NumPy-Discussion
Threads by month
- ----- 2025 -----
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2024 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2023 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2022 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2021 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2020 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2019 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2018 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2017 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2016 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2015 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2014 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2013 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2012 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2011 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2010 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2009 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2008 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2007 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2006 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2005 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2004 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2003 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2002 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2001 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
- ----- 2000 -----
- December
- November
- October
- September
- August
- July
- June
- May
- April
- March
- February
- January
July 2016
- 51 participants
- 37 discussions
I've been browsing the numpy source. I'm wondering about mixed-mode
arithmetic on arrays. I believe the way numpy handles this is that it
never does mixed arithmetic, but instead converts arrays to a common type.
Arguably, that might be efficient for a mix of say, double and float.
Maybe not.
But for a mix of complex and a scalar type (say, CDouble * Double), it's
clearly suboptimal in efficiency.
So, do I understand this correctly? If so, is that something we should
improve?
4
6
Feb. 18, 2023
Dear all,
I have a code using lots of "numpy.where" to make some constrained
calculations as in:
data = arange(10)
result = np.where(data == 0, 0., 1./data)
# or
data1 = arange(10)
data2 = arange(10)+1.0
result = np.where(data1 > data2, np.sqrt(data1-data2), np.sqrt(data2-data2))
which then produces warnings like:
/usr/bin/ipython:1: RuntimeWarning: invalid value encountered in sqrt
or for the first example:
/usr/bin/ipython:1: RuntimeWarning: divide by zero encountered in divide
How do I avoid these messages to appear?
I know that I could in principle use numpy.seterr. However, I do NOT
want to remove these warnings for other potential divide/multiply/sqrt
etc errors. Only when I am using a "where", to in fact avoid such
warnings! Note that the warnings only happen once, but since I am going
to release that code, I would like to avoid the user to get such
messages which are irrelevant here (because I am testing, with the
where, when NOT to divide by zero or take a sqrt of a negative number).
thanks!
Eric
5
4
July 22, 2021
David Froger <david.froger.info <at> gmail.com> writes:
> Hy,My question is about reading Fortran binary file (oh no this question
> again...)
I've posted this before, but I finally got it cleaned up for the Cookbook.
For this purpose I use a subclass of file that has methods for reading
unformatted Fortran data. See
http://www.scipy.org/Cookbook/FortranIO/FortranFile. I'd gladly see this in
numpy or scipy somewhere, but I'm not sure where it belongs.
> program makeArray
> implicit none
> integer,parameter:: nx=10,ny=20
> real(4),dimension(nx,ny):: ux,uy,p
> integer :: i,j
> open(11,file='uxuyp.bin',form='unformatted')
> do i = 1,nx
> do j = 1,ny
> ux(i,j) = real(i*j)
> uy(i,j) = real(i)/real(j)
> p (i,j) = real(i) + real(j)
> enddo
> enddo
> write(11) ux,uy
> write(11) p
> close(11)
> end program makeArray
When I run the above program compiled with gfortran on my Intel Mac,
I can read it back with::
>>> import numpy as np
>>> from fortranfile import FortranFile
>>> f=FortranFile('uxuyp.bin', endian='<')
>>> uxuy = f.readReals(prec='f') # 'f' for default reals
>>> len(uxuy)
400
>>> ux = np.array(uxuy[:200]).reshape((20,10)).T
>>> uy = np.array(uxuy[200:]).reshape((20,10)).T
>>> p = f.readReals('f').reshape((20,10)).T
>>> ux
array([[ 1., 2., 3., 4., 5., 6., 7., 8., 9.,
10., 11., 12., 13., 14., 15., 16., 17., 18.,
19., 20.],
[ 2., 4., 6., 8., 10., 12., 14., 16., 18.,
20., 22., 24., 26., 28., 30., 32., 34., 36.,
38., 40.],
[ 3., 6., 9., 12., 15., 18., 21., 24., 27.,
30., 33., 36., 39., 42., 45., 48., 51., 54.,
57., 60.],
[ 4., 8., 12., 16., 20., 24., 28., 32., 36.,
40., 44., 48., 52., 56., 60., 64., 68., 72.,
76., 80.],
[ 5., 10., 15., 20., 25., 30., 35., 40., 45.,
50., 55., 60., 65., 70., 75., 80., 85., 90.,
95., 100.],
[ 6., 12., 18., 24., 30., 36., 42., 48., 54.,
60., 66., 72., 78., 84., 90., 96., 102., 108.,
114., 120.],
[ 7.,Proxy-Connection: keep-alive
Cache-Control: max-age=0
14., 21., 28., 35., 42., 49., 56., 63.,
70., 77., 84., 91., 98., 105., 112., 119., 126.,
133., 140.],
[ 8., 16., 24., 32., 40., 48., 56., 64., 72.,
80., 88., 96., 104., 112., 120., 128., 136., 144.,
152., 160.],
[ 9., 18., 27., 36., 45., 54., 63., 72., 81.,
90., 99., 108., 117., 126., 135., 144., 153., 162.,
171., 180.],
[ 10., 20., 30., 40., 50., 60., 70., 80., 90.,
100., 110., 120., 130., 140., 150., 160., 170., 180.,
190., 200.]])
>>> uy
array([[ 1. , 0.5 , 0.33333334, 0.25 ,
0.2 , 0.16666667, 0.14285715, 0.125 ,
0.11111111, 0.1 , 0.09090909, 0.08333334,
0.07692308, 0.07142857, 0.06666667, 0.0625 ,
0.05882353, 0.05555556, 0.05263158, 0.05 ],
[ 2. , 1. , 0.66666669, 0.5 ,
0.40000001, 0.33333334, 0.2857143 , 0.25 ,
0.22222222, 0.2 , 0.18181819, 0.16666667,
0.15384616, 0.14285715, 0.13333334, 0.125 ,
0.11764706, 0.11111111, 0.10526316, 0.1 ],
[ 3. , 1.5 , 1. , 0.75 ,
0.60000002, 0.5 , 0.42857143, 0.375 ,
0.33333334, 0.30000001, 0.27272728, 0.25 ,
0.23076923, 0.21428572, 0.2 , 0.1875 ,
0.17647059, 0.16666667, 0.15789473, 0.15000001],
[ 4. , 2. , 1.33333337, 1. ,
0.80000001, 0.66666669, 0.5714286 , 0.5 ,
0.44444445, 0.40000001, 0.36363637, 0.33333334,
0.30769232, 0.2857143 , 0.26666668, 0.25 ,
0.23529412, 0.22222222, 0.21052632, 0.2 ],
[ 5. , 2.5 , 1.66666663, 1.25 ,
1. , 0.83333331, 0.71428573, 0.625 ,
0.55555558, 0.5 , 0.45454547, 0.41666666,
0.38461539, 0.35714287, 0.33333334, 0.3125 ,
0.29411766, 0.27777779, 0.2631579 , 0.25 ],
[ 6. , 3. , 2. , 1.5 ,
1.20000005, 1. , 0.85714287, 0.75 ,
0.66666669, 0.60000002, 0.54545456, 0.5 ,
0.46153846, 0.42857143, 0.40000001, 0.375 ,
0.35294119, 0.33333334, 0.31578946, 0.30000001],
[ 7. , 3.5 , 2.33333325, 1.75 ,
1.39999998, 1.16666663, 1. , 0.875 ,
0.77777779, 0.69999999, 0.63636363, 0.58333331,
0.53846157, 0.5 , 0.46666667, 0.4375 ,
0.41176471, 0.3888889 , 0.36842105, 0.34999999],
[ 8. , 4. , 2.66666675, 2. ,
1.60000002, 1.33333337, 1.14285719, 1. ,
0.8888889 , 0.80000001, 0.72727275, 0.66666669,
0.61538464, 0.5714286 , 0.53333336, 0.5 ,
0.47058824, 0.44444445, 0.42105263, 0.40000001],
[ 9. , 4.5 , 3. , 2.25 ,
1.79999995, 1.5 , 1.28571427, 1.125 ,
1. , 0.89999998, 0.81818181, 0.75 ,
0.69230771, 0.64285713, 0.60000002, 0.5625 ,
0.52941179, 0.5 , 0.47368422, 0.44999999],
[ 10. , 5. , 3.33333325, 2.5 ,
2. , 1.66666663, 1.42857146, 1.25 ,
1.11111116, 1. , 0.90909094, 0.83333331,
0.76923078, 0.71428573, 0.66666669, 0.625 ,
0.58823532, 0.55555558, 0.52631581, 0.5 ]])
>>> p
array([[ 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12.,
13., 14., 15., 16., 17., 18., 19., 20., 21.],
[ 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13.,
14., 15., 16., 17., 18., 19., 20., 21., 22.],
[ 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14.,
15., 16., 17., 18., 19., 20., 21., 22., 23.],
[ 5., 6., 7., 8., 9., 10., 11., 12., 13., 14., 15.,
16., 17., 18., 19., 20., 21., 22., 23., 24.],
[ 6., 7., 8., 9., 10., 11., 12., 13., 14., 15., 16.,
17., 18., 19., 20., 21., 22., 23., 24., 25.],
[ 7., 8., 9., 10., 11., 12., 13., 14., 15., 16., 17.,
18., 19., 20., 21., 22., 23., 24., 25., 26.],
[ 8., 9., 10., 11., 12., 13., 14., 15., 16., 17., 18.,
19., 20., 21., 22., 23., 24., 25., 26., 27.],
[ 9., 10., 11., 12., 13., 14., 15., 16., 17., 18., 19.,
20., 21., 22., 23., 24., 25., 26., 27., 28.],
[ 10., 11., 12., 13., 14., 15., 16., 17., 18., 19., 20.,
21., 22., 23., 24., 25., 26., 27., 28., 29.],
[ 11., 12., 13., 14., 15., 16., 17., 18., 19., 20., 21.,
22., 23., 24., 25., 26., 27., 28., 29., 30.]])
