[Scipy-svn] r3678 - in trunk/scipy/optimize: . slsqp

scipy-svn at scipy.org scipy-svn at scipy.org
Mon Dec 17 15:13:46 EST 2007


Author: oliphant
Date: 2007-12-17 14:13:41 -0600 (Mon, 17 Dec 2007)
New Revision: 3678

Added:
   trunk/scipy/optimize/slsqp.py
   trunk/scipy/optimize/slsqp/
   trunk/scipy/optimize/slsqp/slsqp.pyf
   trunk/scipy/optimize/slsqp/slsqp_optmz.f
Modified:
   trunk/scipy/optimize/__init__.py
   trunk/scipy/optimize/setup.py
Log:
Added slsqp code contributed by Rob Falck in ticket #565 (and #566)

Modified: trunk/scipy/optimize/__init__.py
===================================================================
--- trunk/scipy/optimize/__init__.py	2007-12-17 15:59:22 UTC (rev 3677)
+++ trunk/scipy/optimize/__init__.py	2007-12-17 20:13:41 UTC (rev 3678)
@@ -13,6 +13,7 @@
 from cobyla import fmin_cobyla
 from nonlin import broyden1, broyden2, broyden3, broyden_generalized, \
     anderson, anderson2
+from slsqp import fmin_slsqp
 
 __all__ = filter(lambda s:not s.startswith('_'),dir())
 from numpy.testing import NumpyTest

Modified: trunk/scipy/optimize/setup.py
===================================================================
--- trunk/scipy/optimize/setup.py	2007-12-17 15:59:22 UTC (rev 3677)
+++ trunk/scipy/optimize/setup.py	2007-12-17 20:13:41 UTC (rev 3678)
@@ -38,6 +38,9 @@
     config.add_extension('minpack2',
                          sources=[join('minpack2',x) for x in sources])
 
+    sources = ['slsqp.pyf', 'slsqp_optmz.f']
+    config.add_extension('_slsqp', sources=[join('slsqp', x) for x in sources])
+
     config.add_data_dir('tests')
     return config
 

Added: trunk/scipy/optimize/slsqp/slsqp.pyf
===================================================================
--- trunk/scipy/optimize/slsqp/slsqp.pyf	2007-12-17 15:59:22 UTC (rev 3677)
+++ trunk/scipy/optimize/slsqp/slsqp.pyf	2007-12-17 20:13:41 UTC (rev 3678)
@@ -0,0 +1,30 @@
+!    -*- f90 -*-
+! Note: the context of this file is case sensitive.
+
+python module _slsqp ! in 
+    interface  ! in :slsqp
+        subroutine slsqp(m,meq,la,n,x,xl,xu,f,c,g,a,acc,iter,mode,w,l_w,jw,l_jw) ! in :slsqp:slsqp_optmz.f
+            integer :: m
+            integer :: meq
+            integer optional,check(len(c)>=la),depend(c) :: la=len(c)
+            integer optional,check(len(x)>=n),depend(x) :: n=len(x)
+            double precision dimension(n), intent(inout) :: x
+            double precision dimension(n),depend(n) :: xl
+            double precision dimension(n),depend(n) :: xu
+            double precision :: f
+            double precision dimension(la) :: c
+            double precision dimension(n + 1),depend(n) :: g
+            double precision dimension(la,n + 1),depend(la,n) :: a
+            double precision, intent(inout) :: acc
+            integer, intent(inout) :: iter
+            integer, intent(inout) :: mode
+            double precision dimension(l_w) :: w
+            integer optional,check(len(w)>=l_w),depend(w) :: l_w=len(w)
+            integer dimension(l_jw) :: jw
+            integer optional,check(len(jw)>=l_jw),depend(jw) :: l_jw=len(jw)
+        end subroutine slsqp
+    end interface 
+end python module slsqp
+
+! This file was auto-generated with f2py (version:2_3844).
+! See http://cens.ioc.ee/projects/f2py2e/


Property changes on: trunk/scipy/optimize/slsqp/slsqp.pyf
___________________________________________________________________
Name: svn:eol-style
   + native

Added: trunk/scipy/optimize/slsqp/slsqp_optmz.f
===================================================================
--- trunk/scipy/optimize/slsqp/slsqp_optmz.f	2007-12-17 15:59:22 UTC (rev 3677)
+++ trunk/scipy/optimize/slsqp/slsqp_optmz.f	2007-12-17 20:13:41 UTC (rev 3678)
@@ -0,0 +1,2080 @@
+************************************************************************
+*                              optimizer                               *
+************************************************************************
+
+      SUBROUTINE slsqp (m, meq, la, n, x, xl, xu, f, c, g, a,
+     *                  acc, iter, mode, w, l_w, jw, l_jw)
+
+C   SLSQP       S EQUENTIAL  L EAST  SQ UARES  P ROGRAMMING
+C            TO SOLVE GENERAL NONLINEAR OPTIMIZATION PROBLEMS
+
+C***********************************************************************
+C*                                                                     *
+C*                                                                     *
+C*            A NONLINEAR PROGRAMMING METHOD WITH                      *
+C*            QUADRATIC  PROGRAMMING  SUBPROBLEMS                      *
+C*                                                                     *
+C*                                                                     *
+C*  THIS SUBROUTINE SOLVES THE GENERAL NONLINEAR PROGRAMMING PROBLEM   *
+C*                                                                     *
+C*            MINIMIZE    F(X)                                         *
+C*                                                                     *
+C*            SUBJECT TO  C (X) .EQ. 0  ,  J = 1,...,MEQ               *
+C*                         J                                           *
+C*                                                                     *
+C*                        C (X) .GE. 0  ,  J = MEQ+1,...,M             *
+C*                         J                                           *
+C*                                                                     *
+C*                        XL .LE. X .LE. XU , I = 1,...,N.             *
+C*                          I      I       I                           *
+C*                                                                     *
+C*  THE ALGORITHM IMPLEMENTS THE METHOD OF HAN AND POWELL              *
+C*  WITH BFGS-UPDATE OF THE B-MATRIX AND L1-TEST FUNCTION              *
+C*  WITHIN THE STEPLENGTH ALGORITHM.                                   *
+C*                                                                     *
+C*    PARAMETER DESCRIPTION:                                           *
+C*    ( * MEANS THIS PARAMETER WILL BE CHANGED DURING CALCULATION )    *
+C*                                                                     *
+C*    M              IS THE TOTAL NUMBER OF CONSTRAINTS, M .GE. 0      *
+C*    MEQ            IS THE NUMBER OF EQUALITY CONSTRAINTS, MEQ .GE. 0 *
+C*    LA             SEE A, LA .GE. MAX(M,1)                           *
+C*    N              IS THE NUMBER OF VARIBLES, N .GE. 1               *
+C*  * X()            X() STORES THE CURRENT ITERATE OF THE N VECTOR X  *
+C*                   ON ENTRY X() MUST BE INITIALIZED. ON EXIT X()     *
+C*                   STORES THE SOLUTION VECTOR X IF MODE = 0.         *
+C*    XL()           XL() STORES AN N VECTOR OF LOWER BOUNDS XL TO X.  *
+C*    XU()           XU() STORES AN N VECTOR OF UPPER BOUNDS XU TO X.  *
+C*    F              IS THE VALUE OF THE OBJECTIVE FUNCTION.           *
+C*    C()            C() STORES THE M VECTOR C OF CONSTRAINTS,         *
+C*                   EQUALITY CONSTRAINTS (IF ANY) FIRST.              *
+C*                   DIMENSION OF C MUST BE GREATER OR EQUAL LA,       *
+C*                   which must be GREATER OR EQUAL MAX(1,M).          *
+C*    G()            G() STORES THE N VECTOR G OF PARTIALS OF THE      *
+C*                   OBJECTIVE FUNCTION; DIMENSION OF G MUST BE        *
+C*                   GREATER OR EQUAL N+1.                             *
+C*    A(),LA,M,N     THE LA BY N + 1 ARRAY A() STORES                  *
+C*                   THE M BY N MATRIX A OF CONSTRAINT NORMALS.        *
+C*                   A() HAS FIRST DIMENSIONING PARAMETER LA,          *
+C*                   WHICH MUST BE GREATER OR EQUAL MAX(1,M).          *
+C*    F,C,G,A        MUST ALL BE SET BY THE USER BEFORE EACH CALL.     *
+C*  * ACC            ABS(ACC) CONTROLS THE FINAL ACCURACY.             *
+C*                   IF ACC .LT. ZERO AN EXACT LINESEARCH IS PERFORMED,*
+C*                   OTHERWISE AN ARMIJO-TYPE LINESEARCH IS USED.      *
+C*  * ITER           PRESCRIBES THE MAXIMUM NUMBER OF ITERATIONS.      *
+C*                   ON EXIT ITER INDICATES THE NUMBER OF ITERATIONS.  *
+C*  * MODE           MODE CONTROLS CALCULATION:                        *
+C*                   REVERSE COMMUNICATION IS USED IN THE SENSE THAT   *
+C*                   THE PROGRAM IS INITIALIZED BY MODE = 0; THEN IT IS*
+C*                   TO BE CALLED REPEATEDLY BY THE USER UNTIL A RETURN*
+C*                   WITH MODE .NE. IABS(1) TAKES PLACE.               *
+C*                   IF MODE = -1 GRADIENTS HAVE TO BE CALCULATED,     *
+C*                   WHILE WITH MODE = 1 FUNCTIONS HAVE TO BE CALCULATED
+C*                   MODE MUST NOT BE CHANGED BETWEEN SUBSEQUENT CALLS *
+C*                   OF SQP.                                           *
+C*                   EVALUATION MODES:                                 *
+C*        MODE = -1: GRADIENT EVALUATION, (G&A)                        *
+C*                0: ON ENTRY: INITIALIZATION, (F,G,C&A)               *
+C*                   ON EXIT : REQUIRED ACCURACY FOR SOLUTION OBTAINED *
+C*                1: FUNCTION EVALUATION, (F&C)                        *
+C*                                                                     *
+C*                   FAILURE MODES:                                    *
+C*                2: NUMBER OF EQUALITY CONTRAINTS LARGER THAN N       *
+C*                3: MORE THAN 3*N ITERATIONS IN LSQ SUBPROBLEM        *
+C*                4: INEQUALITY CONSTRAINTS INCOMPATIBLE               *
+C*                5: SINGULAR MATRIX E IN LSQ SUBPROBLEM               *
+C*                6: SINGULAR MATRIX C IN LSQ SUBPROBLEM               *
+C*                7: RANK-DEFICIENT EQUALITY CONSTRAINT SUBPROBLEM HFTI*
+C*                8: POSITIVE DIRECTIONAL DERIVATIVE FOR LINESEARCH    *
+C*                9: MORE THAN ITER ITERATIONS IN SQP                  *
+C*             >=10: WORKING SPACE W OR JW TOO SMALL,                  *
+C*                   W SHOULD BE ENLARGED TO L_W=MODE/1000             *
+C*                   JW SHOULD BE ENLARGED TO L_JW=MODE-1000*L_W       *
+C*  * W(), L_W       W() IS A ONE DIMENSIONAL WORKING SPACE,           *
+C*                   THE LENGTH L_W OF WHICH SHOULD BE AT LEAST        *
+C*                   (3*N1+M)*(N1+1)                        for LSQ    *
+C*                  +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ         for LSI    *
+C*                  +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1       for LSEI   *
+C*                  + N1*N/2 + 2*M + 3*N + 3*N1 + 1         for SLSQPB *
+C*                   with MINEQ = M - MEQ + 2*N1  &  N1 = N+1          *
+C*        NOTICE:    FOR PROPER DIMENSIONING OF W IT IS RECOMMENDED TO *
+C*                   COPY THE FOLLOWING STATEMENTS INTO THE HEAD OF    *
+C*                   THE CALLING PROGRAM (AND REMOVE THE COMMENT C)    *
+c#######################################################################
+C     INTEGER LEN_W, LEN_JW, M, N, N1, MEQ, MINEQ
+C     PARAMETER (M=... , MEQ=... , N=...  )
+C     PARAMETER (N1= N+1, MINEQ= M-MEQ+N1+N1)
+C     PARAMETER (LEN_W=
+c    $           (3*N1+M)*(N1+1)
+c    $          +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ
+c    $          +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1
+c    $          +(N+1)*N/2 + 2*M + 3*N + 3*N1 + 1,
+c    $           LEN_JW=MINEQ)
+C     DOUBLE PRECISION W(LEN_W)
+C     INTEGER          JW(LEN_JW)
+c#######################################################################
+C*                   THE FIRST M+N+N*N1/2 ELEMENTS OF W MUST NOT BE    *
+C*                   CHANGED BETWEEN SUBSEQUENT CALLS OF SLSQP.        *
+C*                   ON RETURN W(1) ... W(M) CONTAIN THE MULTIPLIERS   *
+C*                   ASSOCIATED WITH THE GENERAL CONSTRAINTS, WHILE    *
+C*                   W(M+1) ... W(M+N(N+1)/2) STORE THE CHOLESKY FACTOR*
+C*                   L*D*L(T) OF THE APPROXIMATE HESSIAN OF THE        *
+C*                   LAGRANGIAN COLUMNWISE DENSE AS LOWER TRIANGULAR   *
+C*                   UNIT MATRIX L WITH D IN ITS 'DIAGONAL' and        *
+C*                   W(M+N(N+1)/2+N+2 ... W(M+N(N+1)/2+N+2+M+2N)       *
+C*                   CONTAIN THE MULTIPLIERS ASSOCIATED WITH ALL       *
+C*                   ALL CONSTRAINTS OF THE QUADRATIC PROGRAM FINDING  *
+C*                   THE SEARCH DIRECTION TO THE SOLUTION X*           *
+C*  * JW(), L_JW     JW() IS A ONE DIMENSIONAL INTEGER WORKING SPACE   *
+C*                   THE LENGTH L_JW OF WHICH SHOULD BE AT LEAST       *
+C*                   MINEQ                                             *
+C*                   with MINEQ = M - MEQ + 2*N1  &  N1 = N+1          *
+C*                                                                     *
+C*  THE USER HAS TO PROVIDE THE FOLLOWING SUBROUTINES:                 *
+C*     LDL(N,A,Z,SIG,W) :   UPDATE OF THE LDL'-FACTORIZATION.          *
+C*     LINMIN(A,B,F,TOL) :  LINESEARCH ALGORITHM IF EXACT = 1          *
