Russell E. Owen wrote:
I often find myself doing simple math on sequences of numbers (which might or might not be numpy arrays) where I want the result (and thus the inputs) coerced to a particular data type.
I'd like to be able to say:
numpy.divide(seq1, seq2, dtype=float)
but ufuncs don't allow on to specify a result type. So I do this instead:
numpy.array(seq1, dtype=float) / numpy.array(seq2, dtype=float)
Is there a more compact solution (without having to create the result array first and supply it as an argument)?
Every ufunc has a little-documented keyword "sig" for (signature) which allows you to specify the signature of the inner loop. Thus, numpy.divide(seq1, seq1, sig=('d',)*3) will do what you want. -Travis
-- Russell
_______________________________________________ Numpy-discussion mailing list Numpy-discussion@scipy.org http://projects.scipy.org/mailman/listinfo/numpy-discussion