Note that you have to provide the shape information for ux and uy because
fortran writes them together as a stream of 400 numbers.
-Neil
10
10
Added atleast_nd, request for clarification/cleanup of atleast_3d
by Joseph Fox-Rabinovitz Oct. 27, 2016
by Joseph Fox-Rabinovitz Oct. 27, 2016
Oct. 27, 2016
Hi,
I have generalized np.atleast_1d, np.atleast_2d, np.atleast_3d with a
function np.atleast_nd in PR#7804
(https://github.com/numpy/numpy/pull/7804).
As a result of this PR, I have a couple of questions about
`np.atleast_3d`. `np.atleast_3d` appears to do something weird with
the dimensions: If the input is 1D, it prepends and appends a size-1
dimension. If the input is 2D, it appends a size-1 dimension. This is
inconsistent with `np.atleast_2d`, which always prepends (as does
`np.atleast_nd`).
- Is there any reason for this behavior?
- Can it be cleaned up (e.g., by reimplementing `np.atleast_3d` in
terms of `np.atleast_nd`, which is actually much simpler)? This would
be a slight API change since the output would not be exactly the same.
Thanks,
-Joe
11
25
Hi,
The behavior of a ufuncs reduceat on empty slices seems a little strange,
and I wonder if there's a reason behind it / if there's a route to
potentially changing it. First, I'll go into a little background.
I've been making a lot of use of ufuncs reduceat functionality on staggered
arrays. In general, I'll have "n" arrays, each with size "s[n]" and I'll
store them in one array "x", such that "s.sum() == x.size". reduceat is
great because I use
ufunc.reduceat(x, np.insert(s[:-1].cumsum(), 0, 0))
to get some summary information about each array. However, reduceat seems
to behave strangely for empty slices. To make things concrete, let's assume:
import numpy as np
s = np.array([3, 0, 2])
x = np.arange(s.sum())
inds = np.insert(s[:-1].cumsum(), 0, 0)
# [0, 3, 3]
np.add.reduceat(x, inds)
# [3, 3, 7] not [3, 0, 7]
# This is distinct from
np.fromiter(map(np.add.reduce, np.array_split(x, inds[1:])), x.dtype,
s.size - 1)
# [3, 0, 7] what I wanted
The current documentation
<http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.reduceat.ht…>
on reduceat first states:
For i in range(len(indices)), reduceat computes
ufunc.reduce(a[indices[i]:indices[i+1]])
That would suggest the outcome, that I expected. However, in the examples
section it goes into a bunch of examples which contradict that statement
and instead suggest that the actual algorithm is more akin to:
ufunc.reduce(a[indices[i]:indices[i+1]]) if indices[i+1] > indices[i] else
indices[i]
Looking at the source
<https://github.com/numpy/numpy/blob/2af06c804931aae4b30bb3349bc60271b0b6538…>,
it seems like it's copying indices[i], and then while there are more
elements to process it keeps reducing, resulting in this unexpected
behavior. It seems like the proper thing to do would be start with
ufunc.identity, and then reduce. This is slightly less performant than
what's implemented, but more "correct." There could, of course, just be a
switch to copy the identity only when the slice is empty.
Is there a reason it's implemented like this? Is it just for performance,
or is this strange behavior *useful* somewhere? It seems like "fixing" this
would be bad because you'll be changing somewhat documented functionality
in a backwards incompatible way. What would the best approach to "fixing"
this be? add another function "reduceat_"? add a flag to reduceat to do the
proper thing for empty slices?
Finally, is there a good way to work around this? I think for now I'm just
going to mask out the empty slices and use insert to add them back in, but
if I'm missing an obvious solution, I'll look at that too. I need to mask
them out because, np.add.reduceat(x, 5) would ideally return 0, but instead
it throws an error since 5 is out of range...
Thanks for indulging my curiosity,
Erik
2
1
Hi,
I work at Machinalis were we use a lot of numpy (and the pydata stack in
general). Recently we've also been getting involved with mypy, which is a
tool to type check (not on runtime, think of it as a linter) annotated
python code (the way of annotating python types has been recently
standarized in PEP 484).
As part of that involvement we've started creating type annotations for the
Python libraries we use most, which include numpy. Mypy provides a way to
specify types with annotations in separate files in case you don't have
control over a library, so we have created an initial proof of concept at
[1], and we are actively improving it. You can find some additional
information about it and some problems we've found on the way at this
blogpost [2].
What I wanted to ask is if the people involved on the numpy project are
aware of PEP484 and if you have some interest in starting using them. The
main benefit is that annotations serve as clear (and automatically
testable) documentation for users, and secondary benefits is that users
discovers bugs more quickly and that some IDEs (like pycharm) are starting
to use this information for smart editor features (autocompletion, online
checking, refactoring tools); eventually tools like jupyter could take
advantage of these annotations in the future. And the cost of writing and
including these are relatively low.
We're doing the work anyway, but contributing our typespecs back could make
it easier for users to benefit from this, and for us to maintain it and
keep it in sync with future releases.
If you've never heard about PEP484 or mypy (it happens a lot) I'll be happy
to clarify anything about it that might helpunderstand this situation
Thanks!
D.
[1] https://github.com/machinalis/mypy-data
[2] http://www.machinalis.com/blog/writing-type-stubs-for-numpy/
--
Daniel F. Moisset - UK Country Manager
www.machinalis.com
Skype: @dmoisset
4
5
Hi all,
On behalf of the Bokeh team, I am pleased to announce the release of version 0.12.1 of Bokeh!
This is a minor, incremental update that adds a few new small features and fixes several bugs.
Please see the announcement post at:
https://bokeh.github.io/blog/2016/6/28/release-0-12-1/
which has much more information as well as live demonstrations. And as always, see the CHANGELOG and Release Notes for full details.
If you are using Anaconda/miniconda, you can install it with conda:
conda install -c bokeh bokeh
Alternatively, you can also install it with pip:
pip install bokeh
Full information including details about how to use and obtain BokehJS are at:
http://bokeh.pydata.org/en/0.12.1/docs/installation.html
Issues, enhancement requests, and pull requests can be made on the Bokeh Github page: https://github.com/bokeh/bokeh
Documentation is available at http://bokeh.pydata.org/en/0.12.1
Questions can be directed to the Bokeh mailing list: bokeh(a)continuum.io or the Gitter Chat room: https://gitter.im/bokeh/bokeh
Thanks,
Bryan Van de Ven
Continuum Analytics
-----
Bokeh is a Python interactive visualization library that targets modern web browsers for presentation. Its goal is to provide elegant, concise construction of versatile graphics with high-performance interactivity over very large or streaming datasets. Bokeh can help anyone who would like to quickly and easily create interactive plots, dashboards, and data applications.
1
0
Hello all,
I have been trying to compile a relatively simple pair of Fortran files,
one referencing a subroutine from another file (mainmodule.f90 references
othermodule.f90). I have been able to compile them using a Fortran
compiler, but receive a NotImplementedError when using f2py.
Steps I use for f2py:
$gfortran -shared -o othermodule.so othermodule.f90 -fPIC
$f2py -c -l/path/othermodule -m mainmodule mainmodule.f90
I am running this on linux and wasn't sure how to correct the error.
othermodule.f90
module moderator
implicit none
integer*1 :: i
integer*8 :: fact,len
real*8,dimension(:),allocatable :: ex
contains
subroutine submarine(ii,ff,exex)
implicit none
integer*1 :: ii
integer*8 :: ff
real*8 :: exex
exex=exp(real(ii))/ff
end subroutine submarine
end module moderator
mainmodule.f90
program mains
use moderator
implicit none
len=10
allocate(ex(len))
fact=1
do i=1,len
fact=fact*i
call submarine(i,fact,ex(i))
if (i==1) then
print*,"here's your ",i,"st number: ",ex(i)
elseif (i==2) then
print*,"here's your ",i,"nd number: ",ex(i)
elseif (i==3) then
print*,"here's your ",i,"rd number: ",ex(i)
else
print*,"here's your ",i,"th number: ",ex(i)
endif
enddo
deallocate(ex)
end program
Thanks for the help,
Andy
2
1
On behalf of the Scipy development team I am pleased to announce the
availability of Scipy 0.18.0. This release contains several great new
features and a large number of bug fixes and various improvements, as
detailed in the release notes below.