+C*     LSQ(M,MEQ,LA,N,NC,C,D,A,B,XL,XU,X,LAMBDA,W,....) :              *
+C*                                                                     *
+C*        SOLUTION OF THE QUADRATIC PROGRAM                            *
+C*                QPSOL IS RECOMMENDED:                                *
+C*     PE GILL, W MURRAY, MA SAUNDERS, MH WRIGHT:                      *
+C*     USER'S GUIDE FOR SOL/QPSOL:                                     *
+C*     A FORTRAN PACKAGE FOR QUADRATIC PROGRAMMING,                    *
+C*     TECHNICAL REPORT SOL 83-7, JULY 1983                            *
+C*     DEPARTMENT OF OPERATIONS RESEARCH, STANFORD UNIVERSITY          *
+C*     STANFORD, CA 94305                                              *
+C*     QPSOL IS THE MOST ROBUST AND EFFICIENT QP-SOLVER                *
+C*     AS IT ALLOWS WARM STARTS WITH PROPER WORKING SETS               *
+C*                                                                     *
+C*     IF IT IS NOT AVAILABLE USE LSEI, A CONSTRAINT LINEAR LEAST      *
+C*     SQUARES SOLVER IMPLEMENTED USING THE SOFTWARE HFTI, LDP, NNLS   *
+C*     FROM C.L. LAWSON, R.J.HANSON: SOLVING LEAST SQUARES PROBLEMS,   *
+C*     PRENTICE HALL, ENGLEWOOD CLIFFS, 1974.                          *
+C*     LSEI COMES WITH THIS PACKAGE, together with all necessary SR's. *
+C*                                                                     *
+C*     TOGETHER WITH A COUPLE OF SUBROUTINES FROM BLAS LEVEL 1         *
+C*                                                                     *
+C*     SQP IS HEAD SUBROUTINE FOR BODY SUBROUTINE SQPBDY               *
+C*     IN WHICH THE ALGORITHM HAS BEEN IMPLEMENTED.                    *
+C*                                                                     *
+C*  IMPLEMENTED BY: DIETER KRAFT, DFVLR OBERPFAFFENHOFEN               *
+C*  as described in Dieter Kraft: A Software Package for               *
+C*                                Sequential Quadratic Programming     *
+C*                                DFVLR-FB 88-28, 1988                 *
+C*  which should be referenced if the user publishes results of SLSQP  *
+C*                                                                     *
+C*  DATE:           APRIL - OCTOBER, 1981.                             *
+C*  STATUS:         DECEMBER, 31-ST, 1984.                             *
+C*  STATUS:         MARCH   , 21-ST, 1987, REVISED TO FORTAN 77        *
+C*  STATUS:         MARCH   , 20-th, 1989, REVISED TO MS-FORTRAN       *
+C*  STATUS:         APRIL   , 14-th, 1989, HESSE   in-line coded       *
+C*  STATUS:         FEBRUARY, 28-th, 1991, FORTRAN/2 Version 1.04      *
+C*                                         accepts Statement Functions *
+C*  STATUS:         MARCH   ,  1-st, 1991, tested with SALFORD         *
+C*                                         FTN77/386 COMPILER VERS 2.40*
+C*                                         in protected mode           *
+C*                                                                     *
+C***********************************************************************
+C*                                                                     *
+C*  Copyright 1991: Dieter Kraft, FHM                                  *
+C*                                                                     *
+C***********************************************************************
+
+      INTEGER          il, im, ir, is, iter, iu, iv, iw, ix, l_w, l_jw,
+     *                 jw(l_jw), la, m, meq, mineq, mode, n, n1
+
+      DOUBLE PRECISION acc, a(la,n+1), c(la), f, g(n+1),
+     *                 x(n), xl(n), xu(n), w(l_w)
+
+c     dim(W) =         N1*(N1+1) + MEQ*(N1+1) + MINEQ*(N1+1)  for LSQ
+c                    +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ          for LSI
+c                    +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1        for LSEI
+c                    + N1*N/2 + 2*M + 3*N +3*N1 + 1           for SLSQPB
+c                      with MINEQ = M - MEQ + 2*N1  &  N1 = N+1
+
+C   CHECK LENGTH OF WORKING ARRAYS
+
+      n1 = n+1
+      mineq = m-meq+n1+n1
+      il = (3*n1+m)*(n1+1) +
+     .(n1-meq+1)*(mineq+2) + 2*mineq +
+     .(n1+mineq)*(n1-meq)  + 2*meq +
+     .n1*n/2 + 2*m + 3*n + 4*n1 + 1
+      im = MAX(mineq, n1-meq)
+      IF (l_w .LT. il .OR. l_jw .LT. im) THEN
+          mode = 1000*MAX(10,il)
+          mode = mode+MAX(10,im)
+          RETURN
+      ENDIF
+
+C   PREPARE DATA FOR CALLING SQPBDY  -  INITIAL ADDRESSES IN W
+
+      im = 1
+      il = im + MAX(1,m)
+      il = im + la
+      ix = il + n1*n/2 + 1
+      ir = ix + n
+      is = ir + n + n + MAX(1,m)
+      is = ir + n + n + la
+      iu = is + n1
+      iv = iu + n1
+      iw = iv + n1
+
+      CALL slsqpb  (m, meq, la, n, x, xl, xu, f, c, g, a, acc, iter,
+     * mode, w(ir), w(il), w(ix), w(im), w(is), w(iu), w(iv), w(iw), jw)
+
+      END
+
+      SUBROUTINE slsqpb (m, meq, la, n, x, xl, xu, f, c, g, a, acc,
+     *                   iter, mode, r, l, x0, mu, s, u, v, w, iw)
+
+C   NONLINEAR PROGRAMMING BY SOLVING SEQUENTIALLY QUADRATIC PROGRAMS
+
+C        -  L1 - LINE SEARCH,  POSITIVE DEFINITE  BFGS UPDATE  -
+
+C                      BODY SUBROUTINE FOR SLSQP
+
+      INTEGER          iw(*), i, iexact, incons, ireset, iter, itermx,
+     *                 k, j, la, line, m, meq, mode, n, n1, n2, n3
+
+      DOUBLE PRECISION a(la,n+1), c(la), g(n+1), l((n+1)*(n+2)/2),
+     *                 mu(la), r(m+n+n+2), s(n+1), u(n+1), v(n+1), w(*),
+     *                 x(n), xl(n), xu(n), x0(n),
+     *                 ddot_sl, dnrm2_, linmin,
+     *                 acc, alfmin, alpha, f, f0, gs, h1, h2, h3, h4,
+     *                 hun, one, t, t0, ten, tol, two, ZERO
+
+c     dim(W) =         N1*(N1+1) + MEQ*(N1+1) + MINEQ*(N1+1)  for LSQ
+c                     +(N1-MEQ+1)*(MINEQ+2) + 2*MINEQ
+c                     +(N1+MINEQ)*(N1-MEQ) + 2*MEQ + N1       for LSEI
+c                      with MINEQ = M - MEQ + 2*N1  &  N1 = N+1
+
+      SAVE             alpha, f0, gs, h1, h2, h3, h4, t, t0, tol,
+     *                 iexact, incons, ireset, itermx, line, n1, n2, n3
+
+      DATA             ZERO /0.0d0/, one /1.0d0/, alfmin /1.0d-1/,
+     *                 hun /1.0d+2/, ten /1.0d+1/, two /2.0d0/
+
+      IF (mode) 260, 100, 220
+
+  100 itermx = iter
+      IF (acc.GE.ZERO) THEN
+          iexact = 0
+      ELSE
+          iexact = 1
+      ENDIF
+      acc = ABS(acc)
+      tol = ten*acc
+      iter = 0
+      ireset = 0
+      n1 = n + 1
+      n2 = n1*n/2
+      n3 = n2 + 1
+      s(1) = ZERO
+      mu(1) = ZERO
+      CALL dcopy_(n, s(1),  0, s,  1)
+      CALL dcopy_(m, mu(1), 0, mu, 1)
+
+C   RESET BFGS MATRIX
+
+  110 ireset = ireset + 1
+      IF (ireset.GT.5) GO TO 255
+      l(1) = ZERO
+      CALL dcopy_(n2, l(1), 0, l, 1)
+      j = 1
+      DO 120 i=1,n
+         l(j) = one
+         j = j + n1 - i
+  120 CONTINUE
+
+C   MAIN ITERATION : SEARCH DIRECTION, STEPLENGTH, LDL'-UPDATE
+
+  130 iter = iter + 1
+      mode = 9
+      IF (iter.GT.itermx) GO TO 330
+
+C   SEARCH DIRECTION AS SOLUTION OF QP - SUBPROBLEM
+
+      CALL dcopy_(n, xl, 1, u, 1)
+      CALL dcopy_(n, xu, 1, v, 1)
+      CALL daxpy_sl(n, -one, x, 1, u, 1)
+      CALL daxpy_sl(n, -one, x, 1, v, 1)
+      h4 = one
+      CALL lsq (m, meq, n , n3, la, l, g, a, c, u, v, s, r, w, iw, mode)
+
+C   AUGMENTED PROBLEM FOR INCONSISTENT LINEARIZATION
+
+      IF (mode.EQ.6) THEN
+          IF (n.EQ.meq) THEN
+              mode = 4
+          ENDIF
+      ENDIF
+      IF (mode.EQ.4) THEN
+          DO 140 j=1,m
+             IF (j.LE.meq) THEN
+                 a(j,n1) = -c(j)
+             ELSE
+                 a(j,n1) = MAX(-c(j),ZERO)
+             ENDIF
+  140     CONTINUE
+          s(1) = ZERO
+          CALL dcopy_(n, s(1), 0, s, 1)
+          h3 = ZERO
+          g(n1) = ZERO
+          l(n3) = hun
+          s(n1) = one
+          u(n1) = ZERO
+          v(n1) = one
+          incons = 0
+  150     CALL lsq (m, meq, n1, n3, la, l, g, a, c, u, v, s, r,
+     *              w, iw, mode)
+          h4 = one - s(n1)
+          IF (mode.EQ.4) THEN
+              l(n3) = ten*l(n3)
+              incons = incons + 1
+              IF (incons.GT.5) GO TO 330
+              GOTO 150
+          ELSE IF (mode.NE.1) THEN
+              GOTO 330
+          ENDIF
+      ELSE IF (mode.NE.1) THEN
+          GOTO 330
+      ENDIF
+
+C   UPDATE MULTIPLIERS FOR L1-TEST
+
+      DO 160 i=1,n
+         v(i) = g(i) - ddot_sl(m,a(1,i),1,r,1)
+  160 CONTINUE
+      f0 = f
+      CALL dcopy_(n, x, 1, x0, 1)
+      gs = ddot_sl(n, g, 1, s, 1)
+      h1 = ABS(gs)
+      h2 = ZERO
+      DO 170 j=1,m
+         IF (j.LE.meq) THEN
+             h3 = c(j)
+         ELSE
+             h3 = ZERO
+         ENDIF
+         h2 = h2 + MAX(-c(j),h3)
+         h3 = ABS(r(j))
+         mu(j) = MAX(h3,(mu(j)+h3)/two)
+         h1 = h1 + h3*ABS(c(j))
+  170 CONTINUE
+
+C   CHECK CONVERGENCE
+
+      mode = 0
+      IF (h1.LT.acc .AND. h2.LT.acc) GO TO 330
+      h1 = ZERO
+      DO 180 j=1,m
+         IF (j.LE.meq) THEN
+             h3 = c(j)
+         ELSE
+             h3 = ZERO
+         ENDIF
+         h1 = h1 + mu(j)*MAX(-c(j),h3)
+  180 CONTINUE
+      t0 = f + h1
+      h3 = gs - h1*h4
+      mode = 8
+      IF (h3.GE.ZERO) GO TO 110
+
+C   LINE SEARCH WITH AN L1-TESTFUNCTION
+
+      line = 0
+      alpha = one
+      IF (iexact.EQ.1) GOTO 210
+
+C   INEXACT LINESEARCH
+
+  190     line = line + 1
+          h3 = alpha*h3
+          CALL dscal_sl(n, alpha, s, 1)
+          CALL dcopy_(n, x0, 1, x, 1)
+          CALL daxpy_sl(n, one, s, 1, x, 1)
+          mode = 1
+          GO TO 330
+  200         IF (h1.LE.h3/ten .OR. line.GT.10) GO TO 240
+              alpha = MAX(h3/(two*(h3-h1)),alfmin)
+              GO TO 190
+
+C   EXACT LINESEARCH
+
+  210 IF (line.NE.3) THEN
+          alpha = linmin(line,alfmin,one,t,tol)
+          CALL dcopy_(n, x0, 1, x, 1)
+          CALL daxpy_sl(n, alpha, s, 1, x, 1)
+          mode = 1
+          GOTO 330
+      ENDIF
+      CALL dscal_sl(n, alpha, s, 1)
+      GOTO 240
+
+C   CALL FUNCTIONS AT CURRENT X
+
+  220     t = f
+          DO 230 j=1,m
+             IF (j.LE.meq) THEN
+                 h1 = c(j)
+             ELSE
+                 h1 = ZERO
+             ENDIF
+             t = t + mu(j)*MAX(-c(j),h1)
+  230     CONTINUE
+          h1 = t - t0
+          GOTO (200, 210) iexact+1
+
+C   CHECK CONVERGENCE
+
+  240 h3 = ZERO
+      DO 250 j=1,m
+         IF (j.LE.meq) THEN
+             h1 = c(j)
+         ELSE
+             h1 = ZERO
+         ENDIF
+         h3 = h3 + MAX(-c(j),h1)
+  250 CONTINUE
+      IF ((ABS(f-f0).LT.acc .OR. dnrm2_(n,s,1).LT.acc) .AND. h3.LT.acc)
+     *   THEN
+            mode = 0
+         ELSE
+            mode = -1
+         ENDIF
+      GO TO 330
+
+C   CHECK relaxed CONVERGENCE in case of positive directional derivative
+
+  255 CONTINUE
+      IF ((ABS(f-f0).LT.tol .OR. dnrm2_(n,s,1).LT.tol) .AND. h3.LT.tol)
+     *   THEN
+            mode = 0
+         ELSE
+            mode = 8
+         ENDIF
+      GO TO 330
+
+C   CALL JACOBIAN AT CURRENT X
+
+C   UPDATE CHOLESKY-FACTORS OF HESSIAN MATRIX BY MODIFIED BFGS FORMULA
+
+  260 DO 270 i=1,n
+         u(i) = g(i) - ddot_sl(m,a(1,i),1,r,1) - v(i)
+  270 CONTINUE
+
+C   L'*S
+
+      k = 0
+      DO 290 i=1,n
+         h1 = ZERO
+         k = k + 1
+         DO 280 j=i+1,n
+            k = k + 1
+            h1 = h1 + l(k)*s(j)
+  280    CONTINUE
+         v(i) = s(i) + h1
+  290 CONTINUE
+
+C   D*L'*S
+
+      k = 1
+      DO 300 i=1,n
+         v(i) = l(k)*v(i)
+         k = k + n1 - i
+  300 CONTINUE
+
+C   L*D*L'*S
+
+      DO 320 i=n,1,-1
+         h1 = ZERO
+         k = i
+         DO 310 j=1,i - 1
+            h1 = h1 + l(k)*v(j)
+            k = k + n - j
+  310    CONTINUE
+         v(i) = v(i) + h1
+  320 CONTINUE
+
+      h1 = ddot_sl(n,s,1,u,1)
+      h2 = ddot_sl(n,s,1,v,1)
+      h3 = 0.2d0*h2
+      IF (h1.LT.h3) THEN
+          h4 = (h2-h3)/(h2-h1)
+          h1 = h3
+          CALL dscal_sl(n, h4, u, 1)
+          CALL daxpy_sl(n, one-h4, v, 1, u, 1)
+      ENDIF
+      CALL ldl(n, l, u, +one/h1, v)
+      CALL ldl(n, l, v, -one/h2, u)
+
+C   END OF MAIN ITERATION
+
+      GO TO 130
+
+C   END OF SLSQPB
+
+  330 END
+
+
+      SUBROUTINE lsq(m,meq,n,nl,la,l,g,a,b,xl,xu,x,y,w,jw,mode)
+
+C   MINIMIZE with respect to X
+
+C             ||E*X - F||
+C                                      1/2  T
+C   WITH UPPER TRIANGULAR MATRIX E = +D   *L ,
+
+C                                      -1/2  -1
+C                     AND VECTOR F = -D    *L  *G,
+
+C  WHERE THE UNIT LOWER TRIDIANGULAR MATRIX L IS STORED COLUMNWISE
+C  DENSE IN THE N*(N+1)/2 ARRAY L WITH VECTOR D STORED IN ITS
+C 'DIAGONAL' THUS SUBSTITUTING THE ONE-ELEMENTS OF L
+
+C   SUBJECT TO
+
+C             A(J)*X - B(J) = 0 ,         J=1,...,MEQ,
+C             A(J)*X - B(J) >=0,          J=MEQ+1,...,M,
+C             XL(I) <= X(I) <= XU(I),     I=1,...,N,
+C     ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS L, G, A, B, XL, XU.
