/2.0*sum(w*func(y,*args)), None
+    return (b-a)/2.0*sum(w*func(y,*args),0), None
 
 def vectorize1(func, args=(), vec_func=False):
     if vec_func:
@@ -323,7 +323,7 @@
         h = float(interval[1]-interval[0])/numtosum
         lox = interval[0] + 0.5 * h;
         points = lox + h * arange(0, numtosum)
-        s = sum(function(points))
+        s = sum(function(points),0)
         return s
 
 def _romberg_diff(b, c, k):

Modified: trunk/Lib/io/array_import.py
===================================================================
--- trunk/Lib/io/array_import.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/io/array_import.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -197,11 +197,11 @@
         if len(collist) == 1:
             toconvlist = arlist[::-collist[-1]]
         else:
-            toconvlist = take(arlist,collist[:-1])
+            toconvlist = take(arlist,collist[:-1],0)
             toconvlist = concatenate((toconvlist,
                                       arlist[(collist[-2]-collist[-1])::(-collist[-1])]))
     else:
-        toconvlist = take(arlist, collist)
+        toconvlist = take(arlist, collist,0)
 
     return numpyio.convert_objectarray(toconvlist, atype, missing)
 

Modified: trunk/Lib/linalg/basic.py
===================================================================
--- trunk/Lib/linalg/basic.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/linalg/basic.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -472,7 +472,7 @@
     rows = mgrid[rN:0:-1]
     indx = cols[:,newaxis]*ones((1,rN),dtype=int) + \
            rows[newaxis,:]*ones((cN,1),dtype=int) - 1
-    return take(vals, indx)
+    return take(vals, indx, 0)
 
 
 def hankel(c,r=None):
@@ -503,7 +503,7 @@
     rows = mgrid[0:rN]
     indx = cols[:,newaxis]*ones((1,rN),dtype=int) + \
            rows[newaxis,:]*ones((cN,1),dtype=int) - 1
-    return take(vals, indx)
+    return take(vals, indx, 0)
 
 def all_mat(*args):
     return map(Matrix,args)

Modified: trunk/Lib/optimize/minpack.py
===================================================================
--- trunk/Lib/optimize/minpack.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/optimize/minpack.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -264,7 +264,7 @@
     mesg = errors[info][0]
     if full_output:
         import scipy.linalg as sl
-        perm = take(eye(n),retval[1]['ipvt']-1)
+        perm = take(eye(n),retval[1]['ipvt']-1,0)
         r = triu(transpose(retval[1]['fjac'])[:n,:])
         R = dot(r, perm)
         try:

Modified: trunk/Lib/optimize/optimize.py
===================================================================
--- trunk/Lib/optimize/optimize.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/optimize/optimize.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -172,7 +172,8 @@
         fsim[k+1] = f
 
     ind = numpy.argsort(fsim)
-    fsim = numpy.take(fsim,ind)  # sort so sim[0,:] has the lowest function value
+    fsim = numpy.take(fsim,ind,0)
+    # sort so sim[0,:] has the lowest function value
     sim = numpy.take(sim,ind,0)
 
     iterations = 1
@@ -230,7 +231,7 @@
 
         ind = numpy.argsort(fsim)
         sim = numpy.take(sim,ind,0)
-        fsim = numpy.take(fsim,ind)
+        fsim = numpy.take(fsim,ind,0)
         if callback is not None:
             callback(sim[0])
         iterations += 1

Modified: trunk/Lib/sandbox/arraysetops/arraysetops.py
===================================================================
--- trunk/Lib/sandbox/arraysetops/arraysetops.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/sandbox/arraysetops/arraysetops.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -62,7 +62,7 @@
     ar = numpy.array( ar1 ).ravel()
     if retIndx:
         perm = numpy.argsort( ar )
-        aux = numpy.take( ar, perm )
+        aux = numpy.take( ar, perm 0)
         flag = ediff1d( aux, 1 ) != 0
         return numpy.compress( flag, perm ), numpy.compress( flag, aux )
     else:
@@ -104,8 +104,8 @@
     tt = numpy.concatenate( (numpy.zeros_like( ar1 ),
                              numpy.zeros_like( ar2 ) + 1) )
     perm = numpy.argsort( ar )
-    aux = numpy.take( ar, perm )
-    aux2 = numpy.take( tt, perm )
+    aux = numpy.take( ar, perm, 0)
+    aux2 = numpy.take( tt, perm, 0 )
     flag = ediff1d( aux, 1 ) == 0
 
     ii = numpy.where( flag * aux2 )
@@ -115,7 +115,7 @@
 
     indx = numpy.argsort( perm )[:len( ar1 )]
 