99 people contributed to this release over the course of six months.
Thanks to everyone who contributed!
This release requires Python 2.7 or 3.4-3.5 and NumPy 1.7.2 or
greater. Source tarballs and release notes can be found at
https://github.com/scipy/scipy/releases/tag/v0.18.0.
OS X and Linux wheels are available from PyPI. For security-conscious,
the wheels themselves are signed with my GPG key. Additionally, you
can checksum the wheels and verify the checksums with those listed in
the README file at
https://github.com/scipy/scipy/releases/tag/v0.18.0.
Cheers,
Evgeni
-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1
==========================
SciPy 0.18.0 Release Notes
==========================
.. contents::
SciPy 0.18.0 is the culmination of 6 months of hard work. It contains
many new features, numerous bug-fixes, improved test coverage and
better documentation. There have been a number of deprecations and
API changes in this release, which are documented below. All users
are encouraged to upgrade to this release, as there are a large number
of bug-fixes and optimizations. Moreover, our development attention
will now shift to bug-fix releases on the 0.19.x branch, and on adding
new features on the master branch.
This release requires Python 2.7 or 3.4-3.5 and NumPy 1.7.1 or greater.
Highlights of this release include:
- - A new ODE solver for two-point boundary value problems,
`scipy.optimize.solve_bvp`.
- - A new class, `CubicSpline`, for cubic spline interpolation of data.
- - N-dimensional tensor product polynomials, `scipy.interpolate.NdPPoly`.
- - Spherical Voronoi diagrams, `scipy.spatial.SphericalVoronoi`.
- - Support for discrete-time linear systems, `scipy.signal.dlti`.
New features
============
`scipy.integrate` improvements
- ------------------------------
A solver of two-point boundary value problems for ODE systems has been
implemented in `scipy.integrate.solve_bvp`. The solver allows for non-separated
boundary conditions, unknown parameters and certain singular terms. It finds
a C1 continious solution using a fourth-order collocation algorithm.
`scipy.interpolate` improvements
- --------------------------------
Cubic spline interpolation is now available via `scipy.interpolate.CubicSpline`.
This class represents a piecewise cubic polynomial passing through given points
and C2 continuous. It is represented in the standard polynomial basis on each
segment.
A representation of n-dimensional tensor product piecewise polynomials is
available as the `scipy.interpolate.NdPPoly` class.
Univariate piecewise polynomial classes, `PPoly` and `Bpoly`, can now be
evaluated on periodic domains. Use ``extrapolate="periodic"`` keyword
argument for this.
`scipy.fftpack` improvements
- ----------------------------
`scipy.fftpack.next_fast_len` function computes the next "regular" number for
FFTPACK. Padding the input to this length can give significant performance
increase for `scipy.fftpack.fft`.
`scipy.signal` improvements
- ---------------------------
Resampling using polyphase filtering has been implemented in the function
`scipy.signal.resample_poly`. This method upsamples a signal, applies a
zero-phase low-pass FIR filter, and downsamples using `scipy.signal.upfirdn`
(which is also new in 0.18.0). This method can be faster than FFT-based
filtering provided by `scipy.signal.resample` for some signals.
`scipy.signal.firls`, which constructs FIR filters using least-squares error
minimization, was added.
`scipy.signal.sosfiltfilt`, which does forward-backward filtering like
`scipy.signal.filtfilt` but for second-order sections, was added.
Discrete-time linear systems
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
`scipy.signal.dlti` provides an implementation of discrete-time linear systems.
Accordingly, the `StateSpace`, `TransferFunction` and `ZerosPolesGain` classes
have learned a the new keyword, `dt`, which can be used to create discrete-time
instances of the corresponding system representation.
`scipy.sparse` improvements
- ---------------------------
The functions `sum`, `max`, `mean`, `min`, `transpose`, and `reshape` in
`scipy.sparse` have had their signatures augmented with additional arguments
and functionality so as to improve compatibility with analogously defined
functions in `numpy`.
Sparse matrices now have a `count_nonzero` method, which counts the number of
nonzero elements in the matrix. Unlike `getnnz()` and ``nnz`` propety,
which return the number of stored entries (the length of the data attribute),
this method counts the actual number of non-zero entries in data.
`scipy.optimize` improvements
- -----------------------------
The implementation of Nelder-Mead minimization,
`scipy.minimize(..., method="Nelder-Mead")`, obtained a new keyword,
`initial_simplex`, which can be used to specify the initial simplex for the
optimization process.
Initial step size selection in CG and BFGS minimizers has been improved. We
expect that this change will improve numeric stability of optimization in some
cases. See pull request gh-5536 for details.
Handling of infinite bounds in SLSQP optimization has been improved. We expect
that this change will improve numeric stability of optimization in the some
cases. See pull request gh-6024 for details.
A large suite of global optimization benchmarks has been added to
``scipy/benchmarks/go_benchmark_functions``. See pull request gh-4191
for details.
Nelder-Mead and Powell minimization will now only set defaults for
maximum iterations or function evaluations if neither limit is set by
the caller. In some cases with a slow converging function and only 1
limit set, the minimization may continue for longer than with previous
versions and so is more likely to reach convergence. See issue gh-5966.
`scipy.stats` improvements
- --------------------------
Trapezoidal distribution has been implemented as `scipy.stats.trapz`.
Skew normal distribution has been implemented as `scipy.stats.skewnorm`.
Burr type XII distribution has been implemented as `scipy.stats.burr12`.
Three- and four-parameter kappa distributions have been implemented as
`scipy.stats.kappa3` and `scipy.stats.kappa4`, respectively.
New `scipy.stats.iqr` function computes the interquartile region of a
distribution.
Random matrices
~~~~~~~~~~~~~~~
`scipy.stats.special_ortho_group` and `scipy.stats.ortho_group` provide
generators of random matrices in the SO(N) and O(N) groups, respectively. They
generate matrices in the Haar distribution, the only uniform distribution on
these group manifolds.
`scipy.stats.random_correlation` provides a generator for random
correlation matrices, given specified eigenvalues.
`scipy.linalg` improvements
- ---------------------------
`scipy.linalg.svd` gained a new keyword argument, ``lapack_driver``. Available
drivers are ``gesdd`` (default) and ``gesvd``.
`scipy.linalg.lapack.ilaver` returns the version of the LAPACK library SciPy
links to.
`scipy.spatial` improvements
- ----------------------------
Boolean distances, `scipy.spatial.pdist`, have been sped up. Improvements vary
by the function and the input size. In many cases, one can expect a speed-up
of x2--x10.
New class `scipy.spatial.SphericalVoronoi` constructs Voronoi diagrams on the
surface of a sphere. See pull request gh-5232 for details.
`scipy.cluster` improvements
- ----------------------------
A new clustering algorithm, the nearest neighbor chain algorithm, has been
implemented for `scipy.cluster.hierarchy.linkage`. As a result, one can expect
a significant algorithmic improvement (:math:`O(N^2)` instead of :math:`O(N^3)`)
for several linkage methods.
`scipy.special` improvements
- ----------------------------
The new function `scipy.special.loggamma` computes the principal branch of the
logarithm of the Gamma function. For real input, ``loggamma`` is compatible
with `scipy.special.gammaln`. For complex input, it has more consistent
behavior in the complex plane and should be preferred over ``gammaln``.
Vectorized forms of spherical Bessel functions have been implemented as
`scipy.special.spherical_jn`, `scipy.special.spherical_kn`,
`scipy.special.spherical_in` and `scipy.special.spherical_yn`.
They are recommended for use over ``sph_*`` functions, which are now deprecated.
Several special functions have been extended to the complex domain and/or
have seen domain/stability improvements. This includes `spence`, `digamma`,
`log1p` and several others.
Deprecated features
===================
The cross-class properties of `lti` systems have been deprecated. The
following properties/setters will raise a `DeprecationWarning`:
Name - (accessing/setting raises warning) - (setting raises warning)
* StateSpace - (`num`, `den`, `gain`) - (`zeros`, `poles`)
* TransferFunction (`A`, `B`, `C`, `D`, `gain`) - (`zeros`, `poles`)
* ZerosPolesGain (`A`, `B`, `C`, `D`, `num`, `den`) - ()
Spherical Bessel functions, ``sph_in``, ``sph_jn``, ``sph_kn``, ``sph_yn``,
``sph_jnyn`` and ``sph_inkn`` have been deprecated in favor of
`scipy.special.spherical_jn` and ``spherical_kn``, ``spherical_yn``,
``spherical_in``.