+C     WITH DIMENSIONS: L(N*(N+1)/2), G(N), A(LA,N), B(M), XL(N), XU(N)
+C     THE WORKING ARRAY W MUST HAVE AT LEAST THE FOLLOWING DIMENSION:
+c     DIM(W) =        (3*N+M)*(N+1)                        for LSQ
+c                    +(N-MEQ+1)*(MINEQ+2) + 2*MINEQ        for LSI
+c                    +(N+MINEQ)*(N-MEQ) + 2*MEQ + N        for LSEI
+c                      with MINEQ = M - MEQ + 2*N
+C     ON RETURN, NO ARRAY WILL BE CHANGED BY THE SUBROUTINE.
+C     X     STORES THE N-DIMENSIONAL SOLUTION VECTOR
+C     Y     STORES THE VECTOR OF LAGRANGE MULTIPLIERS OF DIMENSION
+C           M+N+N (CONSTRAINTS+LOWER+UPPER BOUNDS)
+C     MODE  IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
+C          MODE=1: SUCCESSFUL COMPUTATION
+C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
+C               3: ITERATION COUNT EXCEEDED BY NNLS
+C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE
+C               5: MATRIX E IS NOT OF FULL RANK
+C               6: MATRIX C IS NOT OF FULL RANK
+C               7: RANK DEFECT IN HFTI
+
+c     coded            Dieter Kraft, april 1987
+c     revised                        march 1989
+
+      DOUBLE PRECISION l,g,a,b,w,xl,xu,x,y,
+     .                 diag,ZERO,one,ddot_sl,xnorm
+
+      INTEGER          jw(*),i,ic,id,ie,IF,ig,ih,il,im,ip,iu,iw,
+     .                 i1,i2,i3,i4,la,m,meq,mineq,mode,m1,n,nl,n1,n2,n3
+
+      DIMENSION        a(la,n), b(la), g(n), l(nl),
+     .                 w(*), x(n), xl(n), xu(n), y(m+n+n)
+
+      DATA             ZERO/0.0d0/, one/1.0d0/
+
+      n1 = n + 1
+      mineq = m - meq
+      m1 = mineq + n + n
+
+c  determine whether to solve problem
+c  with inconsistent linerarization (n2=1)
+c  or not (n2=0)
+
+      n2 = n1*n/2 + 1
+      IF (n2.EQ.nl) THEN
+          n2 = 0
+      ELSE
+          n2 = 1
+      ENDIF
+      n3 = n-n2
+
+C  RECOVER MATRIX E AND VECTOR F FROM L AND G
+
+      i2 = 1
+      i3 = 1
+      i4 = 1
+      ie = 1
+      IF = n*n+1
+      DO 10 i=1,n3
+         i1 = n1-i
+         diag = SQRT (l(i2))
+         w(i3) = ZERO
+         CALL dcopy_ (i1  ,  w(i3), 0, w(i3), 1)
+         CALL dcopy_ (i1-n2, l(i2), 1, w(i3), n)
+         CALL dscal_sl (i1-n2,     diag, w(i3), n)
+         w(i3) = diag
+         w(IF-1+i) = (g(i) - ddot_sl (i-1, w(i4), 1, w(IF), 1))/diag
+         i2 = i2 + i1 - n2
+         i3 = i3 + n1
+         i4 = i4 + n
+   10 CONTINUE
+      IF (n2.EQ.1) THEN
+          w(i3) = l(nl)
+          w(i4) = ZERO
+          CALL dcopy_ (n3, w(i4), 0, w(i4), 1)
+          w(IF-1+n) = ZERO
+      ENDIF
+      CALL dscal_sl (n, - one, w(IF), 1)
+
+      ic = IF + n
+      id = ic + meq*n
+
+      IF (meq .GT. 0) THEN
+
+C  RECOVER MATRIX C FROM UPPER PART OF A
+
+          DO 20 i=1,meq
+              CALL dcopy_ (n, a(i,1), la, w(ic-1+i), meq)
+   20     CONTINUE
+
+C  RECOVER VECTOR D FROM UPPER PART OF B
+
+          CALL dcopy_ (meq, b(1), 1, w(id), 1)
+          CALL dscal_sl (meq,   - one, w(id), 1)
+
+      ENDIF
+
+      ig = id + meq
+
+      IF (mineq .GT. 0) THEN
+
+C  RECOVER MATRIX G FROM LOWER PART OF A
+
+          DO 30 i=1,mineq
+              CALL dcopy_ (n, a(meq+i,1), la, w(ig-1+i), m1)
+   30     CONTINUE
+
+      ENDIF
+
+C  AUGMENT MATRIX G BY +I AND -I
+
+      ip = ig + mineq
+      DO 40 i=1,n
+         w(ip-1+i) = ZERO
+         CALL dcopy_ (n, w(ip-1+i), 0, w(ip-1+i), m1)
+   40 CONTINUE
+      w(ip) = one
+      CALL dcopy_ (n, w(ip), 0, w(ip), m1+1)
+
+      im = ip + n
+      DO 50 i=1,n
+         w(im-1+i) = ZERO
+         CALL dcopy_ (n, w(im-1+i), 0, w(im-1+i), m1)
+   50 CONTINUE
+      w(im) = -one
+      CALL dcopy_ (n, w(im), 0, w(im), m1+1)
+
+      ih = ig + m1*n
+
+      IF (mineq .GT. 0) THEN
+
+C  RECOVER H FROM LOWER PART OF B
+
+          CALL dcopy_ (mineq, b(meq+1), 1, w(ih), 1)
+          CALL dscal_sl (mineq,       - one, w(ih), 1)
+
+      ENDIF
+
+C  AUGMENT VECTOR H BY XL AND XU
+
+      il = ih + mineq
+      CALL dcopy_ (n, xl, 1, w(il), 1)
+      iu = il + n
+      CALL dcopy_ (n, xu, 1, w(iu), 1)
+      CALL dscal_sl (n, - one, w(iu), 1)
+
+      iw = iu + n
+
+      CALL lsei (w(ic), w(id), w(ie), w(IF), w(ig), w(ih), MAX(1,meq),
+     .           meq, n, n, m1, m1, n, x, xnorm, w(iw), jw, mode)
+
+      IF (mode .EQ. 1) THEN
+
+c   restore Lagrange multipliers
+
+          CALL dcopy_ (m,  w(iw),     1, y(1),      1)
+          CALL dcopy_ (n3, w(iw+m),   1, y(m+1),    1)
+          CALL dcopy_ (n3, w(iw+m+n), 1, y(m+n3+1), 1)
+
+      ENDIF
+
+C   END OF SUBROUTINE LSQ
+
+      END
+
+
+      SUBROUTINE lsei(c,d,e,f,g,h,lc,mc,LE,me,lg,mg,n,x,xnrm,w,jw,mode)
+
+C     FOR MODE=1, THE SUBROUTINE RETURNS THE SOLUTION X OF
+C     EQUALITY & INEQUALITY CONSTRAINED LEAST SQUARES PROBLEM LSEI :
+
+C                MIN ||E*X - F||
+C                 X
+
+C                S.T.  C*X  = D,
+C                      G*X >= H.
+
+C     USING QR DECOMPOSITION & ORTHOGONAL BASIS OF NULLSPACE OF C
+C     CHAPTER 23.6 OF LAWSON & HANSON: SOLVING LEAST SQUARES PROBLEMS.
+
+C     THE FOLLOWING DIMENSIONS OF THE ARRAYS DEFINING THE PROBLEM
+C     ARE NECESSARY
+C     DIM(E) :   FORMAL (LE,N),    ACTUAL (ME,N)
+C     DIM(F) :   FORMAL (LE  ),    ACTUAL (ME  )
+C     DIM(C) :   FORMAL (LC,N),    ACTUAL (MC,N)
+C     DIM(D) :   FORMAL (LC  ),    ACTUAL (MC  )
+C     DIM(G) :   FORMAL (LG,N),    ACTUAL (MG,N)
+C     DIM(H) :   FORMAL (LG  ),    ACTUAL (MG  )
+C     DIM(X) :   FORMAL (N   ),    ACTUAL (N   )
+C     DIM(W) :   2*MC+ME+(ME+MG)*(N-MC)  for LSEI
+C              +(N-MC+1)*(MG+2)+2*MG     for LSI
+C     DIM(JW):   MAX(MG,L)
+C     ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS C, D, E, F, G, AND H.
+C     ON RETURN, ALL ARRAYS WILL BE CHANGED BY THE SUBROUTINE.