-    return numpy.take( flag, indx )
+    return numpy.take( flag, indx, 0 )
 
 ##
 # 03.11.2005, c

Modified: trunk/Lib/sandbox/models/utils.py
===================================================================
--- trunk/Lib/sandbox/models/utils.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/sandbox/models/utils.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -107,8 +107,8 @@
 
         if not sorted:
             asort = N.argsort(self.x)
-            self.x = N.take(self.x, asort)
-            self.y = N.take(self.y, asort)
+            self.x = N.take(self.x, asort, 0)
+            self.y = N.take(self.y, asort, 0)
         self.n = self.x.shape[0]
 
     def __call__(self, time):

Modified: trunk/Lib/sandbox/plt/plot_objects.py
===================================================================
--- trunk/Lib/sandbox/plt/plot_objects.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/sandbox/plt/plot_objects.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -928,7 +928,7 @@
         else:
             cmap = colormap
 
-        pixels = take( cmap, scaled_mag)
+        pixels = take( cmap, scaled_mag, 0)
         del scaled_mag
         # need to transpose pixels in memory...
         bitmap = pixels.astype(UnsignedInt8).tostring()

Modified: trunk/Lib/sandbox/stats/anova.py
===================================================================
--- trunk/Lib/sandbox/stats/anova.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/sandbox/stats/anova.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -74,7 +74,7 @@
     Nwifactors = len(Wscols) - 1 # WAS len(Wcolumns)
     #Nwlevels = take(array(Nlevels),Wscols) # no.lvls for each w/i subj fact
     #Nbtwfactors = len(Bscols) - 1 # WASNfactors - Nwifactors + 1
-    Nblevels = take(array(Nlevels),Bscols)
+    Nblevels = take(array(Nlevels),Bscols,0)
 
     Nwsources = 2**Nwifactors - 1 # num within-subject factor-combos
     #Nbsources = Nallsources - Nwsources
@@ -159,7 +159,7 @@
             new = alluniqueslist[j].index(data[i][j])
             idx.append(new)
         DA[idx] = data[i][-1] # put this data point in proper place in DA
-        btwidx = take(idx,array(Bscols))
+        btwidx = take(idx,array(Bscols),0)
         subjslots[btwidx] = 1
     # DONE CREATING DATA ARRAY, DA ... #dims = numfactors+1, dim 0=subjects
     # dim -1=measured values, dummyval = values used to fill empty slots in DA
@@ -221,7 +221,7 @@
                 Lwithinsourcecol = map(Lsourceandbtws.index,Lwithinsourcecol)
                 # Now indxlist should hold a list of indices into the list of possible
                 # coefficients, one row per combo of coefficient. Next line PRESERVES dummyval
-            dvarshape = array(take(mns.shape,Lwithinsourcecol[1:])) -1
+            dvarshape = array(take(mns.shape,Lwithinsourcecol[1:],0)) -1
             idxarray = indices(dvarshape)
             newshape = array([idxarray.shape[0],
                                 multiply.reduce(idxarray.shape[1:])])
@@ -379,7 +379,7 @@
 
     ## Calc and save sums of squares for this source
             SS = sum((effect**2 *sourceNarray) *
-                      multiply.reduce(take(Marray.shape,btwnonsourcedims)))
+                      multiply.reduce(take(Marray.shape,btwnonsourcedims,0)))
         ## Save it so you don't have to calculate it again next time
             SSlist.append(SS)
             SSsources.append(source)
@@ -687,7 +687,7 @@
         # Calc and save sums of squares for this source
         SS = zeros((levels,levels),'f')
         SS = sum((effect**2 *sourceDNarray) *
-            multiply.reduce(take(DM[dindex].shape,btwnonsourcedims)),
+            multiply.reduce(take(DM[dindex].shape,btwnonsourcedims,0)),
             range(len(sourceDMarray.shape)-1))
         # Save it so you don't have to calculate it again next time
         SSlist.append(SS)
@@ -739,7 +739,7 @@
         idx[0] = -1 # compensate for pre-increment of 1st slot in incr()
 