The following functions in `scipy.constants` are deprecated: ``C2K``, ``K2C``,
``C2F``, ``F2C``, ``F2K`` and ``K2F``. They are superceded by a new function
`scipy.constants.convert_temperature` that can perform all those conversions
plus to/from the Rankine temperature scale.
Backwards incompatible changes
==============================
`scipy.optimize`
- ----------------
The convergence criterion for ``optimize.bisect``,
``optimize.brentq``, ``optimize.brenth``, and ``optimize.ridder`` now
works the same as ``numpy.allclose``.
`scipy.ndimage`
- ---------------
The offset in ``ndimage.iterpolation.affine_transform``
is now consistently added after the matrix is applied,
independent of if the matrix is specified using a one-dimensional
or a two-dimensional array.
`scipy.stats`
- -------------
``stats.ks_2samp`` used to return nonsensical values if the input was
not real or contained nans. It now raises an exception for such inputs.
Several deprecated methods of `scipy.stats` distributions have been removed:
``est_loc_scale``, ``vecfunc``, ``veccdf`` and ``vec_generic_moment``.
Deprecated functions ``nanmean``, ``nanstd`` and ``nanmedian`` have been removed
from `scipy.stats`. These functions were deprecated in scipy 0.15.0 in favor
of their `numpy` equivalents.
A bug in the ``rvs()`` method of the distributions in `scipy.stats` has
been fixed. When arguments to ``rvs()`` were given that were shaped for
broadcasting, in many cases the returned random samples were not random.
A simple example of the problem is ``stats.norm.rvs(loc=np.zeros(10))``.
Because of the bug, that call would return 10 identical values. The bug
only affected code that relied on the broadcasting of the shape, location
and scale parameters.
The ``rvs()`` method also accepted some arguments that it should not have.
There is a potential for backwards incompatibility in cases where ``rvs()``
accepted arguments that are not, in fact, compatible with broadcasting.
An example is
stats.gamma.rvs([2, 5, 10, 15], size=(2,2))
The shape of the first argument is not compatible with the requested size,
but the function still returned an array with shape (2, 2). In scipy 0.18,
that call generates a ``ValueError``.
`scipy.io`
- ----------
`scipy.io.netcdf` masking now gives precedence to the ``_FillValue`` attribute
over the ``missing_value`` attribute, if both are given. Also, data are only
treated as missing if they match one of these attributes exactly: values that
differ by roundoff from ``_FillValue`` or ``missing_value`` are no longer
treated as missing values.
`scipy.interpolate`
- -------------------
`scipy.interpolate.PiecewisePolynomial` class has been removed. It has been
deprecated in scipy 0.14.0, and
`scipy.interpolate.BPoly.from_derivatives` serves
as a drop-in replacement.
Other changes
=============
Scipy now uses ``setuptools`` for its builds instead of plain distutils. This
fixes usage of ``install_requires='scipy'`` in the ``setup.py`` files of
projects that depend on Scipy (see Numpy issue gh-6551 for details). It
potentially affects the way that build/install methods for Scipy itself behave
though. Please report any unexpected behavior on the Scipy issue tracker.
PR `#6240 <https://github.com/scipy/scipy/pull/6240>`__
changes the interpretation of the `maxfun` option in `L-BFGS-B` based routines
in the `scipy.optimize` module.
An `L-BFGS-B` search consists of multiple iterations,
with each iteration consisting of one or more function evaluations.
Whereas the old search strategy terminated immediately upon reaching `maxfun`
function evaluations, the new strategy allows the current iteration
to finish despite reaching `maxfun`.
The bundled copy of Qhull in the `scipy.spatial` subpackage has been upgraded to
version 2015.2.
The bundled copy of ARPACK in the `scipy.sparse.linalg` subpackage has been
upgraded to arpack-ng 3.3.0.
The bundled copy of SuperLU in the `scipy.sparse` subpackage has been upgraded
to version 5.1.1.
Authors
=======
* @endolith
* @yanxun827 +
* @kleskjr +
* @MYheavyGo +
* @solarjoe +
* Gregory Allen +
* Gilles Aouizerate +
* Tom Augspurger +
* Henrik Bengtsson +
* Felix Berkenkamp
* Per Brodtkorb
* Lars Buitinck
* Daniel Bunting +
* Evgeni Burovski
* CJ Carey
* Tim Cera
* Grey Christoforo +
* Robert Cimrman
* Philip DeBoer +
* Yves Delley +
* Dávid Bodnár +
* Ion Elberdin +
* Gabriele Farina +
* Yu Feng
* Andrew Fowlie +
* Joseph Fox-Rabinovitz
* Simon Gibbons +
* Neil Girdhar +
* Kolja Glogowski +
* Christoph Gohlke
* Ralf Gommers
* Todd Goodall +
* Johnnie Gray +
* Alex Griffing
* Olivier Grisel
* Thomas Haslwanter +
* Michael Hirsch +
* Derek Homeier
* Golnaz Irannejad +
* Marek Jacob +
* InSuk Joung +
* Tetsuo Koyama +
* Eugene Krokhalev +
* Eric Larson
* Denis Laxalde
* Antony Lee
* Jerry Li +
* Henry Lin +
* Nelson Liu +
* Loïc Estève
* Lei Ma +
* Osvaldo Martin +
* Stefano Martina +
* Nikolay Mayorov
* Matthieu Melot +
* Sturla Molden
* Eric Moore
* Alistair Muldal +
* Maniteja Nandana
* Tavi Nathanson +
* Andrew Nelson
* Joel Nothman
* Behzad Nouri
* Nikolai Nowaczyk +
* Juan Nunez-Iglesias +
* Ted Pudlik
* Eric Quintero
* Yoav Ram
* Jonas Rauber +
* Tyler Reddy +
* Juha Remes
* Garrett Reynolds +
* Ariel Rokem +
* Fabian Rost +
* Bill Sacks +
* Jona Sassenhagen +
* Kari Schoonbee +
* Marcello Seri +
* Sourav Singh +
* Martin Spacek +
* Søren Fuglede Jørgensen +
* Bhavika Tekwani +
* Martin Thoma +
* Sam Tygier +
* Meet Udeshi +
* Utkarsh Upadhyay
* Bram Vandekerckhove +
* Sebastián Vanrell +
* Ze Vinicius +
* Pauli Virtanen
* Stefan van der Walt
* Warren Weckesser
* Jakub Wilk +
* Josh Wilson
* Phillip J. Wolfram +
* Nathan Woods
* Haochen Wu
* G Young +
A total of 99 people contributed to this release.
People with a "+" by their names contributed a patch for the first time.
This list of names is automatically generated, and may not be fully complete.
Issues closed for 0.18.0
- ------------------------
- - `#1484 <https://github.com/scipy/scipy/issues/1484>`__: SVD using
*GESVD lapack drivers (Trac #957)
- - `#1547 <https://github.com/scipy/scipy/issues/1547>`__:
Inconsistent use of offset in
ndimage.interpolation.affine_transform()...
- - `#1609 <https://github.com/scipy/scipy/issues/1609>`__:
special.hyp0f1 returns nan (Trac #1082)
- - `#1656 <https://github.com/scipy/scipy/issues/1656>`__: fmin_slsqp
enhancement (Trac #1129)
- - `#2069 <https://github.com/scipy/scipy/issues/2069>`__: stats
broadcasting in rvs (Trac #1544)
- - `#2165 <https://github.com/scipy/scipy/issues/2165>`__: sph_jn
returns false results for some orders/values (Trac #1640)
- - `#2255 <https://github.com/scipy/scipy/issues/2255>`__: Incorrect
order of translation and rotation in affine_transform...
- - `#2332 <https://github.com/scipy/scipy/issues/2332>`__: hyp0f1
args and return values are unnumpyic (Trac #1813)
- - `#2534 <https://github.com/scipy/scipy/issues/2534>`__: The sparse
.sum() method with uint8 dtype does not act like the...
- - `#3113 <https://github.com/scipy/scipy/issues/3113>`__: Implement
ufuncs for CSPHJY, SPHJ, SPHY, CSPHIK, SPHI, SPHIK...
- - `#3568 <https://github.com/scipy/scipy/issues/3568>`__: SciPy
0.13.3 - CentOS5 - Errors in test_arpack
- - `#3581 <https://github.com/scipy/scipy/issues/3581>`__: optimize:
stepsize in fmin_bfgs is "bad"
- - `#4476 <https://github.com/scipy/scipy/issues/4476>`__:
scipy.sparse non-native endian bug
- - `#4484 <https://github.com/scipy/scipy/issues/4484>`__: ftol in
optimize.fmin fails to work
- - `#4510 <https://github.com/scipy/scipy/issues/4510>`__:
sparsetools.cxx call_thunk can segfault due to out of bounds...
