[Matplotlib-users] Question about Crash Report Ipython - Error

Francisco Ley fley at astro.puc.cl
Mon Apr 4 20:06:43 EDT 2016


Hi,

My name is Francisco and I'm a python and ipython user. Today I was 
coding in python a little bit, in particular with the function quiver, 
in matplotlib. I got an error when I tried to use the option

angles='xy'

A problem related with the broadcasting arose. It was really strange 
because if I used another arrays it worked. Anyways, when I continued 
trying some options another error arose, Ipython crashes and a report 
file was created. I was wondering if you could help me with that, or 
tell me where can I ask for help, honestly I don't know what else I can 
do for now. The file is attached.

Thank you in advance,
Regards,

Francisco


-------------- next part --------------
***************************************************************************

IPython post-mortem report

{'commit_hash': '8ff8693',
 'commit_source': 'installation',
 'default_encoding': 'UTF-8',
 'ipython_path': '/home/chinoley/anaconda3/lib/python3.5/site-packages/IPython',
 'ipython_version': '4.0.3',
 'os_name': 'posix',
 'platform': 'Linux-3.19.0-32-generic-x86_64-with-debian-jessie-sid',
 'sys_executable': '/home/chinoley/anaconda3/bin/python3',
 'sys_platform': 'linux',
 'sys_version': '3.5.1 |Anaconda 2.5.0 (64-bit)| (default, Dec  7 2015, '
                '11:16:01) \n'
                '[GCC 4.4.7 20120313 (Red Hat 4.4.7-1)]'}

***************************************************************************



***************************************************************************

Crash traceback:

---------------------------------------------------------------------------
---------------------------------------------------------------------------
ValueError               Python 3.5.1: /home/chinoley/anaconda3/bin/python3
                                                   Mon Apr  4 20:31:55 2016
A problem occurred executing Python code.  Here is the sequence of function
calls leading up to the error, with the most recent (innermost) call last.
/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_qt5agg.py in __draw_idle_agg(self=<matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg object>, *args=())
    161     def draw_idle(self):
    162         """
    163         Queue redraw of the Agg buffer and request Qt paintEvent.
    164         """
    165         # The Agg draw needs to be handled by the same thread matplotlib
    166         # modifies the scene graph from. Post Agg draw request to the
    167         # current event loop in order to ensure thread affinity and to
    168         # accumulate multiple draw requests from event handling.
    169         # TODO: queued signal connection might be safer than singleShot
    170         if not self._agg_draw_pending:
    171             self._agg_draw_pending = True
    172             QtCore.QTimer.singleShot(0, self.__draw_idle_agg)
    173 
    174     def __draw_idle_agg(self, *args):
    175         try:
--> 176             FigureCanvasAgg.draw(self)
        global FigureCanvasAgg.draw = <function FigureCanvasAgg.draw at 0x7f6a5e2ded90>
        self = <matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg object at 0x7f6a3d6c3048>
    177             self.update()
    178         finally:
    179             self._agg_draw_pending = False
    180 
    181     def blit(self, bbox=None):
    182         """
    183         Blit the region in bbox
    184         """
    185         # If bbox is None, blit the entire canvas. Otherwise
    186         # blit only the area defined by the bbox.
    187         if bbox is None and self.figure:
    188             bbox = self.figure.bbox
    189 
    190         self.blitbox = bbox
    191         l, b, w, h = bbox.bounds

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/backends/backend_agg.py in draw(self=<matplotlib.backends.backend_qt4agg.FigureCanvasQTAgg object>)
    459     def restore_region(self, region, bbox=None, xy=None):
    460         renderer = self.get_renderer()
    461         return renderer.restore_region(region, bbox, xy)
    462 
    463     def draw(self):
    464         """
    465         Draw the figure using the renderer
    466         """
    467         if __debug__: verbose.report('FigureCanvasAgg.draw', 'debug-annoying')
    468 
    469         self.renderer = self.get_renderer(cleared=True)
    470         # acquire a lock on the shared font cache
    471         RendererAgg.lock.acquire()
    472 
    473         try:
--> 474             self.figure.draw(self.renderer)
        self.figure.draw = <bound method allow_rasterization.<locals>.draw_wrapper of <matplotlib.figure.Figure object at 0x7f6a3d852c88>>
        self.renderer = <matplotlib.backends.backend_agg.RendererAgg object at 0x7f6a3d85d668>
    475         finally:
    476             RendererAgg.lock.release()
    477 
    478     def get_renderer(self, cleared=False):
    479         l, b, w, h = self.figure.bbox.bounds
    480         key = w, h, self.figure.dpi
    481         try: self._lastKey, self.renderer
    482         except AttributeError: need_new_renderer = True
    483         else:  need_new_renderer = (self._lastKey != key)
    484 
    485         if need_new_renderer:
    486             self.renderer = RendererAgg(w, h, self.figure.dpi)
    487             self._lastKey = key
    488         elif cleared:
    489             self.renderer.clear()

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py in draw_wrapper(artist=<matplotlib.figure.Figure object>, renderer=<matplotlib.backends.backend_agg.RendererAgg object>, *args=(), **kwargs={})
     46 
     47         if artist.get_agg_filter() is not None:
     48             renderer.start_filter()
     49 
     50     def after(artist, renderer):
     51 
     52         if artist.get_agg_filter() is not None:
     53             renderer.stop_filter(artist.get_agg_filter())
     54 
     55         if artist.get_rasterized():
     56             renderer.stop_rasterizing()
     57 
     58     # the axes class has a second argument inframe for its draw method.
     59     def draw_wrapper(artist, renderer, *args, **kwargs):
     60         before(artist, renderer)
---> 61         draw(artist, renderer, *args, **kwargs)
        global draw = undefined
        artist = <matplotlib.figure.Figure object at 0x7f6a3d852c88>
        renderer = <matplotlib.backends.backend_agg.RendererAgg object at 0x7f6a3d85d668>
        args = ()
        kwargs = {}
     62         after(artist, renderer)
     63 
     64     # "safe wrapping" to exactly replicate anything we haven't overridden above
     65     draw_wrapper.__name__ = draw.__name__
     66     draw_wrapper.__dict__ = draw.__dict__
     67     draw_wrapper.__doc__ = draw.__doc__
     68     draw_wrapper._supports_rasterization = True
     69     return draw_wrapper
     70 
     71 
     72 def _stale_axes_callback(self, val):
     73     if self.axes:
     74         self.axes.stale = val
     75 
     76 

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/figure.py in draw(self=<matplotlib.figure.Figure object>, renderer=<matplotlib.backends.backend_agg.RendererAgg object>)
   1144 
   1145         # render the axes
   1146         for a in self.axes:
   1147             dsu.append((a.get_zorder(), a, a.draw, [renderer]))
   1148 
   1149         # render the figure text
   1150         for a in self.texts:
   1151             dsu.append((a.get_zorder(), a, a.draw, [renderer]))
   1152 
   1153         for a in self.legends:
   1154             dsu.append((a.get_zorder(), a, a.draw, [renderer]))
   1155 
   1156         dsu = [row for row in dsu if not row[1].get_animated()]
   1157         dsu.sort(key=itemgetter(0))
   1158         for zorder, a, func, args in dsu:
-> 1159             func(*args)
        func = <bound method allow_rasterization.<locals>.draw_wrapper of <matplotlib.axes._subplots.AxesSubplot object at 0x7f6a3d8382e8>>
        args = [<matplotlib.backends.backend_agg.RendererAgg object at 0x7f6a3d85d668>]
   1160 
   1161         renderer.close_group('figure')
   1162         self.stale = False
   1163 
   1164         self._cachedRenderer = renderer
   1165         self.canvas.draw_event(renderer)
   1166 
   1167     def draw_artist(self, a):
   1168         """
   1169         draw :class:`matplotlib.artist.Artist` instance *a* only --
   1170         this is available only after the figure is drawn
   1171         """
   1172         if self._cachedRenderer is None:
   1173             msg = ('draw_artist can only be used after an initial draw which'
   1174                    ' caches the render')