+C     X     STORES THE SOLUTION VECTOR
+C     XNORM STORES THE RESIDUUM OF THE SOLUTION IN EUCLIDIAN NORM
+C     W     STORES THE VECTOR OF LAGRANGE MULTIPLIERS IN ITS FIRST
+C           MC+MG ELEMENTS
+C     MODE  IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
+C          MODE=1: SUCCESSFUL COMPUTATION
+C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
+C               3: ITERATION COUNT EXCEEDED BY NNLS
+C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE
+C               5: MATRIX E IS NOT OF FULL RANK
+C               6: MATRIX C IS NOT OF FULL RANK
+C               7: RANK DEFECT IN HFTI
+
+C     18.5.1981, DIETER KRAFT, DFVLR OBERPFAFFENHOFEN
+C     20.3.1987, DIETER KRAFT, DFVLR OBERPFAFFENHOFEN
+
+      INTEGER          jw(*),i,ie,IF,ig,iw,j,k,krank,l,lc,LE,lg,
+     .                 mc,mc1,me,mg,mode,n
+      DOUBLE PRECISION c(lc,n),e(LE,n),g(lg,n),d(lc),f(LE),h(lg),x(n),
+     .                 w(*),t,ddot_sl,xnrm,dnrm2_,epmach,ZERO
+      DATA             epmach/2.22d-16/,ZERO/0.0d+00/
+
+      mode=2
+      IF(mc.GT.n)                      GOTO 75
+      l=n-mc
+      mc1=mc+1
+      iw=(l+1)*(mg+2)+2*mg+mc
+      ie=iw+mc+1
+      IF=ie+me*l
+      ig=IF+me
+
+C  TRIANGULARIZE C AND APPLY FACTORS TO E AND G
+
+      DO 10 i=1,mc
+          j=MIN(i+1,lc)
+          CALL h12(1,i,i+1,n,c(i,1),lc,w(iw+i),c(j,1),lc,1,mc-i)
+          CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),e     ,LE,1,me)
+   10     CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),g     ,lg,1,mg)
+
+C  SOLVE C*X=D AND MODIFY F
+
+      mode=6
+      DO 15 i=1,mc
+          IF(ABS(c(i,i)).LT.epmach)    GOTO 75
+          x(i)=(d(i)-ddot_sl(i-1,c(i,1),lc,x,1))/c(i,i)
+   15 CONTINUE
+      mode=1
+      w(mc1) = ZERO
+      CALL dcopy_ (mg-mc,w(mc1),0,w(mc1),1)
+
+      IF(mc.EQ.n)                      GOTO 50
+
+      DO 20 i=1,me
+   20     w(IF-1+i)=f(i)-ddot_sl(mc,e(i,1),LE,x,1)
+
+C  STORE TRANSFORMED E & G
+
+      DO 25 i=1,me
+   25     CALL dcopy_(l,e(i,mc1),LE,w(ie-1+i),me)
+      DO 30 i=1,mg
+   30     CALL dcopy_(l,g(i,mc1),lg,w(ig-1+i),mg)
+
+      IF(mg.GT.0)                      GOTO 40
+
+C  SOLVE LS WITHOUT INEQUALITY CONSTRAINTS
+
+      mode=7
+      k=MAX(LE,n)
+      t=SQRT(epmach)
+      CALL hfti (w(ie),me,me,l,w(IF),k,1,t,krank,xnrm,w,w(l+1),jw)
+      CALL dcopy_(l,w(IF),1,x(mc1),1)
+      IF(krank.NE.l)                   GOTO 75
+      mode=1
+                                       GOTO 50
+C  MODIFY H AND SOLVE INEQUALITY CONSTRAINED LS PROBLEM
+
+   40 DO 45 i=1,mg
+   45     h(i)=h(i)-ddot_sl(mc,g(i,1),lg,x,1)
+      CALL lsi
+     . (w(ie),w(IF),w(ig),h,me,me,mg,mg,l,x(mc1),xnrm,w(mc1),jw,mode)
+      IF(mc.EQ.0)                      GOTO 75
+      t=dnrm2_(mc,x,1)
+      xnrm=SQRT(xnrm*xnrm+t*t)
+      IF(mode.NE.1)                    GOTO 75
+
+C  SOLUTION OF ORIGINAL PROBLEM AND LAGRANGE MULTIPLIERS
+
+   50 DO 55 i=1,me
+   55     f(i)=ddot_sl(n,e(i,1),LE,x,1)-f(i)
+      DO 60 i=1,mc
+   60     d(i)=ddot_sl(me,e(1,i),1,f,1)-ddot_sl(mg,g(1,i),1,w(mc1),1)
+
+      DO 65 i=mc,1,-1
+   65     CALL h12(2,i,i+1,n,c(i,1),lc,w(iw+i),x,1,1,1)
+
+      DO 70 i=mc,1,-1
+          j=MIN(i+1,lc)
+          w(i)=(d(i)-ddot_sl(mc-i,c(j,i),1,w(j),1))/c(i,i)
+   70 CONTINUE
+
+C  END OF SUBROUTINE LSEI
+
+   75                                  END
+
+
+      SUBROUTINE lsi(e,f,g,h,LE,me,lg,mg,n,x,xnorm,w,jw,mode)
+
+C     FOR MODE=1, THE SUBROUTINE RETURNS THE SOLUTION X OF
+C     INEQUALITY CONSTRAINED LINEAR LEAST SQUARES PROBLEM:
+
+C                    MIN ||E*X-F||
+C                     X
+
+C                    S.T.  G*X >= H
+
+C     THE ALGORITHM IS BASED ON QR DECOMPOSITION AS DESCRIBED IN
+C     CHAPTER 23.5 OF LAWSON & HANSON: SOLVING LEAST SQUARES PROBLEMS
+
+C     THE FOLLOWING DIMENSIONS OF THE ARRAYS DEFINING THE PROBLEM
+C     ARE NECESSARY
+C     DIM(E) :   FORMAL (LE,N),    ACTUAL (ME,N)
+C     DIM(F) :   FORMAL (LE  ),    ACTUAL (ME  )
+C     DIM(G) :   FORMAL (LG,N),    ACTUAL (MG,N)
+C     DIM(H) :   FORMAL (LG  ),    ACTUAL (MG  )
+C     DIM(X) :   N
+C     DIM(W) :   (N+1)*(MG+2) + 2*MG
+C     DIM(JW):   LG
+C     ON ENTRY, THE USER HAS TO PROVIDE THE ARRAYS E, F, G, AND H.
+C     ON RETURN, ALL ARRAYS WILL BE CHANGED BY THE SUBROUTINE.
+C     X     STORES THE SOLUTION VECTOR
+C     XNORM STORES THE RESIDUUM OF THE SOLUTION IN EUCLIDIAN NORM
+C     W     STORES THE VECTOR OF LAGRANGE MULTIPLIERS IN ITS FIRST
+C           MG ELEMENTS
+C     MODE  IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANINGS:
+C          MODE=1: SUCCESSFUL COMPUTATION
+C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N<1)
+C               3: ITERATION COUNT EXCEEDED BY NNLS
+C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE
+C               5: MATRIX E IS NOT OF FULL RANK
+
+C     03.01.1980, DIETER KRAFT: CODED
+C     20.03.1987, DIETER KRAFT: REVISED TO FORTRAN 77
+
+      INTEGER          i,j,LE,lg,me,mg,mode,n,jw(lg)
+      DOUBLE PRECISION e(LE,n),f(LE),g(lg,n),h(lg),x(n),w(*),
+     .                 ddot_sl,xnorm,dnrm2_,epmach,t,one
+      DATA             epmach/2.22d-16/,one/1.0d+00/
+
+C  QR-FACTORS OF E AND APPLICATION TO F
+
+      DO 10 i=1,n
+      j=MIN(i+1,n)
+      CALL h12(1,i,i+1,me,e(1,i),1,t,e(1,j),1,LE,n-i)
+   10 CALL h12(2,i,i+1,me,e(1,i),1,t,f     ,1,1 ,1  )
+
+C  TRANSFORM G AND H TO GET LEAST DISTANCE PROBLEM
+
+      mode=5
+      DO 30 i=1,mg
+          DO 20 j=1,n
+              IF (ABS(e(j,j)).LT.epmach) GOTO 50
+   20         g(i,j)=(g(i,j)-ddot_sl(j-1,g(i,1),lg,e(1,j),1))/e(j,j)
+   30     h(i)=h(i)-ddot_sl(n,g(i,1),lg,f,1)
+
+C  SOLVE LEAST DISTANCE PROBLEM
+
+      CALL ldp(g,lg,mg,n,h,x,xnorm,w,jw,mode)
+      IF (mode.NE.1)                     GOTO 50
+
+C  SOLUTION OF ORIGINAL PROBLEM
+
+      CALL daxpy_sl(n,one,f,1,x,1)
+      DO 40 i=n,1,-1
+          j=MIN(i+1,n)
+   40     x(i)=(x(i)-ddot_sl(n-i,e(i,j),LE,x(j),1))/e(i,i)
+      j=MIN(n+1,me)
+      t=dnrm2_(me-n,f(j),1)
+      xnorm=SQRT(xnorm*xnorm+t*t)
+
+C  END OF SUBROUTINE LSI
+
+   50                                    END
+
+      SUBROUTINE ldp(g,mg,m,n,h,x,xnorm,w,INDEX,mode)
+
+C                     T
+C     MINIMIZE   1/2 X X    SUBJECT TO   G * X >= H.
+
+C       C.L. LAWSON, R.J. HANSON: 'SOLVING LEAST SQUARES PROBLEMS'
+C       PRENTICE HALL, ENGLEWOOD CLIFFS, NEW JERSEY, 1974.
+
+C     PARAMETER DESCRIPTION:
+
+C     G(),MG,M,N   ON ENTRY G() STORES THE M BY N MATRIX OF
+C                  LINEAR INEQUALITY CONSTRAINTS. G() HAS FIRST
+C                  DIMENSIONING PARAMETER MG
+C     H()          ON ENTRY H() STORES THE M VECTOR H REPRESENTING
+C                  THE RIGHT SIDE OF THE INEQUALITY SYSTEM
+
+C     REMARK: G(),H() WILL NOT BE CHANGED DURING CALCULATIONS BY LDP
+
+C     X()          ON ENTRY X() NEED NOT BE INITIALIZED.
+C                  ON EXIT X() STORES THE SOLUTION VECTOR X IF MODE=1.
+C     XNORM        ON EXIT XNORM STORES THE EUCLIDIAN NORM OF THE
+C                  SOLUTION VECTOR IF COMPUTATION IS SUCCESSFUL
+C     W()          W IS A ONE DIMENSIONAL WORKING SPACE, THE LENGTH
+C                  OF WHICH SHOULD BE AT LEAST (M+2)*(N+1) + 2*M
+C                  ON EXIT W() STORES THE LAGRANGE MULTIPLIERS
+C                  ASSOCIATED WITH THE CONSTRAINTS
+C                  AT THE SOLUTION OF PROBLEM LDP
+C     INDEX()      INDEX() IS A ONE DIMENSIONAL INTEGER WORKING SPACE
+C                  OF LENGTH AT LEAST M
+C     MODE         MODE IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING
+C                  MEANINGS:
+C          MODE=1: SUCCESSFUL COMPUTATION
+C               2: ERROR RETURN BECAUSE OF WRONG DIMENSIONS (N.LE.0)
+C               3: ITERATION COUNT EXCEEDED BY NNLS
+C               4: INEQUALITY CONSTRAINTS INCOMPATIBLE
+
+      DOUBLE PRECISION g,h,x,xnorm,w,u,v,
+     .                 ZERO,one,fac,rnorm,dnrm2_,ddot_sl,diff
+      INTEGER          INDEX,i,IF,iw,iwdual,iy,iz,j,m,mg,mode,n,n1
+      DIMENSION        g(mg,n),h(m),x(n),w(*),INDEX(m)
+      diff(u,v)=       u-v
+      DATA             ZERO,one/0.0d0,1.0d0/
+
+      mode=2
+      IF(n.LE.0)                    GOTO 50
+
+C  STATE DUAL PROBLEM
+
+      mode=1
+      x(1)=ZERO
+      CALL dcopy_(n,x(1),0,x,1)
+      xnorm=ZERO
+      IF(m.EQ.0)                    GOTO 50
+      iw=0
+      DO 20 j=1,m
+          DO 10 i=1,n
+              iw=iw+1
+   10         w(iw)=g(j,i)
+          iw=iw+1
+   20     w(iw)=h(j)
+      IF=iw+1
+      DO 30 i=1,n
+          iw=iw+1
+   30     w(iw)=ZERO
+      w(iw+1)=one
+      n1=n+1
+      iz=iw+2
+      iy=iz+n1
+      iwdual=iy+m
+
+C  SOLVE DUAL PROBLEM
+
+      CALL nnls (w,n1,n1,m,w(IF),w(iy),rnorm,w(iwdual),w(iz),INDEX,mode)
+
+      IF(mode.NE.1)                 GOTO 50
+      mode=4
+      IF(rnorm.LE.ZERO)             GOTO 50
+
+C  COMPUTE SOLUTION OF PRIMAL PROBLEM
+
+      fac=one-ddot_sl(m,h,1,w(iy),1)
+      IF(diff(one+fac,one).LE.ZERO) GOTO 50
+      mode=1
+      fac=one/fac
+      DO 40 j=1,n
+   40     x(j)=fac*ddot_sl(m,g(1,j),1,w(iy),1)
+      xnorm=dnrm2_(n,x,1)
+
+C  COMPUTE LAGRANGE MULTIPLIERS FOR PRIMAL PROBLEM
+
+      w(1)=ZERO
+      CALL dcopy_(m,w(1),0,w,1)
+      CALL daxpy_sl(m,fac,w(iy),1,w,1)
+
+C  END OF SUBROUTINE LDP
+
+   50                               END
+
+
+      SUBROUTINE nnls (a, mda, m, n, b, x, rnorm, w, z, INDEX, mode)
+
+C     C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY:
+C     'SOLVING LEAST SQUARES PROBLEMS'. PRENTICE-HALL.1974
+
+C      **********   NONNEGATIVE LEAST SQUARES   **********
+
+C     GIVEN AN M BY N MATRIX, A, AND AN M-VECTOR, B, COMPUTE AN
+C     N-VECTOR, X, WHICH SOLVES THE LEAST SQUARES PROBLEM
+
+C                  A*X = B  SUBJECT TO  X >= 0
+
+C     A(),MDA,M,N
+C            MDA IS THE FIRST DIMENSIONING PARAMETER FOR THE ARRAY,A().
+C            ON ENTRY A()  CONTAINS THE M BY N MATRIX,A.
+C            ON EXIT A() CONTAINS THE PRODUCT Q*A,
+C            WHERE Q IS AN M BY M ORTHOGONAL MATRIX GENERATED
+C            IMPLICITLY BY THIS SUBROUTINE.
+C            EITHER M>=N OR M<N IS PERMISSIBLE.
+C            THERE IS NO RESTRICTION ON THE RANK OF A.
+C     B()    ON ENTRY B() CONTAINS THE M-VECTOR, B.
+C            ON EXIT B() CONTAINS Q*B.
+C     X()    ON ENTRY X() NEED NOT BE INITIALIZED.
+C            ON EXIT X() WILL CONTAIN THE SOLUTION VECTOR.
+C     RNORM  ON EXIT RNORM CONTAINS THE EUCLIDEAN NORM OF THE
+C            RESIDUAL VECTOR.