- - `#5051 <https://github.com/scipy/scipy/issues/5051>`__: ftol and
xtol for _minimize_neldermead are absolute instead of...
- - `#5097 <https://github.com/scipy/scipy/issues/5097>`__: proposal:
spherical Voronoi diagrams
- - `#5123 <https://github.com/scipy/scipy/issues/5123>`__: Call to
`scipy.sparse.coo_matrix` fails when passed Cython typed...
- - `#5220 <https://github.com/scipy/scipy/issues/5220>`__:
scipy.cluster.hierarchy.{ward,median,centroid} does not work...
- - `#5379 <https://github.com/scipy/scipy/issues/5379>`__: Add a
build step at the end of .travis.yml that uploads working...
- - `#5440 <https://github.com/scipy/scipy/issues/5440>`__:
scipy.optimize.basinhopping: accept_test returning numpy.bool_...
- - `#5452 <https://github.com/scipy/scipy/issues/5452>`__: Error in
scipy.integrate.nquad when using variable integration...
- - `#5520 <https://github.com/scipy/scipy/issues/5520>`__: Cannot
inherit csr_matrix properly
- - `#5533 <https://github.com/scipy/scipy/issues/5533>`__: Kendall
tau implementation uses Python mergesort
- - `#5553 <https://github.com/scipy/scipy/issues/5553>`__:
stats.tiecorrect overflows
- - `#5589 <https://github.com/scipy/scipy/issues/5589>`__: Add the
Type XII Burr distribution to stats.
- - `#5612 <https://github.com/scipy/scipy/issues/5612>`__:
sparse.linalg factorizations slow for small k due to default...
- - `#5626 <https://github.com/scipy/scipy/issues/5626>`__: io.netcdf
masking should use masked_equal rather than masked_value
- - `#5637 <https://github.com/scipy/scipy/issues/5637>`__: Simple
cubic spline interpolation?
- - `#5683 <https://github.com/scipy/scipy/issues/5683>`__: BUG:
Akima1DInterpolator may return nans given multidimensional...
- - `#5686 <https://github.com/scipy/scipy/issues/5686>`__:
scipy.stats.ttest_ind_from_stats does not accept arrays
- - `#5702 <https://github.com/scipy/scipy/issues/5702>`__:
scipy.ndimage.interpolation.affine_transform lacks documentation...
- - `#5718 <https://github.com/scipy/scipy/issues/5718>`__: Wrong
computation of weighted minkowski distance in cdist
- - `#5745 <https://github.com/scipy/scipy/issues/5745>`__: move to
setuptools for next release
- - `#5752 <https://github.com/scipy/scipy/issues/5752>`__: DOC:
solve_discrete_lyapunov equation puts transpose in wrong...
- - `#5760 <https://github.com/scipy/scipy/issues/5760>`__:
signal.ss2tf doesn't handle zero-order state-space models
- - `#5764 <https://github.com/scipy/scipy/issues/5764>`__:
Hypergeometric function hyp0f1 behaves incorrectly for complex...
- - `#5814 <https://github.com/scipy/scipy/issues/5814>`__: stats NaN
Policy Error message inconsistent with code
- - `#5833 <https://github.com/scipy/scipy/issues/5833>`__: docstring
of stats.binom_test() needs an update
- - `#5853 <https://github.com/scipy/scipy/issues/5853>`__: Error in
scipy.linalg.expm for complex matrix with shape (1,1)
- - `#5856 <https://github.com/scipy/scipy/issues/5856>`__: Specify
Nelder-Mead initial simplex
- - `#5865 <https://github.com/scipy/scipy/issues/5865>`__:
scipy.linalg.expm fails for certain numpy matrices
- - `#5915 <https://github.com/scipy/scipy/issues/5915>`__:
optimize.basinhopping - variable referenced before assignment.
- - `#5916 <https://github.com/scipy/scipy/issues/5916>`__:
LSQUnivariateSpline fitting failed with knots generated from...
- - `#5927 <https://github.com/scipy/scipy/issues/5927>`__: unicode
vs. string comparison in scipy.stats.binned_statistic_dd
- - `#5936 <https://github.com/scipy/scipy/issues/5936>`__: faster
implementation of ks_2samp
- - `#5948 <https://github.com/scipy/scipy/issues/5948>`__: csc matrix
.mean returns single element matrix rather than scalar
- - `#5959 <https://github.com/scipy/scipy/issues/5959>`__: BUG:
optimize test error for root when using lgmres
- - `#5972 <https://github.com/scipy/scipy/issues/5972>`__: Test
failures for sparse sum tests on 32-bit Python
- - `#5976 <https://github.com/scipy/scipy/issues/5976>`__: Unexpected
exception in scipy.sparse.bmat while using 0 x 0 matrix
- - `#6008 <https://github.com/scipy/scipy/issues/6008>`__:
scipy.special.kl_div not available in 0.14.1
- - `#6011 <https://github.com/scipy/scipy/issues/6011>`__: The
von-Mises entropy is broken
- - `#6016 <https://github.com/scipy/scipy/issues/6016>`__: python
crashes for linalg.interpolative.svd with certain large...
- - `#6017 <https://github.com/scipy/scipy/issues/6017>`__: Wilcoxon
signed-rank test with zero_method="pratt" or "zsplit"...
- - `#6028 <https://github.com/scipy/scipy/issues/6028>`__:
stats.distributions does not have trapezoidal distribution
- - `#6035 <https://github.com/scipy/scipy/issues/6035>`__: Wrong link
in f_oneway
- - `#6056 <https://github.com/scipy/scipy/issues/6056>`__: BUG:
signal.decimate should only accept discrete LTI objects
- - `#6093 <https://github.com/scipy/scipy/issues/6093>`__: Precision
error on Linux 32 bit with openblas
- - `#6101 <https://github.com/scipy/scipy/issues/6101>`__:
Barycentric transforms test error on Python3, 32-bit Linux
- - `#6105 <https://github.com/scipy/scipy/issues/6105>`__:
scipy.misc.face docstring is incorrect
- - `#6113 <https://github.com/scipy/scipy/issues/6113>`__:
scipy.linalg.logm fails for a trivial matrix
- - `#6128 <https://github.com/scipy/scipy/issues/6128>`__: Error in
dot method of sparse COO array, when used with numpy...
- - `#6132 <https://github.com/scipy/scipy/issues/6132>`__: Failures
with latest MKL
- - `#6136 <https://github.com/scipy/scipy/issues/6136>`__: Failures
on `master` with MKL
- - `#6162 <https://github.com/scipy/scipy/issues/6162>`__:
fmin_l_bfgs_b returns inconsistent results (fmin ≠ f(xmin)) and...
- - `#6165 <https://github.com/scipy/scipy/issues/6165>`__:
optimize.minimize infinite loop with Newton-CG
- - `#6167 <https://github.com/scipy/scipy/issues/6167>`__: incorrect
distribution fitting for data containing boundary values.
- - `#6194 <https://github.com/scipy/scipy/issues/6194>`__: lstsq()
and others detect numpy.complex256 as real
- - `#6216 <https://github.com/scipy/scipy/issues/6216>`__: ENH:
improve accuracy of ppf cdf roundtrip for bradford
- - `#6217 <https://github.com/scipy/scipy/issues/6217>`__: BUG:
weibull_min.logpdf return nan for c=1 and x=0
- - `#6218 <https://github.com/scipy/scipy/issues/6218>`__: Is there a
method to cap shortest path search distances?
- - `#6222 <https://github.com/scipy/scipy/issues/6222>`__:
PchipInterpolator no longer handles a 2-element array
- - `#6226 <https://github.com/scipy/scipy/issues/6226>`__: ENH:
improve accuracy for logistic.ppf and logistic.isf
- - `#6227 <https://github.com/scipy/scipy/issues/6227>`__: ENH:
improve accuracy for rayleigh.logpdf and rayleigh.logsf...
- - `#6228 <https://github.com/scipy/scipy/issues/6228>`__: ENH:
improve accuracy of ppf cdf roundtrip for gumbel_l
- - `#6235 <https://github.com/scipy/scipy/issues/6235>`__: BUG:
alpha.pdf and alpha.logpdf returns nan for x=0
- - `#6245 <https://github.com/scipy/scipy/issues/6245>`__: ENH:
improve accuracy for ppf-cdf and sf-isf roundtrips for invgamma
- - `#6263 <https://github.com/scipy/scipy/issues/6263>`__: BUG:
stats: Inconsistency in the multivariate_normal docstring
- - `#6292 <https://github.com/scipy/scipy/issues/6292>`__: Python 3
unorderable type errors in test_sparsetools.TestInt32Overflow
- - `#6316 <https://github.com/scipy/scipy/issues/6316>`__:
TestCloughTocher2DInterpolator.test_dense crashes
python3.5.2rc1_64bit...