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py in draw_wrapper(artist=<matplotlib.axes._subplots.AxesSubplot object>, renderer=<matplotlib.backends.backend_agg.RendererAgg object>, *args=(), **kwargs={})
     46 
     47         if artist.get_agg_filter() is not None:
     48             renderer.start_filter()
     49 
     50     def after(artist, renderer):
     51 
     52         if artist.get_agg_filter() is not None:
     53             renderer.stop_filter(artist.get_agg_filter())
     54 
     55         if artist.get_rasterized():
     56             renderer.stop_rasterizing()
     57 
     58     # the axes class has a second argument inframe for its draw method.
     59     def draw_wrapper(artist, renderer, *args, **kwargs):
     60         before(artist, renderer)
---> 61         draw(artist, renderer, *args, **kwargs)
        global draw = undefined
        artist = <matplotlib.axes._subplots.AxesSubplot object at 0x7f6a3d8382e8>
        renderer = <matplotlib.backends.backend_agg.RendererAgg object at 0x7f6a3d85d668>
        args = ()
        kwargs = {}
     62         after(artist, renderer)
     63 
     64     # "safe wrapping" to exactly replicate anything we haven't overridden above
     65     draw_wrapper.__name__ = draw.__name__
     66     draw_wrapper.__dict__ = draw.__dict__
     67     draw_wrapper.__doc__ = draw.__doc__
     68     draw_wrapper._supports_rasterization = True
     69     return draw_wrapper
     70 
     71 
     72 def _stale_axes_callback(self, val):
     73     if self.axes:
     74         self.axes.stale = val
     75 
     76 

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/axes/_base.py in draw(self=<matplotlib.axes._subplots.AxesSubplot object>, renderer=<matplotlib.backends.backend_agg.RendererAgg object>, inframe=False)
   2309             gc = renderer.new_gc()
   2310             gc.set_clip_rectangle(self.bbox)
   2311             gc.set_clip_path(mtransforms.TransformedPath(
   2312                 self.patch.get_path(),
   2313                 self.patch.get_transform()))
   2314 
   2315             renderer.draw_image(gc, round(l), round(b), im)
   2316             gc.restore()
   2317 
   2318         if dsu_rasterized:
   2319             for zorder, a in dsu_rasterized:
   2320                 a.draw(renderer)
   2321             renderer.stop_rasterizing()
   2322 
   2323         for zorder, a in dsu:
-> 2324             a.draw(renderer)
        a.draw = <bound method allow_rasterization.<locals>.draw_wrapper of <matplotlib.quiver.Quiver object at 0x7f6a3d5374e0>>
        renderer = <matplotlib.backends.backend_agg.RendererAgg object at 0x7f6a3d85d668>
   2325 
   2326         renderer.close_group('axes')
   2327         self._cachedRenderer = renderer
   2328         self.stale = False
   2329 
   2330     def draw_artist(self, a):
   2331         """
   2332         This method can only be used after an initial draw which
   2333         caches the renderer.  It is used to efficiently update Axes
   2334         data (axis ticks, labels, etc are not updated)
   2335         """
   2336         if self._cachedRenderer is None:
   2337             msg = ('draw_artist can only be used after an initial draw which'
   2338                    ' caches the render')
   2339             raise AttributeError(msg)

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/artist.py in draw_wrapper(artist=<matplotlib.quiver.Quiver object>, renderer=<matplotlib.backends.backend_agg.RendererAgg object>, *args=(), **kwargs={})
     46 
     47         if artist.get_agg_filter() is not None:
     48             renderer.start_filter()
     49 
     50     def after(artist, renderer):
     51 
     52         if artist.get_agg_filter() is not None:
     53             renderer.stop_filter(artist.get_agg_filter())
     54 
     55         if artist.get_rasterized():
     56             renderer.stop_rasterizing()
     57 
     58     # the axes class has a second argument inframe for its draw method.
     59     def draw_wrapper(artist, renderer, *args, **kwargs):
     60         before(artist, renderer)
---> 61         draw(artist, renderer, *args, **kwargs)
        global draw = undefined
        artist = <matplotlib.quiver.Quiver object at 0x7f6a3d5374e0>
        renderer = <matplotlib.backends.backend_agg.RendererAgg object at 0x7f6a3d85d668>
        args = ()
        kwargs = {}
     62         after(artist, renderer)
     63 
     64     # "safe wrapping" to exactly replicate anything we haven't overridden above
     65     draw_wrapper.__name__ = draw.__name__
     66     draw_wrapper.__dict__ = draw.__dict__
     67     draw_wrapper.__doc__ = draw.__doc__
     68     draw_wrapper._supports_rasterization = True
     69     return draw_wrapper
     70 
     71 
     72 def _stale_axes_callback(self, val):
     73     if self.axes:
     74         self.axes.stale = val
     75 
     76 