+C     W()    AN N-ARRAY OF WORKING SPACE.
+C            ON EXIT W() WILL CONTAIN THE DUAL SOLUTION VECTOR.
+C            W WILL SATISFY W(I)=0 FOR ALL I IN SET P
+C            AND W(I)<=0 FOR ALL I IN SET Z
+C     Z()    AN M-ARRAY OF WORKING SPACE.
+C     INDEX()AN INTEGER WORKING ARRAY OF LENGTH AT LEAST N.
+C            ON EXIT THE CONTENTS OF THIS ARRAY DEFINE THE SETS
+C            P AND Z AS FOLLOWS:
+C            INDEX(1)    THRU INDEX(NSETP) = SET P.
+C            INDEX(IZ1)  THRU INDEX (IZ2)  = SET Z.
+C            IZ1=NSETP + 1 = NPP1, IZ2=N.
+C     MODE   THIS IS A SUCCESS-FAILURE FLAG WITH THE FOLLOWING MEANING:
+C            1    THE SOLUTION HAS BEEN COMPUTED SUCCESSFULLY.
+C            2    THE DIMENSIONS OF THE PROBLEM ARE WRONG,
+C                 EITHER M <= 0 OR N <= 0.
+C            3    ITERATION COUNT EXCEEDED, MORE THAN 3*N ITERATIONS.
+
+      INTEGER          i,ii,ip,iter,itmax,iz,izmax,iz1,iz2,j,jj,jz,
+     *                 k,l,m,mda,mode,n,npp1,nsetp,INDEX(n)
+
+      DOUBLE PRECISION a(mda,n),b(m),x(n),w(n),z(m),asave,diff,
+     *                 factor,ddot_sl,ZERO,one,wmax,alpha,
+     *                 c,s,t,u,v,up,rnorm,unorm,dnrm2_
+
+      diff(u,v)=       u-v
+
+      DATA             ZERO,one,factor/0.0d0,1.0d0,1.0d-2/
+
+c     revised          Dieter Kraft, March 1983
+
+      mode=2
+      IF(m.LE.0.OR.n.LE.0)            GOTO 290
+      mode=1
+      iter=0
+      itmax=3*n
+
+C STEP ONE (INITIALIZE)
+
+      DO 100 i=1,n
+  100    INDEX(i)=i
+      iz1=1
+      iz2=n
+      nsetp=0
+      npp1=1
+      x(1)=ZERO
+      CALL dcopy_(n,x(1),0,x,1)
+
+C STEP TWO (COMPUTE DUAL VARIABLES)
+C .....ENTRY LOOP A
+
+  110 IF(iz1.GT.iz2.OR.nsetp.GE.m)    GOTO 280
+      DO 120 iz=iz1,iz2
+         j=INDEX(iz)
+  120    w(j)=ddot_sl(m-nsetp,a(npp1,j),1,b(npp1),1)
+
+C STEP THREE (TEST DUAL VARIABLES)
+
+  130 wmax=ZERO
+      DO 140 iz=iz1,iz2
+      j=INDEX(iz)
+         IF(w(j).LE.wmax)             GOTO 140
+         wmax=w(j)
+         izmax=iz
+  140 CONTINUE
+
+C .....EXIT LOOP A
+
+      IF(wmax.LE.ZERO)                GOTO 280
+      iz=izmax
+      j=INDEX(iz)
+
+C STEP FOUR (TEST INDEX J FOR LINEAR DEPENDENCY)
+
+      asave=a(npp1,j)
+      CALL h12(1,npp1,npp1+1,m,a(1,j),1,up,z,1,1,0)
+      unorm=dnrm2_(nsetp,a(1,j),1)
+      t=factor*ABS(a(npp1,j))
+      IF(diff(unorm+t,unorm).LE.ZERO) GOTO 150
+      CALL dcopy_(m,b,1,z,1)
+      CALL h12(2,npp1,npp1+1,m,a(1,j),1,up,z,1,1,1)
+      IF(z(npp1)/a(npp1,j).GT.ZERO)   GOTO 160
+  150 a(npp1,j)=asave
+      w(j)=ZERO
+                                      GOTO 130
+C STEP FIVE (ADD COLUMN)
+
+  160 CALL dcopy_(m,z,1,b,1)
+      INDEX(iz)=INDEX(iz1)
+      INDEX(iz1)=j
+      iz1=iz1+1
+      nsetp=npp1
+      npp1=npp1+1
+      DO 170 jz=iz1,iz2
+         jj=INDEX(jz)
+  170    CALL h12(2,nsetp,npp1,m,a(1,j),1,up,a(1,jj),1,mda,1)
+      k=MIN(npp1,mda)
+      w(j)=ZERO
+      CALL dcopy_(m-nsetp,w(j),0,a(k,j),1)
+
+C STEP SIX (SOLVE LEAST SQUARES SUB-PROBLEM)
+C .....ENTRY LOOP B
+
+  180 DO 200 ip=nsetp,1,-1
+         IF(ip.EQ.nsetp)              GOTO 190
+         CALL daxpy_sl(ip,-z(ip+1),a(1,jj),1,z,1)
+  190    jj=INDEX(ip)
+  200    z(ip)=z(ip)/a(ip,jj)
+      iter=iter+1
+      IF(iter.LE.itmax)               GOTO 220
+  210 mode=3
+                                      GOTO 280
+C STEP SEVEN TO TEN (STEP LENGTH ALGORITHM)
+
+  220 alpha=one
+      jj=0
+      DO 230 ip=1,nsetp
+         IF(z(ip).GT.ZERO)            GOTO 230
+         l=INDEX(ip)
+         t=-x(l)/(z(ip)-x(l))
+         IF(alpha.LT.t)               GOTO 230
+         alpha=t
+         jj=ip
+  230 CONTINUE
+      DO 240 ip=1,nsetp
+         l=INDEX(ip)
+  240    x(l)=(one-alpha)*x(l) + alpha*z(ip)
+
+C .....EXIT LOOP B
+
+      IF(jj.EQ.0)                     GOTO 110
+
+C STEP ELEVEN (DELETE COLUMN)
+
+      i=INDEX(jj)
+  250 x(i)=ZERO
+      jj=jj+1
+      DO 260 j=jj,nsetp
+         ii=INDEX(j)
+         INDEX(j-1)=ii
+         CALL dsrotg(a(j-1,ii),a(j,ii),c,s)
+         t=a(j-1,ii)
+         CALL dsrot(n,a(j-1,1),mda,a(j,1),mda,c,s)
+         a(j-1,ii)=t
+         a(j,ii)=ZERO
+  260    CALL dsrot(1,b(j-1),1,b(j),1,c,s)
+      npp1=nsetp
+      nsetp=nsetp-1
+      iz1=iz1-1
+      INDEX(iz1)=i
+      IF(nsetp.LE.0)                  GOTO 210
+      DO 270 jj=1,nsetp
+         i=INDEX(jj)
+         IF(x(i).LE.ZERO)             GOTO 250
+  270 CONTINUE
+      CALL dcopy_(m,b,1,z,1)
+                                      GOTO 180
+C STEP TWELVE (SOLUTION)
+
+  280 k=MIN(npp1,m)
+      rnorm=dnrm2_(m-nsetp,b(k),1)
+      IF(npp1.GT.m) THEN
+         w(1)=ZERO
+         CALL dcopy_(n,w(1),0,w,1)
+      ENDIF
+
+C END OF SUBROUTINE NNLS
+
+  290                                 END
+
+      SUBROUTINE hfti(a,mda,m,n,b,mdb,nb,tau,krank,rnorm,h,g,ip)
+
+C     RANK-DEFICIENT LEAST SQUARES ALGORITHM AS DESCRIBED IN:
+C     C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12
+C     TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974
+
+C     A(*,*),MDA,M,N   THE ARRAY A INITIALLY CONTAINS THE M x N MATRIX A
+C                      OF THE LEAST SQUARES PROBLEM AX = B.
+C                      THE FIRST DIMENSIONING PARAMETER MDA MUST SATISFY
+C                      MDA >= M. EITHER M >= N OR M < N IS PERMITTED.
+C                      THERE IS NO RESTRICTION ON THE RANK OF A.
+C                      THE MATRIX A WILL BE MODIFIED BY THE SUBROUTINE.
+C     B(*,*),MDB,NB    IF NB = 0 THE SUBROUTINE WILL MAKE NO REFERENCE
+C                      TO THE ARRAY B. IF NB > 0 THE ARRAY B() MUST
+C                      INITIALLY CONTAIN THE M x NB MATRIX B  OF THE
+C                      THE LEAST SQUARES PROBLEM AX = B AND ON RETURN
+C                      THE ARRAY B() WILL CONTAIN THE N x NB SOLUTION X.
+C                      IF NB>1 THE ARRAY B() MUST BE DOUBLE SUBSCRIPTED
+C                      WITH FIRST DIMENSIONING PARAMETER MDB>=MAX(M,N),
+C                      IF NB=1 THE ARRAY B() MAY BE EITHER SINGLE OR
+C                      DOUBLE SUBSCRIPTED.
+C     TAU              ABSOLUTE TOLERANCE PARAMETER FOR PSEUDORANK
+C                      DETERMINATION, PROVIDED BY THE USER.
+C     KRANK            PSEUDORANK OF A, SET BY THE SUBROUTINE.
+C     RNORM            ON EXIT, RNORM(J) WILL CONTAIN THE EUCLIDIAN
+C                      NORM OF THE RESIDUAL VECTOR FOR THE PROBLEM
+C                      DEFINED BY THE J-TH COLUMN VECTOR OF THE ARRAY B.
+C     H(), G()         ARRAYS OF WORKING SPACE OF LENGTH >= N.
+C     IP()             INTEGER ARRAY OF WORKING SPACE OF LENGTH >= N
+C                      RECORDING PERMUTATION INDICES OF COLUMN VECTORS
+
+      INTEGER          i,j,jb,k,kp1,krank,l,ldiag,lmax,m,
+     .                 mda,mdb,n,nb,ip(n)
+      DOUBLE PRECISION a(mda,n),b(mdb,nb),h(n),g(n),rnorm(nb),factor,
+     .                 tau,ZERO,hmax,diff,tmp,ddot_sl,dnrm2_,u,v
+      diff(u,v)=       u-v
+      DATA             ZERO/0.0d0/, factor/1.0d-3/
+
+      k=0
+      ldiag=MIN(m,n)
+      IF(ldiag.LE.0)                  GOTO 270
+
+C   COMPUTE LMAX
+
+      DO 80 j=1,ldiag
+          IF(j.EQ.1)                  GOTO 20
+          lmax=j
+          DO 10 l=j,n
+              h(l)=h(l)-a(j-1,l)**2
+   10         IF(h(l).GT.h(lmax)) lmax=l
+          IF(diff(hmax+factor*h(lmax),hmax).GT.ZERO)
+     .                                GOTO 50
+   20     lmax=j
+          DO 40 l=j,n
+              h(l)=ZERO
+              DO 30 i=j,m
+   30             h(l)=h(l)+a(i,l)**2
+   40         IF(h(l).GT.h(lmax)) lmax=l
+          hmax=h(lmax)
+
+C   COLUMN INTERCHANGES IF NEEDED
+
+   50     ip(j)=lmax
+          IF(ip(j).EQ.j)              GOTO 70
+          DO 60 i=1,m
+              tmp=a(i,j)
+              a(i,j)=a(i,lmax)
+   60         a(i,lmax)=tmp
+          h(lmax)=h(j)
+
+C   J-TH TRANSFORMATION AND APPLICATION TO A AND B
+
+   70     i=MIN(j+1,n)
+          CALL h12(1,j,j+1,m,a(1,j),1,h(j),a(1,i),1,mda,n-j)
+   80     CALL h12(2,j,j+1,m,a(1,j),1,h(j),b,1,mdb,nb)
+
+C   DETERMINE PSEUDORANK
+
+      DO 90 j=1,ldiag
+   90     IF(ABS(a(j,j)).LE.tau)      GOTO 100
+      k=ldiag
+      GOTO 110
+  100 k=j-1
+  110 kp1=k+1
+
+C   NORM OF RESIDUALS
+
+      DO 130 jb=1,nb
+  130     rnorm(jb)=dnrm2_(m-k,b(kp1,jb),1)
+      IF(k.GT.0)                      GOTO 160
+      DO 150 jb=1,nb
+          DO 150 i=1,n
+  150         b(i,jb)=ZERO
+      GOTO 270
+  160 IF(k.EQ.n)                      GOTO 180
+
+C   HOUSEHOLDER DECOMPOSITION OF FIRST K ROWS
+
+      DO 170 i=k,1,-1
+  170     CALL h12(1,i,kp1,n,a(i,1),mda,g(i),a,mda,1,i-1)
+  180 DO 250 jb=1,nb
+
+C   SOLVE K*K TRIANGULAR SYSTEM
+
+          DO 210 i=k,1,-1
+              j=MIN(i+1,n)
+  210         b(i,jb)=(b(i,jb)-ddot_sl(k-i,a(i,j),mda,b(j,jb),1))/a(i,i)
+
+C   COMPLETE SOLUTION VECTOR
+
+          IF(k.EQ.n)                  GOTO 240
+          DO 220 j=kp1,n
+  220         b(j,jb)=ZERO
+          DO 230 i=1,k
+  230         CALL h12(2,i,kp1,n,a(i,1),mda,g(i),b(1,jb),1,mdb,1)
+
+C   REORDER SOLUTION ACCORDING TO PREVIOUS COLUMN INTERCHANGES
+
+  240     DO 250 j=ldiag,1,-1
+              IF(ip(j).EQ.j)          GOTO 250
+              l=ip(j)
+              tmp=b(l,jb)
+              b(l,jb)=b(j,jb)
+              b(j,jb)=tmp
+  250 CONTINUE
+  270 krank=k
+      END
+
+      SUBROUTINE h12 (mode,lpivot,l1,m,u,iue,up,c,ice,icv,ncv)
+
+C     C.L.LAWSON AND R.J.HANSON, JET PROPULSION LABORATORY, 1973 JUN 12
+C     TO APPEAR IN 'SOLVING LEAST SQUARES PROBLEMS', PRENTICE-HALL, 1974
+
+C     CONSTRUCTION AND/OR APPLICATION OF A SINGLE
+C     HOUSEHOLDER TRANSFORMATION  Q = I + U*(U**T)/B
+
+C     MODE    = 1 OR 2   TO SELECT ALGORITHM  H1  OR  H2 .