- - `#6318 <https://github.com/scipy/scipy/issues/6318>`__: Scipy
interp1d 'nearest' not working for high values on x-axis
Pull requests for 0.18.0
- ------------------------
- - `#3226 <https://github.com/scipy/scipy/pull/3226>`__: DOC: Change
`nb` and `na` to conventional m and n
- - `#3867 <https://github.com/scipy/scipy/pull/3867>`__: allow
cKDTree.query taking a list input in k.
- - `#4191 <https://github.com/scipy/scipy/pull/4191>`__: ENH:
Benchmarking global optimizers
- - `#4356 <https://github.com/scipy/scipy/pull/4356>`__: ENH: add
PPoly.solve(y) for solving ``p(x) == y``
- - `#4370 <https://github.com/scipy/scipy/pull/4370>`__: DOC separate
boolean distance functions for clarity
- - `#4678 <https://github.com/scipy/scipy/pull/4678>`__: BUG: sparse:
ensure index dtype is large enough to pass all parameters...
- - `#4881 <https://github.com/scipy/scipy/pull/4881>`__:
scipy.signal: Add the class dlti for linear discrete-time systems....
- - `#4901 <https://github.com/scipy/scipy/pull/4901>`__: MAINT: add
benchmark and improve docstring for signal.lfilter
- - `#5043 <https://github.com/scipy/scipy/pull/5043>`__: ENH: sparse:
add count_nonzero method
- - `#5136 <https://github.com/scipy/scipy/pull/5136>`__: Attribute
kurtosistest() to Anscombe & Glynn (1983)
- - `#5186 <https://github.com/scipy/scipy/pull/5186>`__: ENH: Port upfirdn
- - `#5232 <https://github.com/scipy/scipy/pull/5232>`__: ENH: adding
spherical Voronoi diagram algorithm to scipy.spatial
- - `#5279 <https://github.com/scipy/scipy/pull/5279>`__: ENH: Bessel
filters with different normalizations, high order
- - `#5384 <https://github.com/scipy/scipy/pull/5384>`__: BUG: Closes
#5027 distance function always casts bool to double
- - `#5392 <https://github.com/scipy/scipy/pull/5392>`__: ENH: Add
zero_phase kwarg to signal.decimate
- - `#5394 <https://github.com/scipy/scipy/pull/5394>`__: MAINT:
sparse: non-canonical test cleanup and fixes
- - `#5424 <https://github.com/scipy/scipy/pull/5424>`__: DOC: add
Scipy developers guide
- - `#5442 <https://github.com/scipy/scipy/pull/5442>`__: STY: PEP8 amendments
- - `#5472 <https://github.com/scipy/scipy/pull/5472>`__: Online QR in LGMRES
- - `#5526 <https://github.com/scipy/scipy/pull/5526>`__: BUG: stats:
Fix broadcasting in the rvs() method of the distributions.
- - `#5530 <https://github.com/scipy/scipy/pull/5530>`__: MAINT:
sparse: set `format` attr explicitly
- - `#5536 <https://github.com/scipy/scipy/pull/5536>`__: optimize:
fix up cg/bfgs initial step sizes
- - `#5548 <https://github.com/scipy/scipy/pull/5548>`__: PERF:
improves performance in stats.kendalltau
- - `#5549 <https://github.com/scipy/scipy/pull/5549>`__: ENH:
Nearest-neighbor chain algorithm for hierarchical clustering
- - `#5554 <https://github.com/scipy/scipy/pull/5554>`__: MAINT/BUG:
closes overflow bug in stats.tiecorrect
- - `#5557 <https://github.com/scipy/scipy/pull/5557>`__: BUG: modify
optimize.bisect to achieve desired tolerance
- - `#5581 <https://github.com/scipy/scipy/pull/5581>`__: DOC:
Tutorial for least_squares
- - `#5606 <https://github.com/scipy/scipy/pull/5606>`__: ENH:
differential_evolution - moving core loop of solve method...
- - `#5609 <https://github.com/scipy/scipy/pull/5609>`__: [MRG] test
against numpy dev
- - `#5611 <https://github.com/scipy/scipy/pull/5611>`__: use
setuptools for bdist_egg distributions
- - `#5615 <https://github.com/scipy/scipy/pull/5615>`__: MAINT:
linalg: tighten _decomp_update + special: remove unused...
- - `#5622 <https://github.com/scipy/scipy/pull/5622>`__: Add SO(N)
rotation matrix generator
- - `#5623 <https://github.com/scipy/scipy/pull/5623>`__: ENH:
special: Add vectorized spherical Bessel functions.
- - `#5627 <https://github.com/scipy/scipy/pull/5627>`__: Response to
issue #5160, implements the skew normal distribution...
- - `#5628 <https://github.com/scipy/scipy/pull/5628>`__: DOC: Align
the description and operation
- - `#5632 <https://github.com/scipy/scipy/pull/5632>`__: DOC:
special: Expanded docs for Airy, elliptic, Bessel functions.
- - `#5633 <https://github.com/scipy/scipy/pull/5633>`__: MAINT:
linalg: unchecked malloc in _decomp_update
- - `#5634 <https://github.com/scipy/scipy/pull/5634>`__: MAINT:
optimize: tighten _group_columns
- - `#5640 <https://github.com/scipy/scipy/pull/5640>`__: Fixes for
io.netcdf masking
- - `#5645 <https://github.com/scipy/scipy/pull/5645>`__: MAINT: size
0 vector handling in cKDTree range queries
- - `#5649 <https://github.com/scipy/scipy/pull/5649>`__: MAINT:
update license text
- - `#5650 <https://github.com/scipy/scipy/pull/5650>`__: DOC: Clarify
Exponent Order in ltisys.py
- - `#5651 <https://github.com/scipy/scipy/pull/5651>`__: DOC: Clarify
Documentation for scipy.special.gammaln
- - `#5652 <https://github.com/scipy/scipy/pull/5652>`__: DOC: Fixed
scipy.special.betaln Doc
- - `#5653 <https://github.com/scipy/scipy/pull/5653>`__: [MRG] ENH:
CubicSpline interpolator
- - `#5654 <https://github.com/scipy/scipy/pull/5654>`__: ENH: Burr12
distribution to stats module
- - `#5659 <https://github.com/scipy/scipy/pull/5659>`__: DOC: Define
BEFORE/AFTER in runtests.py -h for bench-compare
- - `#5660 <https://github.com/scipy/scipy/pull/5660>`__: MAINT:
remove functions deprecated before 0.16.0
- - `#5662 <https://github.com/scipy/scipy/pull/5662>`__: ENH:
Circular statistic optimization
- - `#5663 <https://github.com/scipy/scipy/pull/5663>`__: MAINT:
remove uses of np.testing.rand
- - `#5665 <https://github.com/scipy/scipy/pull/5665>`__: MAINT:
spatial: remove matching distance implementation
- - `#5667 <https://github.com/scipy/scipy/pull/5667>`__: Change some
HTTP links to HTTPS
- - `#5669 <https://github.com/scipy/scipy/pull/5669>`__: DOC: zpk2sos
can't do analog, array_like, etc.
- - `#5670 <https://github.com/scipy/scipy/pull/5670>`__: Update conf.py
- - `#5672 <https://github.com/scipy/scipy/pull/5672>`__: MAINT: move
a sample distribution to a subclass of rv_discrete
- - `#5678 <https://github.com/scipy/scipy/pull/5678>`__: MAINT:
stats: remove est_loc_scale method
- - `#5679 <https://github.com/scipy/scipy/pull/5679>`__: MAINT: DRY
up generic computations for discrete distributions
- - `#5680 <https://github.com/scipy/scipy/pull/5680>`__: MAINT: stop
shadowing builtins in stats.distributions
- - `#5681 <https://github.com/scipy/scipy/pull/5681>`__: forward port
ENH: Re-enable broadcasting of fill_value
- - `#5684 <https://github.com/scipy/scipy/pull/5684>`__: BUG: Fix
Akima1DInterpolator returning nans
- - `#5690 <https://github.com/scipy/scipy/pull/5690>`__: BUG: fix
stats.ttest_ind_from_stats to handle arrays.