         # Get a list of the maximum values each factor can handle
-        loopcap = take(array(Nlevels),sourcedims)-1
+        loopcap = take(array(Nlevels),sourcedims,0)-1
 
 ### WHILE STILL MORE GROUPS, CALCULATE GROUP MEAN FOR EACH D-VAR
     while incr(idx,loopcap) != -1:  # loop through source btw level-combos

Modified: trunk/Lib/sandbox/xplt/pl3d.py
===================================================================
--- trunk/Lib/sandbox/xplt/pl3d.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/sandbox/xplt/pl3d.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -469,13 +469,13 @@
         # (reduces to above medians for quads)
         # (2) compute midpoints of first three sides
         n2 = (nxyz [0] + 1) / 2
-        c0 = (take(xyz, frst) + take(xyz, frst + 1)) / 2.
+        c0 = (take(xyz, frst, 0) + take(xyz, frst + 1, 0)) / 2.
         i = frst + n2 - 1
-        c1 = (take(xyz, i) + take(xyz, i + 1)) / 2.
+        c1 = (take(xyz, i, 0) + take(xyz, i + 1, 0)) / 2.
         i = n2 / 2
-        c2 = (take(xyz, frst + i) + take(xyz, frst + (i + 1) % nxyz [0])) / 2.
+        c2 = (take(xyz, frst + i, 0) + take(xyz, frst + (i + 1) % nxyz [0], 0)) / 2.
         i = minimum (i + n2, nxyz [0]) - 1
-        c3 = (take(xyz, frst + i) + take(xyz, frst + (i + 1) % nxyz [0])) / 2.
+        c3 = (take(xyz, frst + i, 0) + take(xyz, frst + (i + 1) % nxyz [0], 0)) / 2.
         m1 = c1 - c0
         m2 = c3 - c2
 
@@ -847,7 +847,7 @@
     array_set (vlist, list, arange (len (list), dtype = Int))
     # then reset the nlist values to that pre-sorted order, so that
     # sort(nlist) will be the required vertex sorting list
-    nlist = take(vlist, nlist)
+    nlist = take(vlist, nlist, 0)
     # the final hitch is to ensure that the vertices within each polygon
     # remain in their initial order (sort scrambles equal values)
     # since the vertices of a polygon can be cyclically permuted,

Modified: trunk/Lib/sandbox/xplt/plwf.py
===================================================================
--- trunk/Lib/sandbox/xplt/plwf.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/sandbox/xplt/plwf.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -243,9 +243,9 @@
             ravel(add.outer (adders,zeros(nj-1, Int))) +
             arange((ni-1)*(nj-1), dtype = Int),
             array ( [[0, 1], [nj + 1, nj]])))
-         xyz=array([take(ravel(xyz[0]),list),
-            take(ravel(xyz[1]),list),
-            take(ravel(xyz[2]),list)])
+         xyz=array([take(ravel(xyz[0]),list,0),
+            take(ravel(xyz[1]),list,0),
+            take(ravel(xyz[2]),list,0)])
          nxyz= ones((ni-1)*(nj-1)) * 4;
        The resulting array xyz is 3-by-(4*(nj-1)*(ni-1)).
        xyz[0:3,4*i:4*(i+1)] are the clockwise coordinates of the

Modified: trunk/Lib/signal/signaltools.py
===================================================================
--- trunk/Lib/signal/signaltools.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/signal/signaltools.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -887,7 +887,7 @@
         indx = argsort(abs(p))
     else:
         indx = argsort(p)
-    return take(p,indx), indx
+    return take(p,indx,0), indx
 
 def unique_roots(p,tol=1e-3,rtype='min'):
     """Determine the unique roots and their multiplicities in two lists
@@ -959,7 +959,7 @@
     """
     extra = k
     p, indx = cmplx_sort(p)
-    r = take(r,indx)
+    r = take(r,indx,0)
     pout, mult = unique_roots(p,tol=tol,rtype=rtype)
     p = []
     for k in range(len(pout)):
@@ -1130,7 +1130,7 @@
     """
     extra = asarray(k)
     p, indx = cmplx_sort(p)
-    r = take(r,indx)
+    r = take(r,indx,0)
     pout, mult = unique_roots(p,tol=tol,rtype=rtype)
     p = []
     for k in range(len(pout)):
@@ -1341,7 +1341,7 @@
             coef,resids,rank,s = linalg.lstsq(A,newdata[sl])
             newdata[sl] = newdata[sl] - dot(A,coef)
         # Put data back in original shape.
-        tdshape = take(dshape,newdims)
+        tdshape = take(dshape,newdims,0)
         ret = reshape(newdata,tuple(tdshape))
         vals = range(1,rnk)
         olddims = vals[:axis] + [0] + vals[axis:]

