trying to improve my knn algorithm

hunter.hammond.dev at gmail.com hunter.hammond.dev at gmail.com
Wed Jul 1 14:21:58 EDT 2020


This is a knn algorithm for articles that I have gotten. Then determines which category it belongs to. I am not getting very good results :/

k = 23
training_folder = './data/training/'
minn_folder = training_folder + 'Minnesota/'
health_folder = training_folder + 'Health/'


def remove_punctuation(text):
    return regex.sub(r'\p{P}+', "", text)


def file_list(folder):
    return [f for f in listdir(folder) if isfile(join(folder, f))]


def all_file_list():
    minn_files = file_list(minn_folder)
    for i in range(len(minn_files)):
        minn_files[i] = minn_folder + minn_files[i]

    health_files = file_list(health_folder)
    for i in range(len(health_files)):
        health_files[i] = health_folder + health_files[i]

    return minn_files + health_files


def file_to_word_list(f):
    fr = open(f, 'r')
    text_read = fr.read()
    text = remove_punctuation(text_read)

    return text.split()


def get_vocabularies(all_files):
    voc = {}
    for f in all_files:
        words = file_to_word_list(f)
        for w in words:
            voc[w] = 0

    return voc


def load_training_data():
    all_files = all_file_list()
    voc = get_vocabularies(all_files)

    training_data = []

    for f in all_files:
        tag = f.split('/')[3]
        point = copy.deepcopy(voc)

        words = file_to_word_list(f)
        for w in words:
            point[w] += 1

        d = {'tag': tag, 'point': point}
        training_data.append(d)

    return training_data


def get_distance(p1, p2):
    sq_sum = 0

    for w in p1:
        if w in p2:
            sq_sum += pow(p1[w] - p2[w], 2)

    return math.sqrt(sq_sum)


# This function is implemented for seeing insights of training data
def show_distances(training_data):
    for i in range(len(training_data)):
        for j in range(i + 1, len(training_data)):
            print('d(' + str(i) + ',' + str(j) + ')=')
            print(get_distance(training_data[i]['point'], training_data[j]['point']))
        print()
    for i in range(len(training_data)):
        print(training_data[i]['tag'])


def test(training_data, txt_file):
    dist_list = []
    txt = {}
    item = {}
    max_i = 0

    words = file_to_word_list(txt_file)
    for w in words:
        if w in txt:
            txt[w] += 1
        else:
            txt[w] = 1

    for pt in training_data:
        item['tag'] = pt['tag']
        item['distance'] = get_distance(pt['point'], txt)

        if len(dist_list) < k:
            dist_list.append(copy.deepcopy(item))
        else:
            for i in range(1, k):
                if dist_list[i]['distance'] > dist_list[max_i]['distance']:
                    max_i = i
            if dist_list[max_i]['distance'] > item['distance']:
                dist_list[max_i] = item

    vote_result = {}
    for d in dist_list:
        if d['tag'] in vote_result:
            vote_result[d['tag']] += 1
        else:
            vote_result[d['tag']] = 1

    # print(vote_result)        # for testing
    result = dist_list[0]['tag']
    for vote in vote_result:
        if vote_result[vote] > vote_result[result]:
            result = vote

    return result


def main(txt):
    td = load_training_data()
    print(show_distances(td))
    # show_distances(td)        # for test usage only
    print('Category: ' + test(td, txt))

if __name__ == '__main__':
    main(sys.argv[1])


More information about the Python-list mailing list