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/quiver.py in draw(self=<matplotlib.quiver.Quiver object>, renderer=<matplotlib.backends.backend_agg.RendererAgg object>)
    512 
    513             self._initialized = True
    514 
    515     def get_datalim(self, transData):
    516         trans = self.get_transform()
    517         transOffset = self.get_offset_transform()
    518         full_transform = (trans - transData) + (transOffset - transData)
    519         XY = full_transform.transform(self.XY)
    520         bbox = transforms.Bbox.null()
    521         bbox.update_from_data_xy(XY, ignore=True)
    522         return bbox
    523 
    524     @allow_rasterization
    525     def draw(self, renderer):
    526         self._init()
--> 527         verts = self._make_verts(self.U, self.V)
        verts = undefined
        self._make_verts = <bound method Quiver._make_verts of <matplotlib.quiver.Quiver object at 0x7f6a3d5374e0>>
        self.U = array([ 0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
        0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
        0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
        0.        ,  0.        ,  0.        ,  0.        ,  0.        ,
        0.26315789,  0.26315789,  0.26315789,  0.26315789,  0.26315789,
        0.26315789,  0.26315789,  0.26315789,  0.26315789,  0.26315789,
        0.26315789,  0.26315789,  0.26315789,  0.26315789,  0.26315789,
        0.26315789,  0.26315789,  0.26315789,  0.26315789,  0.26315789,
        0.52631579,  0.52631579,  0.52631579,  0.52631579,  0.52631579,
        0.52631579,  0.52631579,  0.52631579,  0.52631579,  0.52631579,
        0.52631579,  0.52631579,  0.52631579,  0.52631579,  0.52631579,
        0.52631579,  0.52631579,  0.52631579,  0.52631579,  0.52631579,
        0.78947368,  0.78947368,  0.78947368,  0.78947368,  0.78947368,
        0.78947368,  0.78947368,  0.78947368,  0.78947368,  0.78947368,
        0.78947368,  0.78947368,  0.78947368,  0.78947368,  0.78947368,
        0.78947368,  0.78947368,  0.78947368,  0.78947368,  0.78947368,
        1.05263158,  1.05263158,  1.05263158,  1.05263158,  1.05263158,
        1.05263158,  1.05263158,  1.05263158,  1.05263158,  1.05263158,
        1.05263158,  1.05263158,  1.05263158,  1.05263158,  1.05263158,
        1.05263158,  1.05263158,  1.05263158,  1.05263158,  1.05263158,
        1.31578947,  1.31578947,  1.31578947,  1.31578947,  1.31578947,
        1.31578947,  1.31578947,  1.31578947,  1.31578947,  1.31578947,
        1.31578947,  1.31578947,  1.31578947,  1.31578947,  1.31578947,
        1.31578947,  1.31578947,  1.31578947,  1.31578947,  1.31578947,
        1.57894737,  1.57894737,  1.57894737,  1.57894737,  1.57894737,
        1.57894737,  1.57894737,  1.57894737,  1.57894737,  1.57894737,
        1.57894737,  1.57894737,  1.57894737,  1.57894737,  1.57894737,
        1.57894737,  1.57894737,  1.57894737,  1.57894737,  1.57894737,
        1.84210526,  1.84210526,  1.84210526,  1.84210526,  1.84210526,
        1.84210526,  1.84210526,  1.84210526,  1.84210526,  1.84210526,
        1.84210526,  1.84210526,  1.84210526,  1.84210526,  1.84210526,
        1.84210526,  1.84210526,  1.84210526,  1.84210526,  1.84210526,
        2.10526316,  2.10526316,  2.10526316,  2.10526316,  2.10526316,
        2.10526316,  2.10526316,  2.10526316,  2.10526316,  2.10526316,
        2.10526316,  2.10526316,  2.10526316,  2.10526316,  2.10526316,
        2.10526316,  2.10526316,  2.10526316,  2.10526316,  2.10526316,
        2.36842105,  2.36842105,  2.36842105,  2.36842105,  2.36842105,
        2.36842105,  2.36842105,  2.36842105,  2.36842105,  2.36842105,
        2.36842105,  2.36842105,  2.36842105,  2.36842105,  2.36842105,
        2.36842105,  2.36842105,  2.36842105,  2.36842105,  2.36842105,
        2.63157895,  2.63157895,  2.63157895,  2.63157895,  2.63157895,
        2.63157895,  2.63157895,  2.63157895,  2.63157895,  2.63157895,
        2.63157895,  2.63157895,  2.63157895,  2.63157895,  2.63157895,
        2.63157895,  2.63157895,  2.63157895,  2.63157895,  2.63157895,
        2.89473684,  2.89473684,  2.89473684,  2.89473684,  2.89473684,
        2.89473684,  2.89473684,  2.89473684,  2.89473684,  2.89473684,
        2.89473684,  2.89473684,  2.89473684,  2.89473684,  2.89473684,
        2.89473684,  2.89473684,  2.89473684,  2.89473684,  2.89473684,
        3.15789474,  3.15789474,  3.15789474,  3.15789474,  3.15789474,
        3.15789474,  3.15789474,  3.15789474,  3.15789474,  3.15789474,
        3.15789474,  3.15789474,  3.15789474,  3.15789474,  3.15789474,
        3.15789474,  3.15789474,  3.15789474,  3.15789474,  3.15789474,
        3.42105263,  3.42105263,  3.42105263,  3.42105263,  3.42105263,
        3.42105263,  3.42105263,  3.42105263,  3.42105263,  3.42105263,
        3.42105263,  3.42105263,  3.42105263,  3.42105263,  3.42105263,
        3.42105263,  3.42105263,  3.42105263,  3.42105263,  3.42105263,
        3.68421053,  3.68421053,  3.68421053,  3.68421053,  3.68421053,
        3.68421053,  3.68421053,  3.68421053,  3.68421053,  3.68421053,
        3.68421053,  3.68421053,  3.68421053,  3.68421053,  3.68421053,
        3.68421053,  3.68421053,  3.68421053,  3.68421053,  3.68421053,
        3.94736842,  3.94736842,  3.94736842,  3.94736842,  3.94736842,
        3.94736842,  3.94736842,  3.94736842,  3.94736842,  3.94736842,
        3.94736842,  3.94736842,  3.94736842,  3.94736842,  3.94736842,
        3.94736842,  3.94736842,  3.94736842,  3.94736842,  3.94736842,
        4.21052632,  4.21052632,  4.21052632,  4.21052632,  4.21052632,
        4.21052632,  4.21052632,  4.21052632,  4.21052632,  4.21052632,
        4.21052632,  4.21052632,  4.21052632,  4.21052632,  4.21052632,
        4.21052632,  4.21052632,  4.21052632,  4.21052632,  4.21052632,
        4.47368421,  4.47368421,  4.47368421,  4.47368421,  4.47368421,
        4.47368421,  4.47368421,  4.47368421,  4.47368421,  4.47368421,
        4.47368421,  4.47368421,  4.47368421,  4.47368421,  4.47368421,
        4.47368421,  4.47368421,  4.47368421,  4.47368421,  4.47368421,
        4.73684211,  4.73684211,  4.73684211,  4.73684211,  4.73684211,
        4.73684211,  4.73684211,  4.73684211,  4.73684211,  4.73684211,
        4.73684211,  4.73684211,  4.73684211,  4.73684211,  4.73684211,
        4.73684211,  4.73684211,  4.73684211,  4.73684211,  4.73684211,
        5.        ,  5.        ,  5.        ,  5.        ,  5.        ,
        5.        ,  5.        ,  5.        ,  5.        ,  5.        ,
        5.        ,  5.        ,  5.        ,  5.        ,  5.        ,
