[SciPy-User] specify lognormal distribution with mu and sigma using scipy.stats
Armando Serrano Lombillo
arserlom at gmail.com
Wed Jul 21 13:15:28 EDT 2010
Ok, I had misunderstood that mu and sigma where the mean of the lognormally
distributed variable. So, this is what I should have written:
>>> mean = 10.0
>>> variance = 1.0
>>> mean_n = log(mean) - 0.5*log(1 + variance/mean**2)
>>> variance_n = log(variance/mean**2 + 1)
>>> d = lognorm(sqrt(variance_n), scale=exp(mean_n))
>>> d.stats()
(array(10.000000000000002), array(1.0000000000000013))
Thanks, Armando.
On Wed, Jul 21, 2010 at 5:48 PM, Warren Weckesser <
warren.weckesser at enthought.com> wrote:
> Armando Serrano Lombillo wrote:
> > Hello, I'm also having difficulties with lognorm.
> >
> > If mu is the mean and s**2 is the variance then...
> >
> > >>> from scipy.stats import lognorm
> > >>> from math import exp
> > >>> mu = 10
> > >>> s = 1
> > >>> d = lognorm(s, scale=exp(mu))
> > >>> d.stats('m')
> > array(36315.502674246643)
> >
> > shouldn't that be 10?
>
> In terms of mu and sigma, the mean of the lognormal distribution
> is exp(mu + 0.5*sigma**2). In your example:
>
> In [16]: exp(10.5)
> Out[16]: 36315.502674246636
>
>
> Warren
>
>
>
>
> >
> > On Wed, Oct 14, 2009 at 3:20 PM, <josef.pktd at gmail.com
> > <mailto:josef.pktd at gmail.com>> wrote:
> >
> > On Wed, Oct 14, 2009 at 4:22 AM, Mark Bakker <markbak at gmail.com
> > <mailto:markbak at gmail.com>> wrote:
> > > Hello list,
> > > I am having trouble creating a lognormal distribution with known
> > mean mu and
> > > standard deviation sigma using scipy.stats
> > > According to the docs, the programmed function is:
> > > lognorm.pdf(x,s) = 1/(s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2)
> > > So s is the standard deviation. But how do I specify the mean? I
> > found some
> > > information that when you specify loc and scale, you replace x by
> > > (x-loc)/scale
> > > But in the lognormal distribution, you want to replace log(x) by
> > log(x)-loc
> > > where loc is mu. How do I do that? In addition, would it be a
> > good idea to
> > > create some convenience functions that allow you to simply
> > create lognormal
> > > (and maybe normal) distributions by specifying the more common
> > mu and sigma?
> > > That would surely make things more userfriendly.
> > > Thanks,
> > > Mark
> >
> > I don't think loc of lognorm makes much sense in most application,
> > since it is just shifting the support, lower boundary is zero+loc.
> The
> > loc of the underlying normal distribution enters through the scale.
> >
> > see also
> >
> http://en.wikipedia.org/wiki/Log-normal_distribution#Mean_and_standard_deviation
> >
> >
> > >>> print stats.lognorm.extradoc
> >
> >
> > Lognormal distribution
> >
> > lognorm.pdf(x,s) = 1/(s*x*sqrt(2*pi)) * exp(-1/2*(log(x)/s)**2)
> > for x > 0, s > 0.
> >
> > If log x is normally distributed with mean mu and variance sigma**2,
> > then x is log-normally distributed with shape paramter sigma and
> scale
> > parameter exp(mu).
> >
> >
> > roundtrip with mean mu of the underlying normal distribution
> > (scale=1):
> >
> > >>> mu=np.arange(5)
> > >>> np.log(stats.lognorm.stats(1, loc=0,scale=np.exp(mu))[0])-0.5
> > array([ 0., 1., 2., 3., 4.])
> >
> > corresponding means of lognormal distribution
> >
> > >>> stats.lognorm.stats(1, loc=0,scale=np.exp(mu))[0]
> > array([ 1.64872127, 4.48168907, 12.18249396, 33.11545196,
> > 90.0171313 ])
> >
> >
> > shifting support:
> >
> > >>> stats.lognorm.a
> > 0.0
> > >>> stats.lognorm.ppf([0, 0.5, 1], 1, loc=3,scale=1)
> > array([ 3., 4., Inf])
> >
> >
> > The only case that I know for lognormal is in regression, so I'm not
> > sure what you mean by the convenience functions.
> > (the normal distribution is defined by loc=mean, scale=standard
> > deviation)
> >
> > assume the regression equation is
> > y = x*beta*exp(u) u distributed normal(0, sigma^2)
> > this implies
> > ln y = ln(x*beta) + u which is just a standard linear regression
> > equation which can be estimated by ols or mle
> >
> > exp(u) in this case is lognormal distributed
> >
> > Josef
> > _______________________________________________
> > SciPy-User mailing list
> > SciPy-User at scipy.org <mailto:SciPy-User at scipy.org>
> > http://mail.scipy.org/mailman/listinfo/scipy-user
> >
> >
> > ------------------------------------------------------------------------
> >
> > _______________________________________________
> > SciPy-User mailing list
> > SciPy-User at scipy.org
> > http://mail.scipy.org/mailman/listinfo/scipy-user
> >
>
> _______________________________________________
> SciPy-User mailing list
> SciPy-User at scipy.org
> http://mail.scipy.org/mailman/listinfo/scipy-user
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.scipy.org/pipermail/scipy-user/attachments/20100721/28650a19/attachment.html>
More information about the SciPy-User
mailing list