In examples/large_deformation/hyperelastic.py a rotation by displacements is applied. By using a similar function the vectors defining the force couples could be defined for dw_surface_ltr (IMHO). Does it make sense?
r.
----- Reply message -----
From: "Andre Smit" <freev...(a)gmail.com>
To: <sfepy...(a)googlegroups.com>
Subject: Torque
Date: Sat, Dec 18, 2010 05:10
What is the best way to apply a torque load to a model?
--
Andre
--
You received this message because you are subscribed to the Google Groups "sfepy-devel" group.
To post to this group, send email to sfepy...(a)googlegroups.com.
To unsubscribe from this group, send email to sfepy-devel...(a)googlegroups.com.
For more options, visit this group at http://groups.google.com/group/sfepy-devel?hl=en.

I am currrently looking for FEM packages to help me solve a system of
beams and columns, basically a collection of 1D bernoulli/timoshenko
line elements.
I started reading SfePy docs and i am getting the idea that doing the
above is not really possible here, am i right?
Are only 2D area elements permitted in SfePy?
Or is there any direct support for solving 1D line elements too..
Cheers
Nimish

Dear SfePy users,
Is it possible to evaluate a solution not only in the FEM mesh node, but in
any arbitrary point in the domain with the given (x, y, z) coordinates?
For example, consider Dirichlet problem for Poisson equation. We apply
essential boundary conditions on the surface nodes and after the problem
has been solved we have the solution vector, i.e. vector of values in the
FEM mesh nodes. But I want to know the solution in point v(x, y, z) that is
not FEM mesh node. What is the best way to obtain solution in this point v?
Sincerely,
Alec Kalinin

I'm working on modeling a next-generation X-ray mirror for which the
shape can be actively controlled by use of many thin piezo-electric
actuators mounted on the mirror surface. The mirror is basically a
glass conical paraboloid with a 1 meter radius and 200 micron
thickness (e.g. http://en.wikipedia.org/wiki/X-ray_optics). Our
project is currently using a proprietary FEA package, but the model
setup and turnaround time is slow, in part because there is only one
part-time engineer who can run it.
SfePy looks like a great package and we're hoping that it could be
used to automate running a large number of different cases. I've
spent some time reading the documentation but I have a few questions
that I hope can be answered before going too much further. I want to
apologize in advance if some of my wording is imprecise, I have a
physics background but this topic is a bit outside my realm...
- Is SfePy appropriate for this problem?
- If a specify a grid with about 800 x 400 points (azimuthal, axial)
and about 10 boundary conditions (corresponding to mount points), what
is the rough order of magnitude of time to compute the solution? Is
it seconds, minutes, hours, or days?
- The linear elastic examples show a problem with a specified
displacement. How do I specify an input force? The piezo essentially
provides a tensile force along the surface.
- Is there a way to specify the problem and solve in cylindrical
coordinates? This is the natural coordinate system.
- How do I specify 6-DOF constraints which correspond to the mirror
mounts?
Thanks in advance for any help!
Tom Aldcroft

Hi,
I have simplified/unified the setting of dof data vectors to variables, namely:
- removed Variable.data_from_state(), .data_from_data() and
.data_from_any(), use Variable.set_data()
- removed Variables.data_from_state(), use Variables.set_data()
- renamed FieldVariable.data_from_qp() -> .set_data_from_qp()
So for those using the git version, update, please, your codes accordingly.
r.