        5.        ,  5.        ,  5.        ,  5.        ,  5.        ])
        self.V = array([ 0.        ,  0.26315789,  0.52631579,  0.78947368,  1.05263158,
        1.31578947,  1.57894737,  1.84210526,  2.10526316,  2.36842105,
        2.63157895,  2.89473684,  3.15789474,  3.42105263,  3.68421053,
        3.94736842,  4.21052632,  4.47368421,  4.73684211,  5.        ,
        0.18421053,  0.44736842,  0.71052632,  0.97368421,  1.23684211,
        1.5       ,  1.76315789,  2.02631579,  2.28947368,  2.55263158,
        2.81578947,  3.07894737,  3.34210526,  3.60526316,  3.86842105,
        4.13157895,  4.39473684,  4.65789474,  4.92105263,  5.18421053,
        0.36842105,  0.63157895,  0.89473684,  1.15789474,  1.42105263,
        1.68421053,  1.94736842,  2.21052632,  2.47368421,  2.73684211,
        3.        ,  3.26315789,  3.52631579,  3.78947368,  4.05263158,
        4.31578947,  4.57894737,  4.84210526,  5.10526316,  5.36842105,
        0.55263158,  0.81578947,  1.07894737,  1.34210526,  1.60526316,
        1.86842105,  2.13157895,  2.39473684,  2.65789474,  2.92105263,
        3.18421053,  3.44736842,  3.71052632,  3.97368421,  4.23684211,
        4.5       ,  4.76315789,  5.02631579,  5.28947368,  5.55263158,
        0.73684211,  1.        ,  1.26315789,  1.52631579,  1.78947368,
        2.05263158,  2.31578947,  2.57894737,  2.84210526,  3.10526316,
        3.36842105,  3.63157895,  3.89473684,  4.15789474,  4.42105263,
        4.68421053,  4.94736842,  5.21052632,  5.47368421,  5.73684211,
        0.92105263,  1.18421053,  1.44736842,  1.71052632,  1.97368421,
        2.23684211,  2.5       ,  2.76315789,  3.02631579,  3.28947368,
        3.55263158,  3.81578947,  4.07894737,  4.34210526,  4.60526316,
        4.86842105,  5.13157895,  5.39473684,  5.65789474,  5.92105263,
        1.10526316,  1.36842105,  1.63157895,  1.89473684,  2.15789474,
        2.42105263,  2.68421053,  2.94736842,  3.21052632,  3.47368421,
        3.73684211,  4.        ,  4.26315789,  4.52631579,  4.78947368,
        5.05263158,  5.31578947,  5.57894737,  5.84210526,  6.10526316,
        1.28947368,  1.55263158,  1.81578947,  2.07894737,  2.34210526,
        2.60526316,  2.86842105,  3.13157895,  3.39473684,  3.65789474,
        3.92105263,  4.18421053,  4.44736842,  4.71052632,  4.97368421,
        5.23684211,  5.5       ,  5.76315789,  6.02631579,  6.28947368,
        1.47368421,  1.73684211,  2.        ,  2.26315789,  2.52631579,
        2.78947368,  3.05263158,  3.31578947,  3.57894737,  3.84210526,
        4.10526316,  4.36842105,  4.63157895,  4.89473684,  5.15789474,
        5.42105263,  5.68421053,  5.94736842,  6.21052632,  6.47368421,
        1.65789474,  1.92105263,  2.18421053,  2.44736842,  2.71052632,
        2.97368421,  3.23684211,  3.5       ,  3.76315789,  4.02631579,
        4.28947368,  4.55263158,  4.81578947,  5.07894737,  5.34210526,
        5.60526316,  5.86842105,  6.13157895,  6.39473684,  6.65789474,
        1.84210526,  2.10526316,  2.36842105,  2.63157895,  2.89473684,
        3.15789474,  3.42105263,  3.68421053,  3.94736842,  4.21052632,
        4.47368421,  4.73684211,  5.        ,  5.26315789,  5.52631579,
        5.78947368,  6.05263158,  6.31578947,  6.57894737,  6.84210526,
        2.02631579,  2.28947368,  2.55263158,  2.81578947,  3.07894737,
        3.34210526,  3.60526316,  3.86842105,  4.13157895,  4.39473684,
        4.65789474,  4.92105263,  5.18421053,  5.44736842,  5.71052632,
        5.97368421,  6.23684211,  6.5       ,  6.76315789,  7.02631579,
        2.21052632,  2.47368421,  2.73684211,  3.        ,  3.26315789,
        3.52631579,  3.78947368,  4.05263158,  4.31578947,  4.57894737,
        4.84210526,  5.10526316,  5.36842105,  5.63157895,  5.89473684,
        6.15789474,  6.42105263,  6.68421053,  6.94736842,  7.21052632,
        2.39473684,  2.65789474,  2.92105263,  3.18421053,  3.44736842,
        3.71052632,  3.97368421,  4.23684211,  4.5       ,  4.76315789,
        5.02631579,  5.28947368,  5.55263158,  5.81578947,  6.07894737,
        6.34210526,  6.60526316,  6.86842105,  7.13157895,  7.39473684,
        2.57894737,  2.84210526,  3.10526316,  3.36842105,  3.63157895,
        3.89473684,  4.15789474,  4.42105263,  4.68421053,  4.94736842,
        5.21052632,  5.47368421,  5.73684211,  6.        ,  6.26315789,
        6.52631579,  6.78947368,  7.05263158,  7.31578947,  7.57894737,
        2.76315789,  3.02631579,  3.28947368,  3.55263158,  3.81578947,
        4.07894737,  4.34210526,  4.60526316,  4.86842105,  5.13157895,
        5.39473684,  5.65789474,  5.92105263,  6.18421053,  6.44736842,
        6.71052632,  6.97368421,  7.23684211,  7.5       ,  7.76315789,
        2.94736842,  3.21052632,  3.47368421,  3.73684211,  4.        ,
        4.26315789,  4.52631579,  4.78947368,  5.05263158,  5.31578947,
        5.57894737,  5.84210526,  6.10526316,  6.36842105,  6.63157895,
        6.89473684,  7.15789474,  7.42105263,  7.68421053,  7.94736842,
        3.13157895,  3.39473684,  3.65789474,  3.92105263,  4.18421053,
        4.44736842,  4.71052632,  4.97368421,  5.23684211,  5.5       ,
        5.76315789,  6.02631579,  6.28947368,  6.55263158,  6.81578947,
        7.07894737,  7.34210526,  7.60526316,  7.86842105,  8.13157895,
        3.31578947,  3.57894737,  3.84210526,  4.10526316,  4.36842105,
        4.63157895,  4.89473684,  5.15789474,  5.42105263,  5.68421053,
        5.94736842,  6.21052632,  6.47368421,  6.73684211,  7.        ,
        7.26315789,  7.52631579,  7.78947368,  8.05263158,  8.31578947,
        3.5       ,  3.76315789,  4.02631579,  4.28947368,  4.55263158,
        4.81578947,  5.07894737,  5.34210526,  5.60526316,  5.86842105,
        6.13157895,  6.39473684,  6.65789474,  6.92105263,  7.18421053,
        7.44736842,  7.71052632,  7.97368421,  8.23684211,  8.5       ])
    528         self.set_verts(verts, closed=False)
    529         self._new_UV = False
    530         mcollections.PolyCollection.draw(self, renderer)
    531         self.stale = False
    532 
    533     def set_UVC(self, U, V, C=None):
    534         # We need to ensure we have a copy, not a reference
    535         # to an array that might change before draw().
    536         U = ma.masked_invalid(U, copy=True).ravel()
    537         V = ma.masked_invalid(V, copy=True).ravel()
    538         mask = ma.mask_or(U.mask, V.mask, copy=False, shrink=True)
    539         if C is not None:
    540             C = ma.masked_invalid(C, copy=True).ravel()
    541             mask = ma.mask_or(mask, C.mask, copy=False, shrink=True)
    542             if mask is ma.nomask:

/home/chinoley/anaconda3/lib/python3.5/site-packages/matplotlib/quiver.py in _make_verts(self=<matplotlib.quiver.Quiver object>, U=array([ 0.        ,  0.        ,  0.        ,  0...        ,  5.        ,  5.        ,  5.        ]), V=array([ 0.        ,  0.26315789,  0.52631579,  0...71052632,  7.97368421,  8.23684211,  8.5       ]))
    642             widthu_per_lenu = dx / self._trans_scale
    643             if self.scale is None:
    644                 self.scale = scale * widthu_per_lenu
    645         length = a * (widthu_per_lenu / (self.scale * self.width))
    646         X, Y = self._h_arrows(length)
    647         if self.angles == 'xy':
    648             theta = angles
    649         elif self.angles == 'uv':
    650             theta = np.angle(uv)
    651         else:
    652             # Make a copy to avoid changing the input array.
    653             theta = ma.masked_invalid(self.angles, copy=True).filled(0)
    654             theta = theta.ravel()
    655             theta *= (np.pi / 180.0)
    656         theta.shape = (theta.shape[0], 1)  # for broadcasting
--> 657         xy = (X + Y * 1j) * np.exp(1j * theta) * self.width
        xy = undefined
        X = array([[  5.00000000e-01,   2.50000000e-01,  -2.50000000e-01, ...,
          2.50000000e-01,   5.00000000e-01,   2.50000000e-01],
       [  0.00000000e+00,   2.42541838e+00,   0.00000000e+00, ...,
          2.42541838e+00,   0.00000000e+00,   0.00000000e+00],
       [  0.00000000e+00,   9.08234295e+00,   6.58234295e+00, ...,
          9.08234295e+00,   0.00000000e+00,   0.00000000e+00],
       ..., 
       [  0.00000000e+00,   3.87231325e+02,   3.84731325e+02, ...,
          3.87231325e+02,   0.00000000e+00,   0.00000000e+00],
       [  0.00000000e+00,   3.90840896e+02,   3.88340896e+02, ...,
          3.90840896e+02,   0.00000000e+00,   0.00000000e+00],
       [  0.00000000e+00,   3.94533403e+02,   3.92033403e+02, ...,
          3.94533403e+02,   0.00000000e+00,   0.00000000e+00]])
        Y = array([[  0.00000000e+00,   4.33012702e-01,   4.33012702e-01, ...,
         -4.33012702e-01,  -1.22464680e-16,   4.33012702e-01],
       [  4.85083677e-01,   4.85083677e-01,   1.45525103e+00, ...,
         -4.85083677e-01,  -4.85083677e-01,   4.85083677e-01],
       [  5.00000000e-01,   5.00000000e-01,   1.50000000e+00, ...,
         -5.00000000e-01,  -5.00000000e-01,   5.00000000e-01],
       ..., 
       [  5.00000000e-01,   5.00000000e-01,   1.50000000e+00, ...,
         -5.00000000e-01,  -5.00000000e-01,   5.00000000e-01],
       [  5.00000000e-01,   5.00000000e-01,   1.50000000e+00, ...,
         -5.00000000e-01,  -5.00000000e-01,   5.00000000e-01],
       [  5.00000000e-01,   5.00000000e-01,   1.50000000e+00, ...,
         -5.00000000e-01,  -5.00000000e-01,   5.00000000e-01]])
        global np.exp = <ufunc 'exp'>
        theta = array([[  0.00000000e+00],
       [  8.95159981e+00],
       [  1.79031996e+01],
       [  2.68547994e+01],
       [  3.58063992e+01],
       [  4.47579990e+01],
       [  5.37095988e+01],
       [  6.26611987e+01],
       [  7.16127985e+01],
       [  8.05643983e+01],
       [  8.95159981e+01],
       [  9.84675979e+01],
       [  1.07419198e+02],
       [  1.16370798e+02],
       [  1.25322397e+02],
       [  1.34273997e+02],
       [  1.43225597e+02],
       [  1.52177197e+02],
       [  1.61128797e+02],
       [  1.70080396e+02],
       [  1.79031996e+02],
       [  1.87983596e+02],
       [  1.96935196e+02],
       [  2.05886796e+02],
       [  2.14838395e+02],
       [  2.23789995e+02],
       [  2.32741595e+02],
       [  2.41693195e+02],
       [  2.50644795e+02],
       [  2.59596394e+02],
       [  2.68547994e+02],
       [  2.77499594e+02],
       [  2.86451194e+02],
       [  2.95402794e+02],
       [  3.04354393e+02],
       [  3.13305993e+02],
       [  3.22257593e+02],
       [  3.31209193e+02],
       [  3.40160793e+02],
       [  3.49112393e+02],
       [  3.58063992e+02],
       [  3.67015592e+02],
       [  3.75967192e+02],
       [  3.84918792e+02],
       [  3.93870392e+02],
       [  4.02821991e+02],
       [  3.69599136e-01],
       [  9.32119894e+00],
       [  1.82727988e+01],
       [  2.72243986e+01],
       [  3.61759984e+01],
       [  4.51275982e+01],
       [  5.40791980e+01],
       [  6.30307978e+01],
       [  7.19823976e+01],
       [  8.09339974e+01],
       [  8.98855972e+01],
       [  9.88371970e+01],
       [  1.07788797e+02],
       [  1.16740397e+02],
       [  1.25691996e+02],
       [  1.34643596e+02],
       [  1.43595196e+02],
       [  1.52546796e+02],
       [  1.61498396e+02],
       [  1.70449995e+02],
       [  1.79401595e+02],
       [  1.88353195e+02],
       [  1.97304795e+02],
       [  2.06256395e+02],
       [  2.15207995e+02],
       [  2.24159594e+02],
       [  2.33111194e+02],
       [  2.42062794e+02],
       [  2.51014394e+02],
       [  2.59965994e+02],
       [  2.68917593e+02],
       [  2.77869193e+02],
       [  2.86820793e+02],
       [  2.95772393e+02],
       [  3.04723993e+02],
       [  3.13675592e+02],
       [  3.22627192e+02],
       [  3.31578792e+02],
       [  3.40530392e+02],
       [  3.49481992e+02],
       [  3.58433591e+02],
       [  3.67385191e+02],
       [  3.76336791e+02],
       [  3.85288391e+02],
       [  3.94239991e+02],
       [  4.03191590e+02],
       [  7.39198271e-01],
       [  9.69079808e+00],
       [  1.86423979e+01],
       [  2.75939977e+01],
       [  3.65455975e+01],
       [  4.54971973e+01],
       [  5.44487971e+01],
       [  6.34003969e+01],
       [  7.23519967e+01],
       [  8.13035965e+01],
       [  9.02551964e+01],
       [  9.92067962e+01],
       [  1.08158396e+02],
       [  1.17109996e+02],
       [  1.26061596e+02],
       [  1.35013195e+02],
       [  1.43964795e+02],
       [  1.52916395e+02],
       [  1.61867995e+02],
       [  1.70819595e+02],
       [  1.79771194e+02],
       [  1.88722794e+02],
       [  1.97674394e+02],
       [  2.06625994e+02],
       [  2.15577594e+02],
       [  2.24529193e+02],
       [  2.33480793e+02],
       [  2.42432393e+02],
       [  2.51383993e+02],
       [  2.60335593e+02],
       [  2.69287193e+02],
       [  2.78238792e+02],
       [  2.87190392e+02],
       [  2.96141992e+02],
       [  3.05093592e+02],
       [  3.14045192e+02],
       [  3.22996791e+02],
       [  3.31948391e+02],
       [  3.40899991e+02],
       [  3.49851591e+02],
       [  3.58803191e+02],
       [  3.67754790e+02],
       [  3.76706390e+02],
       [  3.85657990e+02],
       [  3.94609590e+02],
       [  4.03561190e+02],
       [  1.10879741e+00],
       [  1.00603972e+01],
       [  1.90119970e+01],
       [  2.79635968e+01],
       [  3.69151966e+01],
       [  4.58667964e+01],
       [  5.48183963e+01],
       [  6.37699961e+01],
       [  7.27215959e+01],
       [  8.16731957e+01],
       [  9.06247955e+01],
       [  9.95763953e+01],
       [  1.08527995e+02],
       [  1.17479595e+02],
       [  1.26431195e+02],
       [  1.35382795e+02],
       [  1.44334394e+02],
       [  1.53285994e+02],
       [  1.62237594e+02],
       [  1.71189194e+02],
       [  1.80140794e+02],
       [  1.89092393e+02],
       [  1.98043993e+02],
       [  2.06995593e+02],
       [  2.15947193e+02],
       [  2.24898793e+02],
       [  2.33850392e+02],
       [  2.42801992e+02],
       [  2.51753592e+02],
       [  2.60705192e+02],
       [  2.69656792e+02],
       [  2.78608391e+02],
       [  2.87559991e+02],
       [  2.96511591e+02],
       [  3.05463191e+02],
       [  3.14414791e+02],
       [  3.23366390e+02],
       [  3.32317990e+02],
       [  3.41269590e+02],
       [  3.50221190e+02],
       [  3.59172790e+02],
       [  3.68124390e+02],
       [  3.77075989e+02],
       [  3.86027589e+02],
       [  3.94979189e+02],
       [  4.03930789e+02],
       [  1.47839654e+00],
       [  1.04299964e+01],
       [  1.93815962e+01],
       [  2.83331960e+01],
       [  3.72847958e+01],
       [  4.62363956e+01],
       [  5.51879954e+01],
       [  6.41395952e+01],
       [  7.30911950e+01],
       [  8.20427948e+01],
       [  9.09943946e+01],
       [  9.99459944e+01],
       [  1.08897594e+02],
       [  1.17849194e+02],
       [  1.26800794e+02],
       [  1.35752394e+02],
       [  1.44703993e+02],
       [  1.53655593e+02],
       [  1.62607193e+02],
       [  1.71558793e+02],
       [  1.80510393e+02],
       [  1.89461993e+02],
       [  1.98413592e+02],
       [  2.07365192e+02],
       [  2.16316792e+02],
       [  2.25268392e+02],
       [  2.34219992e+02],
       [  2.43171591e+02],
       [  2.52123191e+02],
       [  2.61074791e+02],
       [  2.70026391e+02],