Modified: trunk/Lib/signal/wavelets.py
===================================================================
--- trunk/Lib/signal/wavelets.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/signal/wavelets.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -111,10 +111,10 @@
     indx1 = sb.clip(2*nn-kk,-1,N+1)
     indx2 = sb.clip(2*nn-kk+1,-1,N+1)
     m = sb.zeros((2,2,N,N),'d')
-    m[0,0] = sb.take(thk,indx1)
-    m[0,1] = sb.take(thk,indx2)
-    m[1,0] = sb.take(tgk,indx1)
-    m[1,1] = sb.take(tgk,indx2)
+    m[0,0] = sb.take(thk,indx1,0)
+    m[0,1] = sb.take(thk,indx2,0)
+    m[1,0] = sb.take(tgk,indx1,0)
+    m[1,1] = sb.take(tgk,indx2,0)
     m *= s2
 
     # construct the grid of points

Modified: trunk/Lib/special/orthogonal.py
===================================================================
--- trunk/Lib/special/orthogonal.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/special/orthogonal.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -61,6 +61,7 @@
 
 from __future__ import nested_scopes
 from numpy import *
+from numpy.oldnumeric import take
 import _cephes as cephes
 _gam = cephes.gamma
 from scipy.linalg import eig

Modified: trunk/Lib/stats/distributions.py
===================================================================
--- trunk/Lib/stats/distributions.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/stats/distributions.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -3057,7 +3057,7 @@
         c_bad = atleast_1d((b<=0) | (x != x))
 
         indxiter = nonzero(c_xiter)
-        xiter = take(x, indxiter)
+        xiter = take(x, indxiter, 0)
 
         vals = ones(len(c_xsimple),float)
         putmask(vals, c_bad, nan)
@@ -3066,7 +3066,7 @@
         st = where(isnan(st),0.0,st)
         putmask(vals, c_xnormal, norm.cdf(x, scale=st))
 
-        biter = take(atleast_1d(b)*(x==x), indxiter)
+        biter = take(atleast_1d(b)*(x==x), indxiter, 0)
         if len(xiter) > 0:
             fac = special.i0(biter)
             x2 = xiter
@@ -3191,7 +3191,7 @@
         qk = 1.0*qk / sum(qk)
         # If qk is zero anywhere, then unless pk is zero at those places
         #   too, the relative entropy is infinite.
-        if any(take(pk,nonzero(qk==0.0))!=0.0):
+        if any(take(pk,nonzero(qk==0.0))!=0.0, 0):
             return inf
         vec = where (pk == 0, 0.0, pk*log(pk / qk))
     return -sum(vec)
@@ -3359,8 +3359,8 @@
             self.xk, self.pk = values
             self.return_integers = 0
             indx = argsort(ravel(self.xk))
-            self.xk = take(ravel(self.xk),indx)
-            self.pk = take(ravel(self.pk),indx)
+            self.xk = take(ravel(self.xk),indx, 0)
+            self.pk = take(ravel(self.pk),indx, 0)
             self.a = self.xk[0]
             self.b = self.xk[-1]
             self.P = make_dict(self.xk, self.pk)

Modified: trunk/Lib/tests/test_basic.py
===================================================================
--- trunk/Lib/tests/test_basic.py	2006-08-29 03:40:28 UTC (rev 2181)
+++ trunk/Lib/tests/test_basic.py	2006-08-29 07:22:11 UTC (rev 2182)
@@ -273,7 +273,7 @@
         b = [[3,6.0, 9.0],
              [4,10.0,5.0],
              [8,3.0,2.0]]
-        assert_equal(ptp(b),[5.0,7.0,7.0])
+        assert_equal(ptp(b,axis=0),[5.0,7.0,7.0])
         assert_equal(ptp(b,axis=1),[6.0,6.0,6.0])
 
 




More information about the Scipy-svn mailing list