+C     LPIVOT IS THE INDEX OF THE PIVOT ELEMENT.
+C     L1,M   IF L1 <= M   THE TRANSFORMATION WILL BE CONSTRUCTED TO
+C            ZERO ELEMENTS INDEXED FROM L1 THROUGH M.
+C            IF L1 > M THE SUBROUTINE DOES AN IDENTITY TRANSFORMATION.
+C     U(),IUE,UP
+C            ON ENTRY TO H1 U() STORES THE PIVOT VECTOR.
+C            IUE IS THE STORAGE INCREMENT BETWEEN ELEMENTS.
+C            ON EXIT FROM H1 U() AND UP STORE QUANTITIES DEFINING
+C            THE VECTOR U OF THE HOUSEHOLDER TRANSFORMATION.
+C            ON ENTRY TO H2 U() AND UP
+C            SHOULD STORE QUANTITIES PREVIOUSLY COMPUTED BY H1.
+C            THESE WILL NOT BE MODIFIED BY H2.
+C     C()    ON ENTRY TO H1 OR H2 C() STORES A MATRIX WHICH WILL BE
+C            REGARDED AS A SET OF VECTORS TO WHICH THE HOUSEHOLDER
+C            TRANSFORMATION IS TO BE APPLIED.
+C            ON EXIT C() STORES THE SET OF TRANSFORMED VECTORS.
+C     ICE    STORAGE INCREMENT BETWEEN ELEMENTS OF VECTORS IN C().
+C     ICV    STORAGE INCREMENT BETWEEN VECTORS IN C().
+C     NCV    NUMBER OF VECTORS IN C() TO BE TRANSFORMED.
+C            IF NCV <= 0 NO OPERATIONS WILL BE DONE ON C().
+
+      INTEGER          incr, ice, icv, iue, lpivot, l1, mode, ncv
+      INTEGER          i, i2, i3, i4, j, m
+      DOUBLE PRECISION u,up,c,cl,clinv,b,sm,one,ZERO
+      DIMENSION        u(iue,*), c(*)
+      DATA             one/1.0d+00/, ZERO/0.0d+00/
+
+      IF (0.GE.lpivot.OR.lpivot.GE.l1.OR.l1.GT.m) GOTO 80
+      cl=ABS(u(1,lpivot))
+      IF (mode.EQ.2)                              GOTO 30
+
+C     ****** CONSTRUCT THE TRANSFORMATION ******
+
+          DO 10 j=l1,m
+             sm=ABS(u(1,j))
+   10     cl=MAX(sm,cl)
+      IF (cl.LE.ZERO)                             GOTO 80
+      clinv=one/cl
+      sm=(u(1,lpivot)*clinv)**2
+          DO 20 j=l1,m
+   20     sm=sm+(u(1,j)*clinv)**2
+      cl=cl*SQRT(sm)
+      IF (u(1,lpivot).GT.ZERO) cl=-cl
+      up=u(1,lpivot)-cl
+      u(1,lpivot)=cl
+                                                  GOTO 40
+C     ****** APPLY THE TRANSFORMATION  I+U*(U**T)/B  TO C ******
+
+   30 IF (cl.LE.ZERO)                             GOTO 80
+   40 IF (ncv.LE.0)                               GOTO 80
+      b=up*u(1,lpivot)
+      IF (b.GE.ZERO)                              GOTO 80
+      b=one/b
+      i2=1-icv+ice*(lpivot-1)
+      incr=ice*(l1-lpivot)
+          DO 70 j=1,ncv
+          i2=i2+icv
+          i3=i2+incr
+          i4=i3
+          sm=c(i2)*up
+              DO 50 i=l1,m
+              sm=sm+c(i3)*u(1,i)
+   50         i3=i3+ice
+          IF (sm.EQ.ZERO)                         GOTO 70
+          sm=sm*b
+          c(i2)=c(i2)+sm*up
+              DO 60 i=l1,m
+              c(i4)=c(i4)+sm*u(1,i)
+   60         i4=i4+ice
+   70     CONTINUE
+   80                                             END
+
+      SUBROUTINE ldl (n,a,z,sigma,w)
+C   LDL     LDL' - RANK-ONE - UPDATE
+
+C   PURPOSE:
+C           UPDATES THE LDL' FACTORS OF MATRIX A BY RANK-ONE MATRIX
+C           SIGMA*Z*Z'
+
+C   INPUT ARGUMENTS: (* MEANS PARAMETERS ARE CHANGED DURING EXECUTION)
+C     N     : ORDER OF THE COEFFICIENT MATRIX A
+C   * A     : POSITIVE DEFINITE MATRIX OF DIMENSION N;
+C             ONLY THE LOWER TRIANGLE IS USED AND IS STORED COLUMN BY
+C             COLUMN AS ONE DIMENSIONAL ARRAY OF DIMENSION N*(N+1)/2.
+C   * Z     : VECTOR OF DIMENSION N OF UPDATING ELEMENTS
+C     SIGMA : SCALAR FACTOR BY WHICH THE MODIFYING DYADE Z*Z' IS
+C             MULTIPLIED
+
+C   OUTPUT ARGUMENTS:
+C     A     : UPDATED LDL' FACTORS
+
+C   WORKING ARRAY:
+C     W     : VECTOR OP DIMENSION N (USED ONLY IF SIGMA .LT. ZERO)
+
+C   METHOD:
+C     THAT OF FLETCHER AND POWELL AS DESCRIBED IN :
+C     FLETCHER,R.,(1974) ON THE MODIFICATION OF LDL' FACTORIZATION.
+C     POWELL,M.J.D.      MATH.COMPUTATION 28, 1067-1078.
+
+C   IMPLEMENTED BY:
+C     KRAFT,D., DFVLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME
+C               D-8031  OBERPFAFFENHOFEN
+
+C   STATUS: 15. JANUARY 1980
+
+C   SUBROUTINES REQUIRED: NONE
+
+      INTEGER          i, ij, j, n
+      DOUBLE PRECISION a(*), t, v, w(*), z(*), u, tp, one, beta, four,
+     *                 ZERO, alpha, delta, gamma, sigma, epmach
+      DATA ZERO, one, four, epmach /0.0d0, 1.0d0, 4.0d0, 2.22d-16/
+
+      IF(sigma.EQ.ZERO)               GOTO 280
+      ij=1
+      t=one/sigma
+      IF(sigma.GT.ZERO)               GOTO 220
+C PREPARE NEGATIVE UPDATE
+      DO 150 i=1,n
+  150     w(i)=z(i)
+      DO 170 i=1,n
+          v=w(i)
+          t=t+v*v/a(ij)
+          DO 160 j=i+1,n
+              ij=ij+1
+  160         w(j)=w(j)-v*a(ij)
+  170     ij=ij+1
+      IF(t.GE.ZERO) t=epmach/sigma
+      DO 210 i=1,n
+          j=n+1-i
+          ij=ij-i
+          u=w(j)
+          w(j)=t
+  210     t=t-u*u/a(ij)
+  220 CONTINUE
+C HERE UPDATING BEGINS
+      DO 270 i=1,n
+          v=z(i)
+          delta=v/a(ij)
+          IF(sigma.LT.ZERO) tp=w(i)
+          IF(sigma.GT.ZERO) tp=t+delta*v
+          alpha=tp/t
+          a(ij)=alpha*a(ij)
+          IF(i.EQ.n)                  GOTO 280
+          beta=delta/tp
+          IF(alpha.GT.four)           GOTO 240
+          DO 230 j=i+1,n
+              ij=ij+1
+              z(j)=z(j)-v*a(ij)
+  230         a(ij)=a(ij)+beta*z(j)
+                                      GOTO 260
+  240     gamma=t/tp
+          DO 250 j=i+1,n
+              ij=ij+1
+              u=a(ij)
+              a(ij)=gamma*u+beta*z(j)
+  250         z(j)=z(j)-v*u
+  260     ij=ij+1
+  270     t=tp
+  280 RETURN
+C END OF LDL
+      END
+
+      DOUBLE PRECISION FUNCTION linmin (mode, ax, bx, f, tol)
+C   LINMIN  LINESEARCH WITHOUT DERIVATIVES
+
+C   PURPOSE:
+
+C  TO FIND THE ARGUMENT LINMIN WHERE THE FUNCTION F TAKES IT'S MINIMUM
+C  ON THE INTERVAL AX, BX.
+C  COMBINATION OF GOLDEN SECTION AND SUCCESSIVE QUADRATIC INTERPOLATION.
+
+C   INPUT ARGUMENTS: (* MEANS PARAMETERS ARE CHANGED DURING EXECUTION)
+
+C *MODE   SEE OUTPUT ARGUMENTS
+C  AX     LEFT ENDPOINT OF INITIAL INTERVAL
+C  BX     RIGHT ENDPOINT OF INITIAL INTERVAL
+C  F      FUNCTION VALUE AT LINMIN WHICH IS TO BE BROUGHT IN BY
+C         REVERSE COMMUNICATION CONTROLLED BY MODE
+C  TOL    DESIRED LENGTH OF INTERVAL OF UNCERTAINTY OF FINAL RESULT
+
+C   OUTPUT ARGUMENTS:
+
+C  LINMIN ABSCISSA APPROXIMATING THE POINT WHERE F ATTAINS A MINIMUM
+C  MODE   CONTROLS REVERSE COMMUNICATION
+C         MUST BE SET TO 0 INITIALLY, RETURNS WITH INTERMEDIATE
+C         VALUES 1 AND 2 WHICH MUST NOT BE CHANGED BY THE USER,
+C         ENDS WITH CONVERGENCE WITH VALUE 3.
+
+C   WORKING ARRAY:
+
+C  NONE
+
+C   METHOD:
+
+C  THIS FUNCTION SUBPROGRAM IS A SLIGHTLY MODIFIED VERSION OF THE
+C  ALGOL 60 PROCEDURE LOCALMIN GIVEN IN
+C  R.P. BRENT: ALGORITHMS FOR MINIMIZATION WITHOUT DERIVATIVES,
+C              PRENTICE-HALL (1973).
+
+C   IMPLEMENTED BY:
+
+C     KRAFT, D., DFVLR - INSTITUT FUER DYNAMIK DER FLUGSYSTEME
+C                D-8031  OBERPFAFFENHOFEN
+
+C   STATUS: 31. AUGUST  1984
+
+C   SUBROUTINES REQUIRED: NONE
+
+      INTEGER          mode
+      DOUBLE PRECISION f, tol, a, b, c, d, e, p, q, r, u, v, w, x, m,
+     &                 fu, fv, fw, fx, eps, tol1, tol2, ZERO, ax, bx
+      DATA             c /0.381966011d0/, eps /1.5d-8/, ZERO /0.0d0/
+
+C  EPS = SQUARE - ROOT OF MACHINE PRECISION
+C  C = GOLDEN SECTION RATIO = (3-SQRT(5))/2
+
+      GOTO (10, 55), mode
+
+C  INITIALIZATION
+
+      a = ax
+      b = bx
+      e = ZERO
+      v = a + c*(b - a)
+      w = v
+      x = w
+      linmin = x
+      mode = 1
+      GOTO 100
+
+C  MAIN LOOP STARTS HERE
+
+   10 fx = f
+      fv = fx
+      fw = fv
+   20 m = 0.5d0*(a + b)
+      tol1 = eps*ABS(x) + tol
+      tol2 = tol1 + tol1
+
+C  TEST CONVERGENCE
+
+      IF (ABS(x - m) .LE. tol2 - 0.5d0*(b - a)) GOTO 90
+      r = ZERO
+      q = r
+      p = q
+      IF (ABS(e) .LE. tol1) GOTO 30
+
+C  FIT PARABOLA
+
+      r = (x - w)*(fx - fv)
+      q = (x - v)*(fx - fw)
+      p = (x - v)*q - (x - w)*r
+      q = q - r
+      q = q + q
+      IF (q .GT. ZERO) p = -p
+      IF (q .LT. ZERO) q = -q
+      r = e
+      e = d
+
+C  IS PARABOLA ACCEPTABLE
+
+   30 IF (ABS(p) .GE. 0.5d0*ABS(q*r) .OR.
+     &    p .LE. q*(a - x) .OR. p .GE. q*(b-x)) GOTO 40
+
+C  PARABOLIC INTERPOLATION STEP
+
+      d = p/q
+
+C  F MUST NOT BE EVALUATED TOO CLOSE TO A OR B
+
+      IF (u - a .LT. tol2) d = SIGN(tol1, m - x)
+      IF (b - u .LT. tol2) d = SIGN(tol1, m - x)
+      GOTO 50
+
+C  GOLDEN SECTION STEP
+
+   40 IF (x .GE. m) e = a - x
+      IF (x .LT. m) e = b - x
+      d = c*e
+
+C  F MUST NOT BE EVALUATED TOO CLOSE TO X
+
+   50 IF (ABS(d) .LT. tol1) d = SIGN(tol1, d)
+      u = x + d
+      linmin = u
+      mode = 2
+      GOTO 100
+   55 fu = f
+
+C  UPDATE A, B, V, W, AND X
+
+      IF (fu .GT. fx) GOTO 60
+      IF (u .GE. x) a = x
+      IF (u .LT. x) b = x
+      v = w
+      fv = fw
+      w = x
+      fw = fx
+      x = u
+      fx = fu
+      GOTO 85
+   60 IF (u .LT. x) a = u
+      IF (u .GE. x) b = u
+      IF (fu .LE. fw .OR. w .EQ. x) GOTO 70
+      IF (fu .LE. fv .OR. v .EQ. x .OR. v .EQ. w) GOTO 80
+      GOTO 85
+   70 v = w
+      fv = fw
+      w = u
+      fw = fu
+      GOTO 85
+   80 v = u
+      fv = fu
+   85 GOTO 20
+
+C  END OF MAIN LOOP
+
+   90 linmin = x
+      mode = 3
+  100 RETURN
+
+C  END OF LINMIN
+
+      END
+
+C## Following a selection from BLAS Level 1
+
+      SUBROUTINE daxpy_sl(n,da,dx,incx,dy,incy)
+
+C     CONSTANT TIMES A VECTOR PLUS A VECTOR.