       [  2.78977991e+02],
       [  2.87929590e+02],
       [  2.96881190e+02],
       [  3.05832790e+02],
       [  3.14784390e+02],
       [  3.23735990e+02],
       [  3.32687589e+02],
       [  3.41639189e+02],
       [  3.50590789e+02],
       [  3.59542389e+02],
       [  3.68493989e+02],
       [  3.77445588e+02],
       [  3.86397188e+02],
       [  3.95348788e+02],
       [  4.04300388e+02],
       [  1.84799568e+00],
       [  1.07995955e+01],
       [  1.97511953e+01],
       [  2.87027951e+01],
       [  3.76543949e+01],
       [  4.66059947e+01],
       [  5.55575945e+01],
       [  6.45091943e+01],
       [  7.34607941e+01],
       [  8.24123940e+01],
       [  9.13639938e+01],
       [  1.00315594e+02],
       [  1.09267193e+02],
       [  1.18218793e+02],
       [  1.27170393e+02],
       [  1.36121993e+02],
       [  1.45073593e+02],
       [  1.54025192e+02],
       [  1.62976792e+02],
       [  1.71928392e+02],
       [  1.80879992e+02],
       [  1.89831592e+02],
       [  1.98783191e+02],
       [  2.07734791e+02],
       [  2.16686391e+02],
       [  2.25637991e+02],
       [  2.34589591e+02],
       [  2.43541190e+02],
       [  2.52492790e+02],
       [  2.61444390e+02],
       [  2.70395990e+02],
       [  2.79347590e+02],
       [  2.88299190e+02],
       [  2.97250789e+02],
       [  3.06202389e+02],
       [  3.15153989e+02],
       [  3.24105589e+02],
       [  3.33057189e+02],
       [  3.42008788e+02],
       [  3.50960388e+02],
       [  3.59911988e+02],
       [  3.68863588e+02],
       [  3.77815188e+02],
       [  3.86766787e+02],
       [  3.95718387e+02],
       [  4.04669987e+02],
       [  2.21759481e+00],
       [  1.11691946e+01],
       [  2.01207944e+01],
       [  2.90723942e+01],
       [  3.80239940e+01],
       [  4.69755939e+01],
       [  5.59271937e+01],
       [  6.48787935e+01],
       [  7.38303933e+01],
       [  8.27819931e+01],
       [  9.17335929e+01],
       [  1.00685193e+02],
       [  1.09636793e+02],
       [  1.18588392e+02],
       [  1.27539992e+02],
       [  1.36491592e+02],
       [  1.45443192e+02],
       [  1.54394792e+02],
       [  1.63346391e+02],
       [  1.72297991e+02],
       [  1.81249591e+02],
       [  1.90201191e+02],
       [  1.99152791e+02],
       [  2.08104390e+02],
       [  2.17055990e+02],
       [  2.26007590e+02],
       [  2.34959190e+02],
       [  2.43910790e+02],
       [  2.52862389e+02],
       [  2.61813989e+02],
       [  2.70765589e+02],
       [  2.79717189e+02],
       [  2.88668789e+02],
       [  2.97620388e+02],
       [  3.06571988e+02],
       [  3.15523588e+02],
       [  3.24475188e+02],
       [  3.33426788e+02],
       [  3.42378388e+02],
       [  3.51329987e+02],
       [  3.60281587e+02],
       [  3.69233187e+02],
       [  3.78184787e+02],
       [  3.87136387e+02],
       [  3.96087986e+02],
       [  4.05039586e+02],
       [  2.58719395e+00],
       [  1.15387938e+01],
       [  2.04903936e+01],
       [  2.94419934e+01],
       [  3.83935932e+01],
       [  4.73451930e+01],
       [  5.62967928e+01],
       [  6.52483926e+01],
       [  7.41999924e+01],
       [  8.31515922e+01],
       [  9.21031920e+01],
       [  1.01054792e+02],
       [  1.10006392e+02],
       [  1.18957991e+02],
       [  1.27909591e+02],
       [  1.36861191e+02],
       [  1.45812791e+02],
       [  1.54764391e+02],
       [  1.63715990e+02],
       [  1.72667590e+02],
       [  1.81619190e+02],
       [  1.90570790e+02],
       [  1.99522390e+02],
       [  2.08473990e+02],
       [  2.17425589e+02],
       [  2.26377189e+02],
       [  2.35328789e+02],
       [  2.44280389e+02],
       [  2.53231989e+02],
       [  2.62183588e+02],
       [  2.71135188e+02],
       [  2.80086788e+02],
       [  2.89038388e+02],
       [  2.97989988e+02],
       [  3.06941587e+02],
       [  3.15893187e+02],
       [  3.24844787e+02],
       [  3.33796387e+02],
       [  3.42747987e+02],
       [  3.51699586e+02],
       [  3.60651186e+02],
       [  3.69602786e+02],
       [  3.78554386e+02],
       [  3.87505986e+02],
       [  3.96457586e+02],
       [  4.05409185e+02],
       [  2.95679309e+00],
       [  1.19083929e+01],
       [  2.08599927e+01],
       [  2.98115925e+01],
       [  3.87631923e+01],
       [  4.77147921e+01],
       [  5.66663919e+01],
       [  6.56179917e+01],
       [  7.45695915e+01],
       [  8.35211914e+01],
       [  9.24727912e+01],
       [  1.01424391e+02],
       [  1.10375991e+02],
       [  1.19327591e+02],
       [  1.28279190e+02],
       [  1.37230790e+02],
       [  1.46182390e+02],
       [  1.55133990e+02],
       [  1.64085590e+02],
       [  1.73037189e+02],
       [  1.81988789e+02],
       [  1.90940389e+02],
       [  1.99891989e+02],
       [  2.08843589e+02],
       [  2.17795188e+02],
       [  2.26746788e+02],
       [  2.35698388e+02],
       [  2.44649988e+02],
       [  2.53601588e+02],
       [  2.62553188e+02],
       [  2.71504787e+02],
       [  2.80456387e+02],
       [  2.89407987e+02],
       [  2.98359587e+02],
       [  3.07311187e+02],
       [  3.16262786e+02],
       [  3.25214386e+02],
       [  3.34165986e+02],
       [  3.43117586e+02],
       [  3.52069186e+02],
       [  3.61020785e+02],
       [  3.69972385e+02],
       [  3.78923985e+02],
       [  3.87875585e+02],
       [  3.96827185e+02],
       [  4.05778784e+02],
       [  3.32639222e+00],
       [  1.22779920e+01],
       [  2.12295918e+01],
       [  3.01811916e+01],
       [  3.91327915e+01],
       [  4.80843913e+01],
       [  5.70359911e+01],
       [  6.59875909e+01],
       [  7.49391907e+01],
       [  8.38907905e+01],
       [  9.28423903e+01],
       [  1.01793990e+02],
       [  1.10745590e+02],
       [  1.19697190e+02],
       [  1.28648790e+02],
       [  1.37600389e+02],
       [  1.46551989e+02],
       [  1.55503589e+02],
       [  1.64455189e+02],
       [  1.73406789e+02],
       [  1.82358388e+02],
       [  1.91309988e+02],
       [  2.00261588e+02],
       [  2.09213188e+02],
       [  2.18164788e+02],
       [  2.27116387e+02],
       [  2.36067987e+02],
       [  2.45019587e+02],
       [  2.53971187e+02],
       [  2.62922787e+02],
       [  2.71874386e+02],
       [  2.80825986e+02],
       [  2.89777586e+02],
       [  2.98729186e+02],
       [  3.07680786e+02],
       [  3.16632386e+02],
       [  3.25583985e+02],
       [  3.34535585e+02],
       [  3.43487185e+02],
       [  3.52438785e+02],
       [  3.61390385e+02],
       [  3.70341984e+02],
       [  3.79293584e+02],
       [  3.88245184e+02],
       [  3.97196784e+02],
       [  4.06148384e+02],
       [  3.69599136e+00],
       [  1.26475912e+01],
       [  2.15991910e+01],
       [  3.05507908e+01],
       [  3.95023906e+01],
       [  4.84539904e+01],
       [  5.74055902e+01],
       [  6.63571900e+01],
       [  7.53087898e+01],
       [  8.42603896e+01],
       [  9.32119894e+01],
       [  1.02163589e+02],
       [  1.11115189e+02],
       [  1.20066789e+02],
       [  1.29018389e+02],
       [  1.37969988e+02],
       [  1.46921588e+02],
       [  1.55873188e+02],
       [  1.64824788e+02],
       [  1.73776388e+02],
       [  1.82727988e+02],
       [  1.91679587e+02],
       [  2.00631187e+02],
       [  2.09582787e+02],
       [  2.18534387e+02],
       [  2.27485987e+02],
       [  2.36437586e+02],
       [  2.45389186e+02],
       [  2.54340786e+02],
       [  2.63292386e+02],
       [  2.72243986e+02],
       [  2.81195585e+02],
       [  2.90147185e+02],
       [  2.99098785e+02],
       [  3.08050385e+02],
       [  3.17001985e+02],
       [  3.25953584e+02],
       [  3.34905184e+02],
       [  3.43856784e+02],
       [  3.52808384e+02],
       [  3.61759984e+02],
       [  3.70711583e+02],
       [  3.79663183e+02],
       [  3.88614783e+02],
       [  3.97566383e+02],
       [  4.06517983e+02],
       [  4.06559049e+00],
       [  1.30171903e+01],
       [  2.19687901e+01],
       [  3.09203899e+01],
       [  3.98719897e+01],
       [  4.88235895e+01],
       [  5.77751893e+01],
       [  6.67267891e+01],
       [  7.56783890e+01],
       [  8.46299888e+01],
       [  9.35815886e+01],
       [  1.02533188e+02],
       [  1.11484788e+02],
       [  1.20436388e+02],
       [  1.29387988e+02],
       [  1.38339588e+02],
       [  1.47291187e+02],
       [  1.56242787e+02],
       [  1.65194387e+02],
       [  1.74145987e+02],
       [  1.83097587e+02],
       [  1.92049186e+02],
       [  2.01000786e+02],
       [  2.09952386e+02],
       [  2.18903986e+02],
       [  2.27855586e+02],
       [  2.36807186e+02],
       [  2.45758785e+02],
       [  2.54710385e+02],
       [  2.63661985e+02],
