[SciPy-User] Splines in scipy.signal vs scipy.interpolation
Zachary Pincus
zachary.pincus at yale.edu
Tue Feb 9 12:05:12 EST 2010
> Local splines are very simple, and the only kind I use.
> Global / least-squares-weighted splines
> which depend or more points are common;
> they're smoother (C2) but can surprise you (see extrapolation
> plot ...)
> scipy.interpolate wraps fitpack which does least-squares weighting,
> don't know how.
>
> Of local splines, two kinds are common:
> - interpolating: Catmull-Rom
> - smoothing: B-spline.
I had always thought that the splines produced by fitpack were plain
(and local) non-uniform B-splines (as opposed to the uniform kind,
which Denis's really helpful demo code uses). However, the way that
those B-splines are fit to the given data by fitpack is definitely
global and can lead to odd artifacts if you're incautious.
Is this correct?
Then is reason that the B-splines from scipy.interpolate.fitpack and
from scipy.signal are a bit different is that the latter are also
strictly uniform? (E.g. evenly-spaced knot vector.) Probably this is
easy to test...
Zach
More information about the SciPy-User
mailing list