+C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+
+      DOUBLE PRECISION dx(*),dy(*),da
+      INTEGER i,incx,incy,ix,iy,m,mp1,n
+
+      IF(n.LE.0)RETURN
+      IF(da.EQ.0.0d0)RETURN
+      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
+
+C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
+C        NOT EQUAL TO 1
+
+      ix = 1
+      iy = 1
+      IF(incx.LT.0)ix = (-n+1)*incx + 1
+      IF(incy.LT.0)iy = (-n+1)*incy + 1
+      DO 10 i = 1,n
+        dy(iy) = dy(iy) + da*dx(ix)
+        ix = ix + incx
+        iy = iy + incy
+   10 CONTINUE
+      RETURN
+
+C        CODE FOR BOTH INCREMENTS EQUAL TO 1
+
+C        CLEAN-UP LOOP
+
+   20 m = MOD(n,4)
+      IF( m .EQ. 0 ) GO TO 40
+      DO 30 i = 1,m
+        dy(i) = dy(i) + da*dx(i)
+   30 CONTINUE
+      IF( n .LT. 4 ) RETURN
+   40 mp1 = m + 1
+      DO 50 i = mp1,n,4
+        dy(i) = dy(i) + da*dx(i)
+        dy(i + 1) = dy(i + 1) + da*dx(i + 1)
+        dy(i + 2) = dy(i + 2) + da*dx(i + 2)
+        dy(i + 3) = dy(i + 3) + da*dx(i + 3)
+   50 CONTINUE
+      RETURN
+      END
+
+      SUBROUTINE  dcopy_(n,dx,incx,dy,incy)
+
+C     COPIES A VECTOR, X, TO A VECTOR, Y.
+C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+
+      DOUBLE PRECISION dx(*),dy(*)
+      INTEGER i,incx,incy,ix,iy,m,mp1,n
+
+      IF(n.LE.0)RETURN
+      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
+
+C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
+C        NOT EQUAL TO 1
+
+      ix = 1
+      iy = 1
+      IF(incx.LT.0)ix = (-n+1)*incx + 1
+      IF(incy.LT.0)iy = (-n+1)*incy + 1
+      DO 10 i = 1,n
+        dy(iy) = dx(ix)
+        ix = ix + incx
+        iy = iy + incy
+   10 CONTINUE
+      RETURN
+
+C        CODE FOR BOTH INCREMENTS EQUAL TO 1
+
+C        CLEAN-UP LOOP
+
+   20 m = MOD(n,7)
+      IF( m .EQ. 0 ) GO TO 40
+      DO 30 i = 1,m
+        dy(i) = dx(i)
+   30 CONTINUE
+      IF( n .LT. 7 ) RETURN
+   40 mp1 = m + 1
+      DO 50 i = mp1,n,7
+        dy(i) = dx(i)
+        dy(i + 1) = dx(i + 1)
+        dy(i + 2) = dx(i + 2)
+        dy(i + 3) = dx(i + 3)
+        dy(i + 4) = dx(i + 4)
+        dy(i + 5) = dx(i + 5)
+        dy(i + 6) = dx(i + 6)
+   50 CONTINUE
+      RETURN
+      END
+
+      DOUBLE PRECISION FUNCTION ddot_sl(n,dx,incx,dy,incy)
+
+C     FORMS THE DOT PRODUCT OF TWO VECTORS.
+C     USES UNROLLED LOOPS FOR INCREMENTS EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+
+      DOUBLE PRECISION dx(*),dy(*),dtemp
+      INTEGER i,incx,incy,ix,iy,m,mp1,n
+
+      ddot_sl = 0.0d0
+      dtemp = 0.0d0
+      IF(n.LE.0)RETURN
+      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
+
+C        CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS
+C          NOT EQUAL TO 1
+
+      ix = 1
+      iy = 1
+      IF(incx.LT.0)ix = (-n+1)*incx + 1
+      IF(incy.LT.0)iy = (-n+1)*incy + 1
+      DO 10 i = 1,n
+        dtemp = dtemp + dx(ix)*dy(iy)
+        ix = ix + incx
+        iy = iy + incy
+   10 CONTINUE
+      ddot_sl = dtemp
+      RETURN
+
+C        CODE FOR BOTH INCREMENTS EQUAL TO 1
+
+C        CLEAN-UP LOOP
+
+   20 m = MOD(n,5)
+      IF( m .EQ. 0 ) GO TO 40
+      DO 30 i = 1,m
+        dtemp = dtemp + dx(i)*dy(i)
+   30 CONTINUE
+      IF( n .LT. 5 ) GO TO 60
+   40 mp1 = m + 1
+      DO 50 i = mp1,n,5
+        dtemp = dtemp + dx(i)*dy(i) + dx(i + 1)*dy(i + 1) +
+     *   dx(i + 2)*dy(i + 2) + dx(i + 3)*dy(i + 3) + dx(i + 4)*dy(i + 4)
+   50 CONTINUE
+   60 ddot_sl = dtemp
+      RETURN
+      END
+
+      DOUBLE PRECISION FUNCTION dnrm1(n,x,i,j)
+      INTEGER n, i, j, k
+      DOUBLE PRECISION snormx, sum, x(n), ZERO, one, scale, temp
+      DATA ZERO/0.0d0/, one/1.0d0/
+
+C      DNRM1 - COMPUTES THE I-NORM OF A VECTOR
+C              BETWEEN THE ITH AND THE JTH ELEMENTS
+
+C      INPUT -
+C      N       LENGTH OF VECTOR
+C      X       VECTOR OF LENGTH N
+C      I       INITIAL ELEMENT OF VECTOR TO BE USED
+C      J       FINAL ELEMENT TO USE
+
+C      OUTPUT -
+C      DNRM1   NORM
+
+      snormx=ZERO
+      DO 10 k=i,j
+ 10      snormx=MAX(snormx,ABS(x(k)))
+      dnrm1 = snormx
+      IF (snormx.EQ.ZERO) RETURN
+      scale = snormx
+      IF (snormx.GE.one) scale=SQRT(snormx)
+      sum=ZERO
+      DO 20 k=i,j
+         temp=ZERO
+         IF (ABS(x(k))+scale .NE. scale) temp = x(k)/snormx
+         IF (one+temp.NE.one) sum = sum+temp*temp
+ 20      CONTINUE
+      sum=SQRT(sum)
+      dnrm1=snormx*sum
+      RETURN
+      END
+
+      DOUBLE PRECISION FUNCTION dnrm2_ ( n, dx, incx)
+      INTEGER          n, i, j, nn, next, incx
+      DOUBLE PRECISION dx(*), cutlo, cuthi, hitest, sum, xmax, ZERO, one
+      DATA             ZERO, one /0.0d0, 1.0d0/
+
+C     EUCLIDEAN NORM OF THE N-VECTOR STORED IN DX() WITH STORAGE
+C     INCREMENT INCX .
+C     IF    N .LE. 0 RETURN WITH RESULT = 0.
+C     IF N .GE. 1 THEN INCX MUST BE .GE. 1
+
+C           C.L.LAWSON, 1978 JAN 08
+
+C     FOUR PHASE METHOD     USING TWO BUILT-IN CONSTANTS THAT ARE
+C     HOPEFULLY APPLICABLE TO ALL MACHINES.
+C         CUTLO = MAXIMUM OF  SQRT(U/EPS)   OVER ALL KNOWN MACHINES.
+C         CUTHI = MINIMUM OF  SQRT(V)       OVER ALL KNOWN MACHINES.
+C     WHERE
+C         EPS = SMALLEST NO. SUCH THAT EPS + 1. .GT. 1.
+C         U   = SMALLEST POSITIVE NO.   (UNDERFLOW LIMIT)
+C         V   = LARGEST  NO.            (OVERFLOW  LIMIT)
+
+C     BRIEF OUTLINE OF ALGORITHM..
+
+C     PHASE 1    SCANS ZERO COMPONENTS.
+C     MOVE TO PHASE 2 WHEN A COMPONENT IS NONZERO AND .LE. CUTLO
+C     MOVE TO PHASE 3 WHEN A COMPONENT IS .GT. CUTLO
+C     MOVE TO PHASE 4 WHEN A COMPONENT IS .GE. CUTHI/M
+C     WHERE M = N FOR X() REAL AND M = 2*N FOR COMPLEX.
+
+C     VALUES FOR CUTLO AND CUTHI..
+C     FROM THE ENVIRONMENTAL PARAMETERS LISTED IN THE IMSL CONVERTER
+C     DOCUMENT THE LIMITING VALUES ARE AS FOLLOWS..
+C     CUTLO, S.P.   U/EPS = 2**(-102) FOR  HONEYWELL.  CLOSE SECONDS ARE
+C                   UNIVAC AND DEC AT 2**(-103)
+C                   THUS CUTLO = 2**(-51) = 4.44089E-16
+C     CUTHI, S.P.   V = 2**127 FOR UNIVAC, HONEYWELL, AND DEC.
+C                   THUS CUTHI = 2**(63.5) = 1.30438E19
+C     CUTLO, D.P.   U/EPS = 2**(-67) FOR HONEYWELL AND DEC.
+C                   THUS CUTLO = 2**(-33.5) = 8.23181D-11
+C     CUTHI, D.P.   SAME AS S.P.  CUTHI = 1.30438D19
+C     DATA CUTLO, CUTHI / 8.232D-11,  1.304D19 /
+C     DATA CUTLO, CUTHI / 4.441E-16,  1.304E19 /
+      DATA cutlo, cuthi / 8.232d-11,  1.304d19 /
+
+      IF(n .GT. 0) GO TO 10
+         dnrm2_  = ZERO
+         GO TO 300
+
+   10 assign 30 to next
+      sum = ZERO
+      nn = n * incx
+C                       BEGIN MAIN LOOP
+      i = 1
+   20    GO TO next,(30, 50, 70, 110)
+   30 IF( ABS(dx(i)) .GT. cutlo) GO TO 85
+      assign 50 to next
+      xmax = ZERO
+
+C                        PHASE 1.  SUM IS ZERO
+
+   50 IF( dx(i) .EQ. ZERO) GO TO 200
+      IF( ABS(dx(i)) .GT. cutlo) GO TO 85
+
+C                        PREPARE FOR PHASE 2.
+
+      assign 70 to next
+      GO TO 105
+
+C                        PREPARE FOR PHASE 4.
+
+  100 i = j
+      assign 110 to next
+      sum = (sum / dx(i)) / dx(i)
+  105 xmax = ABS(dx(i))
+      GO TO 115
+
+C                   PHASE 2.  SUM IS SMALL.
+C                             SCALE TO AVOID DESTRUCTIVE UNDERFLOW.
+
+   70 IF( ABS(dx(i)) .GT. cutlo ) GO TO 75
+
+C                   COMMON CODE FOR PHASES 2 AND 4.
+C                   IN PHASE 4 SUM IS LARGE.  SCALE TO AVOID OVERFLOW.
+
+  110 IF( ABS(dx(i)) .LE. xmax ) GO TO 115
+         sum = one + sum * (xmax / dx(i))**2
+         xmax = ABS(dx(i))
+         GO TO 200
+
+  115 sum = sum + (dx(i)/xmax)**2
+      GO TO 200
+
+C                  PREPARE FOR PHASE 3.
+
+   75 sum = (sum * xmax) * xmax
+
+C     FOR REAL OR D.P. SET HITEST = CUTHI/N
+C     FOR COMPLEX      SET HITEST = CUTHI/(2*N)
+
+   85 hitest = cuthi/float( n )
+
+C                   PHASE 3.  SUM IS MID-RANGE.  NO SCALING.
+
+      DO 95 j =i,nn,incx
+      IF(ABS(dx(j)) .GE. hitest) GO TO 100
+   95    sum = sum + dx(j)**2
+      dnrm2_ = SQRT( sum )
+      GO TO 300
+
+  200 CONTINUE
+      i = i + incx
+      IF ( i .LE. nn ) GO TO 20
+
+C              END OF MAIN LOOP.
+
+C              COMPUTE SQUARE ROOT AND ADJUST FOR SCALING.
+
+      dnrm2_ = xmax * SQRT(sum)
+  300 CONTINUE
+      RETURN
+      END
+
+      SUBROUTINE  dsrot (n,dx,incx,dy,incy,c,s)
+
+C     APPLIES A PLANE ROTATION.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+
+      DOUBLE PRECISION dx(*),dy(*),dtemp,c,s
+      INTEGER i,incx,incy,ix,iy,n
+
+      IF(n.LE.0)RETURN
+      IF(incx.EQ.1.AND.incy.EQ.1)GO TO 20
+
+C       CODE FOR UNEQUAL INCREMENTS OR EQUAL INCREMENTS NOT EQUAL
+C         TO 1
+
+      ix = 1
+      iy = 1
+      IF(incx.LT.0)ix = (-n+1)*incx + 1
+      IF(incy.LT.0)iy = (-n+1)*incy + 1
+      DO 10 i = 1,n
+        dtemp = c*dx(ix) + s*dy(iy)
+        dy(iy) = c*dy(iy) - s*dx(ix)
+        dx(ix) = dtemp
+        ix = ix + incx
+        iy = iy + incy
+   10 CONTINUE
+      RETURN
+
+C       CODE FOR BOTH INCREMENTS EQUAL TO 1
+
+   20 DO 30 i = 1,n
+        dtemp = c*dx(i) + s*dy(i)
+        dy(i) = c*dy(i) - s*dx(i)
+        dx(i) = dtemp
+   30 CONTINUE
+      RETURN
+      END
+
+      SUBROUTINE dsrotg(da,db,c,s)
+
+C     CONSTRUCT GIVENS PLANE ROTATION.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+C                    MODIFIED 9/27/86.
