[Scipy-svn] r5139 - trunk/scipy/spatial
scipy-svn at scipy.org
scipy-svn at scipy.org
Sun Nov 16 20:06:58 EST 2008
Author: damian.eads
Date: 2008-11-16 19:06:57 -0600 (Sun, 16 Nov 2008)
New Revision: 5139
Modified:
trunk/scipy/spatial/distance.py
Log:
Minor tweaks to docstring RST in spatial.
Modified: trunk/scipy/spatial/distance.py
===================================================================
--- trunk/scipy/spatial/distance.py 2008-11-17 00:11:28 UTC (rev 5138)
+++ trunk/scipy/spatial/distance.py 2008-11-17 01:06:57 UTC (rev 5139)
@@ -208,7 +208,7 @@
.. math::
- \sum {(w_i*|u_i - v_i|)^p})^(1/p).
+ \left(\sum {(w_i*|u_i - v_i|\right)^p}^(1/p).
:Parameters:
u : ndarray
@@ -285,7 +285,8 @@
.. math::
- \frac{1-uv^T}/\frac{||u||_2 ||v||_2}.
+ \frac{1-uv^T}
+ {||u||_2 ||v||_2}.
:Parameters:
u : ndarray
@@ -309,11 +310,11 @@
.. math::
- \frac{1 - (u - n{|u|}_1){(v - n{|v|}_1)}^T}
- {{|(u - n{|u|}_1)|}_2 {|(v - n{|v|}_1)|}^T}
+ \frac{1 - (u - \bar{u}){(v - \bar{v})}^T}
+ {{||(u - \bar{u})||}_2 {||(v - \bar{v})||}_2^T}
- where :math:`|*|_1` is the Manhattan norm and ``n`` is the
- common dimensionality of the vectors.
+ where :math:`\bar{u}` is the mean of a vectors elements and ``n``
+ is the common dimensionality of ``u`` and ``v``.
:Parameters:
u : ndarray
@@ -668,7 +669,7 @@
.. math:
- \frac{c_{TF} + c_{FT}
+ \frac{c_{TF} + c_{FT}}
{2c_{TT} + c_{FT} + c_{TF}}
where :math:`c_{ij}` is the number of occurrences of
@@ -767,7 +768,7 @@
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
- :math:`k < n`, :math:`R = 2 * (c_{TF} + c{FT})` and
+ :math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
:math:`S = c_{FF} + c_{TT}`.
:Parameters:
@@ -803,7 +804,7 @@
where :math:`c_{ij}` is the number of occurrences of
:math:`\mathtt{u[k]} = i` and :math:`\mathtt{v[k]} = j` for
- :math:`k < n` and :math:`R = 2(c_{TF} + c{FT})`.
+ :math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
:Parameters:
u : ndarray
@@ -915,12 +916,10 @@
.. math:
- \frac{1 - (u - n{|u|}_1){(v - n{|v|}_1)}^T}
- {{|(u - n{|u|}_1)|}_2 {|(v - n{|v|}_1)|}^T}
+ \frac{1 - (u - \bar{u})(v - \bar{v})^T}
+ {{|(u - \bar{u})|}{|(v - \bar{v})|}^T}
- where :math:`|*|_1` is the Manhattan (or 1-norm) of its
- argument, and :math:`n` is the common dimensionality of the
- vectors.
+ where :math:`\bar{v}` is the mean of the elements of vector v.
8. ``Y = pdist(X, 'hamming')``
@@ -1558,12 +1557,12 @@
def cdist(XA, XB, metric='euclidean', p=2, V=None, VI=None, w=None):
"""
- Computes distance between each pair of observations between two
- collections of vectors. ``XA`` is a :math:`m_A` by :math:`n`
- array while ``XB`` is a :math:`m_B` by :math:`n` array. A
- :math:`m_A` by :math:`m_B` array is returned. An exception is
- thrown if ``XA`` and ``XB`` do not have the same number of
- columns.
+ Computes distance between each pair of observation vectors in the
+ Cartesian product of two collections of vectors. ``XA`` is a
+ :math:`m_A` by :math:`n` array while ``XB`` is a :math:`m_B` by
+ :math:`n` array. A :math:`m_A` by :math:`m_B` array is
+ returned. An exception is thrown if ``XA`` and ``XB`` do not have
+ the same number of columns.
A rectangular distance matrix ``Y`` is returned. For each :math:`i`
and :math:`j`, the metric ``dist(u=XA[i], v=XB[j])`` is computed
More information about the Scipy-svn
mailing list