       [  2.72613585e+02],
       [  2.81565185e+02],
       [  2.90516784e+02],
       [  2.99468384e+02],
       [  3.08419984e+02],
       [  3.17371584e+02],
       [  3.26323184e+02],
       [  3.35274783e+02],
       [  3.44226383e+02],
       [  3.53177983e+02],
       [  3.62129583e+02],
       [  3.71081183e+02],
       [  3.80032782e+02],
       [  3.88984382e+02],
       [  3.97935982e+02],
       [  4.06887582e+02],
       [  4.43518963e+00],
       [  1.33867894e+01],
       [  2.23383892e+01],
       [  3.12899891e+01],
       [  4.02415889e+01],
       [  4.91931887e+01],
       [  5.81447885e+01],
       [  6.70963883e+01],
       [  7.60479881e+01],
       [  8.49995879e+01],
       [  9.39511877e+01],
       [  1.02902788e+02],
       [  1.11854387e+02],
       [  1.20805987e+02],
       [  1.29757587e+02],
       [  1.38709187e+02],
       [  1.47660787e+02],
       [  1.56612386e+02],
       [  1.65563986e+02],
       [  1.74515586e+02],
       [  1.83467186e+02],
       [  1.92418786e+02],
       [  2.01370385e+02],
       [  2.10321985e+02],
       [  2.19273585e+02],
       [  2.28225185e+02],
       [  2.37176785e+02],
       [  2.46128384e+02],
       [  2.55079984e+02],
       [  2.64031584e+02],
       [  2.72983184e+02],
       [  2.81934784e+02],
       [  2.90886383e+02],
       [  2.99837983e+02],
       [  3.08789583e+02],
       [  3.17741183e+02],
       [  3.26692783e+02],
       [  3.35644383e+02],
       [  3.44595982e+02],
       [  3.53547582e+02],
       [  3.62499182e+02],
       [  3.71450782e+02],
       [  3.80402382e+02],
       [  3.89353981e+02],
       [  3.98305581e+02],
       [  4.07257181e+02],
       [  4.80478876e+00],
       [  1.37563886e+01],
       [  2.27079884e+01],
       [  3.16595882e+01],
       [  4.06111880e+01],
       [  4.95627878e+01],
       [  5.85143876e+01],
       [  6.74659874e+01],
       [  7.64175872e+01],
       [  8.53691870e+01],
       [  9.43207868e+01],
       [  1.03272387e+02],
       [  1.12223986e+02],
       [  1.21175586e+02],
       [  1.30127186e+02],
       [  1.39078786e+02],
       [  1.48030386e+02],
       [  1.56981986e+02],
       [  1.65933585e+02],
       [  1.74885185e+02],
       [  1.83836785e+02],
       [  1.92788385e+02],
       [  2.01739985e+02],
       [  2.10691584e+02],
       [  2.19643184e+02],
       [  2.28594784e+02],
       [  2.37546384e+02],
       [  2.46497984e+02],
       [  2.55449583e+02],
       [  2.64401183e+02],
       [  2.73352783e+02],
       [  2.82304383e+02],
       [  2.91255983e+02],
       [  3.00207582e+02],
       [  3.09159182e+02],
       [  3.18110782e+02],
       [  3.27062382e+02],
       [  3.36013982e+02],
       [  3.44965581e+02],
       [  3.53917181e+02],
       [  3.62868781e+02],
       [  3.71820381e+02],
       [  3.80771981e+02],
       [  3.89723581e+02],
       [  3.98675180e+02],
       [  4.07626780e+02],
       [  5.17438790e+00],
       [  1.41259877e+01],
       [  2.30775875e+01],
       [  3.20291873e+01],
       [  4.09807871e+01],
       [  4.99323869e+01],
       [  5.88839867e+01],
       [  6.78355866e+01],
       [  7.67871864e+01],
       [  8.57387862e+01],
       [  9.46903860e+01],
       [  1.03641986e+02],
       [  1.12593586e+02],
       [  1.21545185e+02],
       [  1.30496785e+02],
       [  1.39448385e+02],
       [  1.48399985e+02],
       [  1.57351585e+02],
       [  1.66303184e+02],
       [  1.75254784e+02],
       [  1.84206384e+02],
       [  1.93157984e+02],
       [  2.02109584e+02],
       [  2.11061183e+02],
       [  2.20012783e+02],
       [  2.28964383e+02],
       [  2.37915983e+02],
       [  2.46867583e+02],
       [  2.55819183e+02],
       [  2.64770782e+02],
       [  2.73722382e+02],
       [  2.82673982e+02],
       [  2.91625582e+02],
       [  3.00577182e+02],
       [  3.09528781e+02],
       [  3.18480381e+02],
       [  3.27431981e+02],
       [  3.36383581e+02],
       [  3.45335181e+02],
       [  3.54286780e+02],
       [  3.63238380e+02],
       [  3.72189980e+02],
       [  3.81141580e+02],
       [  3.90093180e+02],
       [  3.99044779e+02],
       [  4.07996379e+02],
       [  5.54398704e+00],
       [  1.44955868e+01],
       [  2.34471867e+01],
       [  3.23987865e+01],
       [  4.13503863e+01],
       [  5.03019861e+01],
       [  5.92535859e+01],
       [  6.82051857e+01],
       [  7.71567855e+01],
       [  8.61083853e+01],
       [  9.50599851e+01],
       [  1.04011585e+02],
       [  1.12963185e+02],
       [  1.21914785e+02],
       [  1.30866384e+02],
       [  1.39817984e+02],
       [  1.48769584e+02],
       [  1.57721184e+02],
       [  1.66672784e+02],
       [  1.75624383e+02],
       [  1.84575983e+02],
       [  1.93527583e+02],
       [  2.02479183e+02],
       [  2.11430783e+02],
       [  2.20382382e+02],
       [  2.29333982e+02],
       [  2.38285582e+02],
       [  2.47237182e+02],
       [  2.56188782e+02],
       [  2.65140381e+02],
       [  2.74091981e+02],
       [  2.83043581e+02],
       [  2.91995181e+02],
       [  3.00946781e+02],
       [  3.09898381e+02],
       [  3.18849980e+02],
       [  3.27801580e+02],
       [  3.36753180e+02],
       [  3.45704780e+02],
       [  3.54656380e+02],
       [  3.63607979e+02],
       [  3.72559579e+02],
       [  3.81511179e+02],
       [  3.90462779e+02],
       [  3.99414379e+02],
       [  4.08365978e+02],
       [  5.91358617e+00],
       [  1.48651860e+01],
       [  2.38167858e+01],
       [  3.27683856e+01],
       [  4.17199854e+01],
       [  5.06715852e+01],
       [  5.96231850e+01],
       [  6.85747848e+01],
       [  7.75263846e+01],
       [  8.64779844e+01],
       [  9.54295843e+01],
       [  1.04381184e+02],
       [  1.13332784e+02],
       [  1.22284384e+02],
       [  1.31235983e+02],
       [  1.40187583e+02],
       [  1.49139183e+02],
       [  1.58090783e+02],
       [  1.67042383e+02],
       [  1.75993983e+02],
       [  1.84945582e+02],
       [  1.93897182e+02],
       [  2.02848782e+02],
       [  2.11800382e+02],
       [  2.20751982e+02],
       [  2.29703581e+02],
       [  2.38655181e+02],
       [  2.47606781e+02],
       [  2.56558381e+02],
       [  2.65509981e+02],
       [  2.74461580e+02],
       [  2.83413180e+02],
       [  2.92364780e+02],
       [  3.01316380e+02],
       [  3.10267980e+02],
       [  3.19219579e+02],
       [  3.28171179e+02],
       [  3.37122779e+02],
       [  3.46074379e+02],
       [  3.55025979e+02],
       [  3.63977578e+02],
       [  3.72929178e+02],
       [  3.81880778e+02],
       [  3.90832378e+02],
       [  3.99783978e+02],
       [  4.08735578e+02],
       [  6.28318531e+00],
       [  1.52347851e+01],
       [  2.41863849e+01],
       [  3.31379847e+01],
       [  4.20895845e+01],
       [  5.10411843e+01],
       [  5.99927842e+01],
       [  6.89443840e+01],
       [  7.78959838e+01],
       [  8.68475836e+01],
       [  9.57991834e+01],
       [  1.04750783e+02],
       [  1.13702383e+02],
       [  1.22653983e+02],
       [  1.31605583e+02],
       [  1.40557182e+02],
       [  1.49508782e+02],
       [  1.58460382e+02],
       [  1.67411982e+02],
       [  1.76363582e+02],
       [  1.85315181e+02],
       [  1.94266781e+02],
       [  2.03218381e+02],
       [  2.12169981e+02],
       [  2.21121581e+02],
       [  2.30073181e+02],
       [  2.39024780e+02],
       [  2.47976380e+02],
       [  2.56927980e+02],
       [  2.65879580e+02],
       [  2.74831180e+02],
       [  2.83782779e+02],
       [  2.92734379e+02],
       [  3.01685979e+02],
       [  3.10637579e+02],
       [  3.19589179e+02],
       [  3.28540778e+02],
       [  3.37492378e+02],
       [  3.46443978e+02],
       [  3.55395578e+02],
       [  3.64347178e+02],
       [  3.73298777e+02],
       [  3.82250377e+02],
       [  3.91201977e+02],
       [  4.00153577e+02],
       [  4.09105177e+02]])
        self.width = 0.0030000000000000001
    658         xy = xy[:, :, np.newaxis]
    659         XY = np.concatenate((xy.real, xy.imag), axis=2)
    660         if self.Umask is not ma.nomask:
    661             XY = ma.array(XY)
    662             XY[self.Umask] = ma.masked
    663             # This might be handled more efficiently with nans, given
    664             # that nans will end up in the paths anyway.
    665 
    666         return XY
    667 
    668     def _h_arrows(self, length):
    669         """ length is in arrow width units """
    670         # It might be possible to streamline the code
    671         # and speed it up a bit by using complex (x,y)
    672         # instead of separate arrays; but any gain would be slight.