+
+      DOUBLE PRECISION da,db,c,s,roe,scale,r,z,one,ZERO
+      DATA one, ZERO /1.0d+00, 0.0d+00/
+
+      roe = db
+      IF( ABS(da) .GT. ABS(db) ) roe = da
+      scale = ABS(da) + ABS(db)
+      IF( scale .NE. ZERO ) GO TO 10
+         c = one
+         s = ZERO
+         r = ZERO
+         GO TO 20
+   10 r = scale*SQRT((da/scale)**2 + (db/scale)**2)
+      r = SIGN(one,roe)*r
+      c = da/r
+      s = db/r
+   20 z = s
+      IF( ABS(c) .GT. ZERO .AND. ABS(c) .LE. s ) z = one/c
+      da = r
+      db = z
+      RETURN
+      END
+
+      SUBROUTINE  dscal_sl(n,da,dx,incx)
+
+C     SCALES A VECTOR BY A CONSTANT.
+C     USES UNROLLED LOOPS FOR INCREMENT EQUAL TO ONE.
+C     JACK DONGARRA, LINPACK, 3/11/78.
+
+      DOUBLE PRECISION da,dx(*)
+      INTEGER i,incx,m,mp1,n,nincx
+
+      IF(n.LE.0)RETURN
+      IF(incx.EQ.1)GO TO 20
+
+
+C        CODE FOR INCREMENT NOT EQUAL TO 1
+
+      nincx = n*incx
+      DO 10 i = 1,nincx,incx
+        dx(i) = da*dx(i)
+   10 CONTINUE
+      RETURN
+
+C        CODE FOR INCREMENT EQUAL TO 1
+
+C        CLEAN-UP LOOP
+
+   20 m = MOD(n,5)
+      IF( m .EQ. 0 ) GO TO 40
+      DO 30 i = 1,m
+        dx(i) = da*dx(i)
+   30 CONTINUE
+      IF( n .LT. 5 ) RETURN
+   40 mp1 = m + 1
+      DO 50 i = mp1,n,5
+        dx(i) = da*dx(i)
+        dx(i + 1) = da*dx(i + 1)
+        dx(i + 2) = da*dx(i + 2)
+        dx(i + 3) = da*dx(i + 3)
+        dx(i + 4) = da*dx(i + 4)
+   50 CONTINUE
+      RETURN
+      END


Property changes on: trunk/scipy/optimize/slsqp/slsqp_optmz.f
___________________________________________________________________
Name: svn:eol-style
   + native

Added: trunk/scipy/optimize/slsqp.py
===================================================================
--- trunk/scipy/optimize/slsqp.py	2007-12-17 15:59:22 UTC (rev 3677)
+++ trunk/scipy/optimize/slsqp.py	2007-12-17 20:13:41 UTC (rev 3678)
@@ -0,0 +1,236 @@
+from _slsqp import slsqp
+from numpy import zeros, array, identity, linalg, rank, squeeze, append, \
+                  asfarray,product
+from sys import exit
+from math import sqrt
+from optimize import approx_fprime, wrap_function
+import numpy
+
+_epsilon = sqrt(numpy.finfo(float).eps)
+
+def fmin_slsqp( func, x0 , eqcons=[], f_eqcons=None, ieqcons=[], f_ieqcons=None,
+                bounds = [], fprime = None, fprime_cons=None,args = (),
+                iter = 100, acc = 1.0E-6, iprint = 1, full_output = 0, 
+                epsilon = _epsilon ):
+    """
+    Minimize a function using Sequential Least SQuares Programming
+    
+    Description:
+        Python interface function for the SLSQP Optimization subroutine 
+        originally implemented by Dieter Kraft.
+    
+    Inputs:
+        func           - Objective function (in the form func(x, *args))
+        x0             - Initial guess for the independent variable(s). 
+        eqcons         - A list of functions of length n such that 
+                         eqcons[j](x0,*args) == 0.0 in a successfully optimized 
+                         problem.
+        f_eqcons       - A function of the form f_eqcons(x, *args) that returns an
+                         array in which each element must equal 0.0 in a 
+                         successfully optimized problem.  If f_eqcons is
+                         specified, eqcons is ignored.                    
+        ieqcons        - A list of functions of length n such that 
+                         ieqcons[j](x0,*args) >= 0.0 in a successfully optimized 
+                         problem.
+        f_ieqcons      - A function of the form f_ieqcons(x0, *args) that returns 
+                         an array in which each element must be greater or equal 
+                         to 0.0 in a successfully optimized problem.  If 
+                         f_ieqcons is specified, ieqcons is ignored.                                               
+        bounds         - A list of tuples specifying the lower and upper bound 
+                         for each independent variable [(xl0, xu0),(xl1, xu1),...]
+        fprime         - A function that evaluates the partial derivatives of func 
+        fprime_cons    - A function of the form f(x, *args) that returns the
+                         m by n array of constraint normals.  If not provided,
+                         the normals will be approximated. Equality constraint
+                         normals precede inequality constraint normals. The
+                         array returned by fprime_cons should be sized as 
+                         ( len(eqcons) + len(ieqcons), len(x0) ).  If 
+                         fprime_cons is not supplied (normals are approximated)
+                         then the constraints must be supplied via the eqcons
+                         and ieqcons structures, not f_eqcons and f_ieqcons.
+        args           - A sequence of additional arguments passed to func and fprime
+        iter           - The maximum number of iterations (int)
+        acc            - Requested accuracy (float)
+        iprint         - The verbosity of fmin_slsqp.
+                         iprint <= 0 : Silent operation
+                         iprint == 1 : Print summary upon completion (default)
+                         iprint >= 2 : Print status of each iterate and summary
+        full_output    - If 0, return only the minimizer of func (default). 
+                         Otherwise, output final objective function and summary 
+                         information.
+        epsilon        - The step size for finite-difference derivative estimates.
+                     
+    Outputs: ( x, { fx, gnorm, its, imode, smode })
+        x            - The final minimizer of func.
+        fx           - The final value of the objective function.
+        its          - The number of iterations.
+        imode        - The exit mode from the optimizer, as an integer.
+        smode        - A string describing the exit mode from the optimizer. 
+        
+    Exit modes are defined as follows:
+        -1 : Gradient evaluation required (g & a)
+         0 : Optimization terminated successfully.
+         1 : Function evaluation required (f & c)
+         2 : More equality constraints than independent variables
+         3 : More than 3*n iterations in LSQ subproblem
+         4 : Inequality constraints incompatible
+         5 : Singular matrix E in LSQ subproblem
+         6 : Singular matrix C in LSQ subproblem
+         7 : Rank-deficient equality constraint subproblem HFTI
+         8 : Positive directional derivative for linesearch
+         9 : Iteration limit exceeded
+
+    """
+
+    exit_modes = { -1 : "Gradient evaluation required (g & a)",
+                    0 : "Optimization terminated successfully.", 
+                    1 : "Function evaluation required (f & c)",
+                    2 : "More equality constraints than independent variables",
+                    3 : "More than 3*n iterations in LSQ subproblem",
+                    4 : "Inequality constraints incompatible",
+                    5 : "Singular matrix E in LSQ subproblem",
+                    6 : "Singular matrix C in LSQ subproblem",
+                    7 : "Rank-deficient equality constraint subproblem HFTI",
+                    8 : "Positive directional derivative for linesearch",
+                    9 : "Iteration limit exceeded" }
+    
+    # Wrap the functions
+    # Wrap func
+    feval, func = wrap_function(func, args)        
+    if fprime:
+        # Wrap fprime, if provided
+        geval, fprime = wrap_function(fprime,args) 
+    else:
+        # Wrap approx_fprime, if fprime not provided
+        geval, fprime = wrap_function(approx_fprime,(func,epsilon)) 
+    if fprime_cons:
+        approx_constraint_norms = False
+        if f_eqcons:
+            ceval, f_eqcons = wrap_function(f_eqcons,args)
+        else:
+            for i in range(len(eqcons)):
+                if eqcons[i]:
+                    ceval, eqcons[i] = wrap_function(eqcons[i],args)
+        if f_ieqcons:
+            ceval, f_ieqcons = wrap_function(f_ieqcons,args)
+        else:
+            for i in range(len(ieqcons)):
+                if ieqcons[i]:
+                    ceval, ieqcons[i] = wrap_function(ieqcons[i],args)
+        geval, fprime_cons = wrap_function(fprime_cons,args)
+    else:   
+        approx_constraint_norms = True
+        eqcons_prime = []
+        for i in range(len(eqcons)):
+            eqcons_prime.append(None)
+            if eqcons[i]:
+                ceval, eqcons[i] = wrap_function(eqcons[i],args)
+                geval, eqcons_prime[i] = \
+                wrap_function(approx_fprime, (eqcons[i],epsilon))
+        ieqcons_prime = []
+        for i in range(len(ieqcons)):
+            ieqcons_prime.append(None)
+            if ieqcons[i]:
+                ceval, ieqcons[i] = wrap_function(ieqcons[i],args)
+                geval, ieqcons_prime[i] = \
+                wrap_function(approx_fprime, (ieqcons[i],epsilon))
+    
+    # Transform x0 into an array.  
+    x = asfarray(x0).flatten()
+
+    # Set the parameters that SLSQP will need
+    meq = len(eqcons)        # meq = The number of equality constraints
+    m = meq + len(ieqcons)   # m   = The total number of constraints
+    la = array([1,m]).max()  # la  = 
+    n = len(x)               # n   = The number of independent variables
+    
+    # Define the workspaces for SLSQP
+    n1 = n+1
+    mineq = m - meq + n1 + n1
+    len_w = (3*n1+m)*(n1+1)+(n1-meq+1)*(mineq+2) + 2*mineq+(n1+mineq)*(n1-meq) \
+            + 2*meq + n1 +(n+1)*n/2 + 2*m + 3*n + 3*n1 + 1
+    len_jw = mineq
+    w = zeros(len_w)
+    jw = zeros(len_jw)     
+    
+    # Decompose bounds into xl and xu
+    if len(bounds) == 0:
+        bounds = [(-1.0E12, 1.0E12) for i in range(n)]
+    if len(bounds) != n:
+        raise IndexError, 'SLSQP Error:  If bounds is specified, len(bounds) == len(x0)'
+    xl = array( [ b[0] for b in bounds ] )
+    xu = array( [ b[1] for b in bounds ] )
+    
+    # Initialize the iteration counter and the mode value        
+    mode = array(0,int)
+    acc = array(acc,float)    
+    majiter = array(iter,int)
+    majiter_prev = 0
+
+    # Print the header if iprint >= 2
+    if iprint >= 2:
+        print "%5s %5s %16s %16s" % ("NIT","FC","OBJFUN","GNORM")
+
+    while 1:    
+        if mode == 0 or mode == 1: # objective and constraint evaluation requird    
+            # Compute objective function
+            fx = func(x)            
+            # Compute the constraints
+            if f_eqcons:
+               ceq = f_eqcons(x)
+            else:
+               ceq = [ eqcons[i](x) for i in range(meq) ]
+            if f_ieqcons:
+               cieq = f_ieqcons(x)
+            else:
+               cieq = [ ieqcons[i](x) for i in range(len(ieqcons)) ] 
+            c = numpy.concatenate( (ceq,cieq), 1)
+            #c = array ( [ eqcons[i](x) for i in range(meq) ] + 
+            #            [ ieqcons[i](x) for i in range(len(ieqcons)) ] )                    
+        if mode == 0 or mode == -1: # gradient evaluation required
+            # Compute the derivatives of the objective function
+            # For some reason SLSQP wants g dimensioned to n+1
+            g = append(fprime(x),0.0)         
+        
+            # Compute the normals of the constraints
+            if approx_constraint_norms:
+                a = zeros([la,n1])
+                for i in range(meq):
+                    a[i] = append(eqcons_prime[i](x),0.0)
+                for i in range(meq+1,m):
+                    a[i] = append(ieqcons_prime[i](x),0.0)
+            else:
+                a = numpy.concatenate( (fprime_cons(x),zeros([la,1])),1)                
+        
+        # Call SLSQP
+        slsqp(m, meq, x, xl, xu, fx, c, g, a, acc, majiter, mode, w, jw)
+        
+        # Print the status of the current iterate if iprint > 2 and the 
+        # major iteration has incremented
+        if iprint >= 2 and majiter > majiter_prev:
+            print "%5i %5i % 16.6E % 16.6E" % (majiter,feval[0],
+                                               fx,linalg.norm(g))    
+        
+        # If exit mode is not -1 or 1, slsqp has completed
+        if abs(mode) != 1:
+            break
+            
+        majiter_prev = int(majiter)
+        
+    # Optimization loop complete.  Print status if requested
+    if iprint >= 1:
+        print exit_modes[int(mode)] + "    (Exit mode " + str(mode) + ')'  
+        print "            Current function value:", fx 
+        print "            Iterations:", majiter
+        print "            Function evaluations:", feval[0]
+        print "            Gradient evaluations:", geval[0]
+  
+    if full_output == 0:
+        return x
+    else: 
+        return [list(x), 
+                float(fx), 
+                int(majiter), 
+                int(mode), 
+                exit_modes[int(mode)] ]
+        


Property changes on: trunk/scipy/optimize/slsqp.py
___________________________________________________________________
Name: svn:keywords
   + Id




More information about the Scipy-svn mailing list