- - `#5691 <https://github.com/scipy/scipy/pull/5691>`__: BUG: fix
generator in io._loadarff to comply with PEP 0479
- - `#5693 <https://github.com/scipy/scipy/pull/5693>`__: ENH: use
math.factorial for exact factorials
- - `#5695 <https://github.com/scipy/scipy/pull/5695>`__: DOC: dx
might be a float, not only an integer
- - `#5699 <https://github.com/scipy/scipy/pull/5699>`__: MAINT: io:
micro-optimize Matlab reading code for size
- - `#5701 <https://github.com/scipy/scipy/pull/5701>`__: Implement
OptimizeResult.__dir__
- - `#5703 <https://github.com/scipy/scipy/pull/5703>`__: ENH: stats:
make R² printing optional in probplot
- - `#5704 <https://github.com/scipy/scipy/pull/5704>`__: MAINT: typo ouf->out
- - `#5705 <https://github.com/scipy/scipy/pull/5705>`__: BUG: fix
typo in query_pairs
- - `#5707 <https://github.com/scipy/scipy/pull/5707>`__: DOC:Add some
explanation for ftol xtol in scipy.optimize.fmin
- - `#5708 <https://github.com/scipy/scipy/pull/5708>`__: DOC:
optimize: PEP8 minimize docstring
- - `#5709 <https://github.com/scipy/scipy/pull/5709>`__: MAINT:
optimize Cython code for speed and size
- - `#5713 <https://github.com/scipy/scipy/pull/5713>`__: [DOC] Fix
broken link to reference
- - `#5717 <https://github.com/scipy/scipy/pull/5717>`__: DOC:
curve_fit raises RuntimeError on failure.
- - `#5724 <https://github.com/scipy/scipy/pull/5724>`__: forward port gh-5720
- - `#5728 <https://github.com/scipy/scipy/pull/5728>`__: STY: remove
a blank line
- - `#5729 <https://github.com/scipy/scipy/pull/5729>`__: ENH:
spatial: speed up boolean distances
- - `#5732 <https://github.com/scipy/scipy/pull/5732>`__: MAINT:
differential_evolution changes to default keywords break...
- - `#5733 <https://github.com/scipy/scipy/pull/5733>`__: TST:
differential_evolution - population initiation tests
- - `#5736 <https://github.com/scipy/scipy/pull/5736>`__: Complex
number support in log1p, expm1, and xlog1py
- - `#5741 <https://github.com/scipy/scipy/pull/5741>`__: MAINT:
sparse: clean up extraction functions
- - `#5742 <https://github.com/scipy/scipy/pull/5742>`__: DOC: signal:
Explain fftbins in get_window
- - `#5748 <https://github.com/scipy/scipy/pull/5748>`__: ENH: Add
O(N) random matrix generator
- - `#5749 <https://github.com/scipy/scipy/pull/5749>`__: ENH: Add
polyphase resampling
- - `#5756 <https://github.com/scipy/scipy/pull/5756>`__: RFC: Bump
the minimum numpy version, drop older python versions
- - `#5761 <https://github.com/scipy/scipy/pull/5761>`__: DOC: Some
improvements to least squares docstrings
- - `#5762 <https://github.com/scipy/scipy/pull/5762>`__: MAINT:
spatial: distance refactoring
- - `#5768 <https://github.com/scipy/scipy/pull/5768>`__: DOC: Fix
io.loadmat docstring for mdict param
- - `#5770 <https://github.com/scipy/scipy/pull/5770>`__: BUG: Accept
anything np.dtype can handle for a dtype in sparse.random
- - `#5772 <https://github.com/scipy/scipy/pull/5772>`__: Update
sparse.csgraph.laplacian docstring
- - `#5777 <https://github.com/scipy/scipy/pull/5777>`__: BUG: fix
special.hyp0f1 to work correctly for complex inputs.
- - `#5780 <https://github.com/scipy/scipy/pull/5780>`__: DOC: Update
PIL error install URL
- - `#5781 <https://github.com/scipy/scipy/pull/5781>`__: DOC: Fix
documentation on solve_discrete_lyapunov
- - `#5782 <https://github.com/scipy/scipy/pull/5782>`__: DOC: cKDTree
and KDTree now reference each other
- - `#5783 <https://github.com/scipy/scipy/pull/5783>`__: DOC: Clarify
finish behaviour in scipy.optimize.brute
- - `#5784 <https://github.com/scipy/scipy/pull/5784>`__: MAINT:
Change default tolerances of least_squares to 1e-8
- - `#5787 <https://github.com/scipy/scipy/pull/5787>`__: BUG: Allow
Processing of Zero Order State Space Models in signal.ss2tf
- - `#5788 <https://github.com/scipy/scipy/pull/5788>`__: DOC, BUG:
Clarify and Enforce Input Types to 'Data' Objects
- - `#5789 <https://github.com/scipy/scipy/pull/5789>`__: ENH: sparse:
speedup LIL matrix slicing (was #3338)
- - `#5791 <https://github.com/scipy/scipy/pull/5791>`__: DOC: README:
remove coveralls.io
- - `#5792 <https://github.com/scipy/scipy/pull/5792>`__: MAINT:
remove uses of deprecated np.random.random_integers
- - `#5794 <https://github.com/scipy/scipy/pull/5794>`__: fix
affine_transform (fixes #1547 and #5702)
- - `#5795 <https://github.com/scipy/scipy/pull/5795>`__: DOC: Removed
uniform method from kmeans2 doc
- - `#5797 <https://github.com/scipy/scipy/pull/5797>`__: DOC: Clarify
the computation of weighted minkowski
- - `#5798 <https://github.com/scipy/scipy/pull/5798>`__: BUG: Ensure
scipy's _asfarray returns ndarray
- - `#5799 <https://github.com/scipy/scipy/pull/5799>`__: TST: Mpmath
testing patch
- - `#5801 <https://github.com/scipy/scipy/pull/5801>`__: allow
reading of certain IDL 8.0 .sav files
- - `#5803 <https://github.com/scipy/scipy/pull/5803>`__: DOC: fix
module name in error message
- - `#5804 <https://github.com/scipy/scipy/pull/5804>`__: DOC:
special: Expanded docs for special functions.
- - `#5805 <https://github.com/scipy/scipy/pull/5805>`__: DOC: Fix
order of returns in _spectral_helper
- - `#5806 <https://github.com/scipy/scipy/pull/5806>`__: ENH: sparse:
vectorized coo_matrix.diagonal
- - `#5808 <https://github.com/scipy/scipy/pull/5808>`__: ENH: Added
iqr function to compute IQR metric in scipy/stats/stats.py
- - `#5810 <https://github.com/scipy/scipy/pull/5810>`__: MAINT/BENCH:
sparse: Benchmark cleanup and additions
- - `#5811 <https://github.com/scipy/scipy/pull/5811>`__: DOC:
sparse.linalg: shape, not size
- - `#5813 <https://github.com/scipy/scipy/pull/5813>`__: Update
sparse ARPACK functions min `ncv` value
- - `#5815 <https://github.com/scipy/scipy/pull/5815>`__: BUG: Error
message contained wrong values
- - `#5816 <https://github.com/scipy/scipy/pull/5816>`__: remove dead
code from stats tests
- - `#5820 <https://github.com/scipy/scipy/pull/5820>`__: "in"->"a" in
order_filter docstring
- - `#5821 <https://github.com/scipy/scipy/pull/5821>`__: DOC: README:
INSTALL.txt was renamed in 2014
- - `#5825 <https://github.com/scipy/scipy/pull/5825>`__: DOC: typo in
the docstring of least_squares
- - `#5826 <https://github.com/scipy/scipy/pull/5826>`__: MAINT:
sparse: increase test coverage
- - `#5827 <https://github.com/scipy/scipy/pull/5827>`__: NdPPoly rebase
- - `#5828 <https://github.com/scipy/scipy/pull/5828>`__: Improve
numerical stability of hyp0f1 for large orders
- - `#5829 <https://github.com/scipy/scipy/pull/5829>`__: ENH: sparse:
Add copy parameter to all .toXXX() methods in sparse...
- - `#5830 <https://github.com/scipy/scipy/pull/5830>`__: DOC: rework
INSTALL.rst.txt
- - `#5831 <https://github.com/scipy/scipy/pull/5831>`__: Adds
plotting options to voronoi_plot_2d
- - `#5834 <https://github.com/scipy/scipy/pull/5834>`__: Update
stats.binom_test() docstring
- - `#5836 <https://github.com/scipy/scipy/pull/5836>`__: ENH, TST:
Allow SIMO tf's for tf2ss
- - `#5837 <https://github.com/scipy/scipy/pull/5837>`__: DOC: Image examples
- - `#5838 <https://github.com/scipy/scipy/pull/5838>`__: ENH: sparse:
add eliminate_zeros() to coo_matrix
- - `#5839 <https://github.com/scipy/scipy/pull/5839>`__: BUG: Fixed
name of NumpyVersion.__repr__
- - `#5845 <https://github.com/scipy/scipy/pull/5845>`__: MAINT: Fixed
typos in documentation
- - `#5847 <https://github.com/scipy/scipy/pull/5847>`__: Fix bugs in
sparsetools
- - `#5848 <https://github.com/scipy/scipy/pull/5848>`__: BUG:
sparse.linalg: add locks to ensure ARPACK threadsafety
- - `#5849 <https://github.com/scipy/scipy/pull/5849>`__: ENH:
sparse.linalg: upgrade to superlu 5.1.1
- - `#5851 <https://github.com/scipy/scipy/pull/5851>`__: ENH: expose
lapack's ilaver to python to allow lapack verion...