ValueError: operands could not be broadcast together with shapes (400,8) (828,1) 

***************************************************************************

History of session input:X,Y=mgrid[0:5:20j , 0:10:20j]U = X ; V = 0.7*X + 0.5*Yplt.quiver(Z , Y , hyper_bz_trunc_half[0,:,:] , hyper_by_trunc_half[0,:,:] , hyper_by_trunc_half[0,:,:], cmap=cm.Reds, scale=0.05, headwidth=8, headlength=8, angles='xy')plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles='xy', scale_units='xy', scale=1)figure()angles = (X * 20 + Y * 20).ravel() plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles=angles, scale_units='xy', scale=1)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles='xy', scale=1., scale=1)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles='xy', scale=1)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles='xy', scale=10)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles='xy', scale=30)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles='xy', scale=50)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles='xy', scale=60)angles = (X * 20 + Y * 20).ravel() #plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles=angles, scale_units='xy', scale=1)figure()#plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles=angles, scale_units='xy', scale=1)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles=angles, scale_units='xy', scale=1)plt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles=angles, scale_units='xy', scale=1)x = arange(4) y = arange(5) X, Y = meshgrid(x, y) u = ones_like(X) v = zeros_like(X) c = arange(u.size)  # values mapped to colors angles = (X * 20 + Y * 20).ravel() quiver(X, Y, u, v, c, angles=angles) x = N.linspace(0, 1, 10)y = N.linspace(0, 1, 10)x = linspace(0, 1, 10)y = linspace(0, 1, 10)angles =linspace(0, 360, 10)P.quiver(x, y, 1, 0, angles=angles)quiver(x, y, 1, 0, angles=angles)import globimport h5pyarchivos = np.sort(glob.glob('../comp5ppc80_L1100_wces1200_nt100//*flds.tot*')) #names of the fields files in orderN = 30 #Number of snaps we want to loadistep=1if istep == 1:
        point=2
        ghost1=2 #2 ghosts At the beginning of each array
        ghost2=3 #3 ghosts At the end of each array
    #Here we create the Hypercube containing the magnetic field of each snaphyper_bx = np.array([ np.array(h5py.File(archivos[i]).get('bx')) for i in range(N) ])hyper_by = np.array([ np.array(h5py.File(archivos[i]).get('by')) for i in range(N) ])hyper_bz = np.array([ np.array(h5py.File(archivos[i]).get('bz')) for i in range(N) ])#Here we create the Hypercube containing the electric field of each snaphyper_ex = np.array([ np.array(h5py.File(archivos[i]).get('ex')) for i in range(N) ])hyper_ey = np.array([ np.array(h5py.File(archivos[i]).get('ey')) for i in range(N) ])hyper_ez = np.array([ np.array(h5py.File(archivos[i]).get('ez')) for i in range(N) ])#Here we clean the arrays from the ghosts cellstam0 = np.shape(hyper_bx)[1]-ghost2 #z-axis (16 cells + 5 ghosts)tam1 = np.shape(hyper_bx)[2]-ghost2 #y-axis (1152 cells + 5 ghosts) #With ghost2 I wipe out the three last ghost cells#tam2 = np.shape(hyper_bx)[3]-ghost2 #x-axis (1 cell + 6 ghosts)hyper_bx_trunc=np.array([ hyper_bx[i,ghost1:tam0,ghost1:tam1,point] for i in range(N) ])hyper_by_trunc=np.array([ hyper_by[i,ghost1:tam0,ghost1:tam1,point] for i in range(N) ])hyper_bz_trunc=np.array([ hyper_bz[i,ghost1:tam0,ghost1:tam1,point] for i in range(N) ])hyper_ex_trunc=np.array([ hyper_ex[i,ghost1:tam0,ghost1:tam1,point] for i in range(N) ])hyper_ey_trunc=np.array([ hyper_ey[i,ghost1:tam0,ghost1:tam1,point] for i in range(N) ])hyper_ez_trunc=np.array([ hyper_ez[i,ghost1:tam0,ghost1:tam1,point] for i in range(N) ])nn = 25Z , Y = np.mgrid[0:tam0:(tam0*1j) , 0:tam1:(tam1*1j)/nn ]angles = (X * 20 + Y * 20).ravel() hyper_bz_trunc_half = np.array([ hyper_bz_trunc[i,:,::nn] for i in range(N) ]) #Reduce the elements taking elements nn by nnhyper_by_trunc_half = np.array([ hyper_by_trunc[i,:,::nn] for i in range(N) ]) angles = (Z * 20 + Y * 20).ravel()plt.quiver(Z , Y , hyper_bz_trunc_half[0,:,:] , hyper_by_trunc_half[0,:,:] , hyper_by_trunc_half[0,:,:], cmap=cm.Reds, scale=0.05, headwidth=8, headlength=8)plt.quiver(Z , Y , hyper_bz_trunc_half[0,:,:] , hyper_by_trunc_half[0,:,:] , hyper_by_trunc_half[0,:,:], cmap=cm.Reds, scale=0.05, headwidth=8, headlength=8, angles='xy')get_ipython().magic('config Application.verbose_crash=True')get_ipython().magic('debug')X, Y = meshgrid(x, y)X,Y=mgrid[0:5:20j , 0:10:20j]U = X ; V = 0.7*X + 0.5*Yplt.quiver(X, Y, U, V,        # data
           U,                   # colour the arrows based on this array
           cmap=cm.seismic,     # colour map
           headlength=7,        # length of the arrows
 angles=angles, scale_units='xy', scale=1)
*** Last line of input (may not be in above history):
U = X ; V = 0.7*X + 0.5*Y


More information about the Matplotlib-users mailing list