[scikit-learn] gradient boosting regression with multiple output variables?
Tim Head
betatim at gmail.com
Mon May 30 12:56:03 EDT 2016
Hi,
recently a MultiOutput* "adaptor" was added to scikit-learn (-dev version
only so far I think). They take algorithms like GradientBoosting* and fit
one instance per target wrapped in a nice interface. You won't be able to
take advantage of correlations between the outputs this way but it might be
a starting point. Take a look at:
http://scikit-learn.org/dev/modules/classes.html#module-sklearn.multioutput
http://scikit-learn.org/dev/auto_examples/ensemble/plot_random_forest_regression_multioutput.html
T
On Mon, May 30, 2016 at 6:16 PM Peter Prettenhofer <
peter.prettenhofer at gmail.com> wrote:
> Hi Roberto,
>
> correct - GradientBoostingRegressor | GradientBoostingClassifier does not
> support multiple outputs.
>
> best,
> Peter
>
> 2016-05-30 16:05 GMT+02:00 Roberto Pagliari <roberto.pagliari at asos.com>:
>
>> I noticed that the fit method of GBR does not return a [n_samples,
>> n_output] array. Does that mean multiple output variables are not supported?
>>
>> I'm asking because most other regressors do.
>>
>> Thank you,
>>
>>
>> _______________________________________________
>> scikit-learn mailing list
>> scikit-learn at python.org
>> https://mail.python.org/mailman/listinfo/scikit-learn
>>
>>
>
>
> --
> Peter Prettenhofer
> _______________________________________________
> scikit-learn mailing list
> scikit-learn at python.org
> https://mail.python.org/mailman/listinfo/scikit-learn
>
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://mail.python.org/pipermail/scikit-learn/attachments/20160530/c146e9b3/attachment.html>
More information about the scikit-learn
mailing list