- - `#5852 <https://github.com/scipy/scipy/pull/5852>`__: MAINT:
runtests.py: ensure Ctrl-C interrupts the build
- - `#5854 <https://github.com/scipy/scipy/pull/5854>`__: DOC: Minor
update to documentation
- - `#5855 <https://github.com/scipy/scipy/pull/5855>`__: Pr 5640
- - `#5859 <https://github.com/scipy/scipy/pull/5859>`__: ENH: Add
random correlation matrix generator
- - `#5862 <https://github.com/scipy/scipy/pull/5862>`__: BUG: Allow
expm for complex matrix with shape (1, 1)
- - `#5863 <https://github.com/scipy/scipy/pull/5863>`__: FIX: Fix test
- - `#5864 <https://github.com/scipy/scipy/pull/5864>`__: DOC: add a
little note about the Normal survival function (Q-function)
- - `#5867 <https://github.com/scipy/scipy/pull/5867>`__: Fix for #5865
- - `#5869 <https://github.com/scipy/scipy/pull/5869>`__: extend
normal distribution cdf to complex domain
- - `#5872 <https://github.com/scipy/scipy/pull/5872>`__: DOC: Note
that morlet and cwt don't work together
- - `#5875 <https://github.com/scipy/scipy/pull/5875>`__: DOC:
interp2d class description
- - `#5876 <https://github.com/scipy/scipy/pull/5876>`__: MAINT:
spatial: remove a stray print statement
- - `#5878 <https://github.com/scipy/scipy/pull/5878>`__: MAINT: Fixed
noisy UserWarnings in ndimage tests. Fixes #5877
- - `#5879 <https://github.com/scipy/scipy/pull/5879>`__: MAINT:
sparse.linalg/superlu: add explicit casts to resolve compiler...
- - `#5880 <https://github.com/scipy/scipy/pull/5880>`__: MAINT:
signal: import gcd from math and not fractions when on...
- - `#5887 <https://github.com/scipy/scipy/pull/5887>`__: Neldermead
initial simplex
- - `#5894 <https://github.com/scipy/scipy/pull/5894>`__: BUG:
_CustomLinearOperator unpickalable in python3.5
- - `#5895 <https://github.com/scipy/scipy/pull/5895>`__: DOC:
special: slightly improve the multigammaln docstring
- - `#5900 <https://github.com/scipy/scipy/pull/5900>`__: Remove
duplicate assignment.
- - `#5901 <https://github.com/scipy/scipy/pull/5901>`__: Update bundled ARPACK
- - `#5904 <https://github.com/scipy/scipy/pull/5904>`__: ENH: Make
convolve and correlate order-agnostic
- - `#5905 <https://github.com/scipy/scipy/pull/5905>`__: ENH:
sparse.linalg: further LGMRES cleanups
- - `#5906 <https://github.com/scipy/scipy/pull/5906>`__: Enhancements
and cleanup in scipy.integrate (attempt #2)
- - `#5907 <https://github.com/scipy/scipy/pull/5907>`__: ENH: Change
sparse `.sum` and `.mean` dtype casting to match...
- - `#5909 <https://github.com/scipy/scipy/pull/5909>`__: changes for
convolution symmetry
- - `#5913 <https://github.com/scipy/scipy/pull/5913>`__: MAINT:
basinhopping remove instance test closes #5440
- - `#5919 <https://github.com/scipy/scipy/pull/5919>`__: MAINT:
uninitialised var if basinhopping niter=0. closes #5915
- - `#5920 <https://github.com/scipy/scipy/pull/5920>`__: BLD: Fix
missing lsame.c error for MKL
- - `#5921 <https://github.com/scipy/scipy/pull/5921>`__: DOC:
interpolate: add example showing how to work around issue...
- - `#5926 <https://github.com/scipy/scipy/pull/5926>`__: MAINT:
spatial: upgrade to Qhull 2015.2
- - `#5928 <https://github.com/scipy/scipy/pull/5928>`__: MAINT:
sparse: optimize DIA sum/diagonal, csgraph.laplacian
- - `#5929 <https://github.com/scipy/scipy/pull/5929>`__: Update
info/URL for octave-maintainers discussion
- - `#5930 <https://github.com/scipy/scipy/pull/5930>`__: TST:
special: silence DeprecationWarnings from sph_yn
- - `#5931 <https://github.com/scipy/scipy/pull/5931>`__: ENH:
implement the principle branch of the logarithm of Gamma.
- - `#5934 <https://github.com/scipy/scipy/pull/5934>`__: Typo: "mush" => "must"
- - `#5935 <https://github.com/scipy/scipy/pull/5935>`__: BUG:string
comparison stats._binned_statistic closes #5927
- - `#5938 <https://github.com/scipy/scipy/pull/5938>`__: Cythonize
stats.ks_2samp for a ~33% gain in speed.
- - `#5939 <https://github.com/scipy/scipy/pull/5939>`__: DOC: fix
optimize.fmin convergence docstring
- - `#5941 <https://github.com/scipy/scipy/pull/5941>`__: Fix minor
typo in squareform docstring
- - `#5942 <https://github.com/scipy/scipy/pull/5942>`__: Update
linregress stderr description.
- - `#5943 <https://github.com/scipy/scipy/pull/5943>`__: ENH: Improve
numerical accuracy of lognorm
- - `#5944 <https://github.com/scipy/scipy/pull/5944>`__: Merge
vonmises into stats pyx
- - `#5945 <https://github.com/scipy/scipy/pull/5945>`__: MAINT:
interpolate: Tweak declaration to avoid cython warning...
- - `#5946 <https://github.com/scipy/scipy/pull/5946>`__: MAINT:
sparse: clean up format conversion methods
- - `#5949 <https://github.com/scipy/scipy/pull/5949>`__: BUG: fix
sparse .mean to return a scalar instead of a matrix
- - `#5955 <https://github.com/scipy/scipy/pull/5955>`__: MAINT:
Replace calls to `hanning` with `hann`
- - `#5956 <https://github.com/scipy/scipy/pull/5956>`__: DOC: Missing
periods interfering with parsing
- - `#5958 <https://github.com/scipy/scipy/pull/5958>`__: MAINT: add a
test for lognorm.sf underflow
- - `#5961 <https://github.com/scipy/scipy/pull/5961>`__: MAINT
_centered(): rename size to shape
- - `#5962 <https://github.com/scipy/scipy/pull/5962>`__: ENH:
constants: Add multi-scale temperature conversion function
- - `#5965 <https://github.com/scipy/scipy/pull/5965>`__: ENH:
special: faster way for calculating comb() for exact=True
- - `#5975 <https://github.com/scipy/scipy/pull/5975>`__: ENH: Improve
FIR path of signal.decimate
- - `#5977 <https://github.com/scipy/scipy/pull/5977>`__: MAINT/BUG:
sparse: remove overzealous bmat checks
- - `#5978 <https://github.com/scipy/scipy/pull/5978>`__:
minimize_neldermead() stop at user requested maxiter or maxfev
- - `#5983 <https://github.com/scipy/scipy/pull/5983>`__: ENH: make
sparse `sum` cast dtypes like NumPy `sum` for 32-bit...
- - `#5985 <https://github.com/scipy/scipy/pull/5985>`__: BUG, API:
Add `jac` parameter to curve_fit
- - `#5989 <https://github.com/scipy/scipy/pull/5989>`__: ENH: Add
firls least-squares fitting
- - `#5990 <https://github.com/scipy/scipy/pull/5990>`__: BUG: read
tries to handle 20-bit WAV files but shouldn't
- - `#5991 <https://github.com/scipy/scipy/pull/5991>`__: DOC: Cleanup
wav read/write docs and add tables for common types
- - `#5994 <https://github.com/scipy/scipy/pull/5994>`__: ENH: Add
gesvd method for svd
- - `#5996 <https://github.com/scipy/scipy/pull/5996>`__: MAINT: Wave cleanup
- - `#5997 <https://github.com/scipy/scipy/pull/5997>`__: TST: Break
up upfirdn tests & compare to lfilter
- - `#6001 <https://github.com/scipy/scipy/pull/6001>`__: Filter design docs
- - `#6002 <https://github.com/scipy/scipy/pull/6002>`__: COMPAT:
Expand compatibility fromnumeric.py
- - `#6007 <https://github.com/scipy/scipy/pull/6007>`__: ENH: Skip
conversion of TF to TF in freqresp
- - `#6009 <https://github.com/scipy/scipy/pull/6009>`__: DOC: fix
incorrect versionadded for entr, rel_entr, kl_div
- - `#6013 <https://github.com/scipy/scipy/pull/6013>`__: Fixed the
entropy calculation of the von Mises distribution.
- - `#6014 <https://github.com/scipy/scipy/pull/6014>`__: MAINT: make
gamma, rgamma use loggamma for complex arguments
- - `#6020 <https://github.com/scipy/scipy/pull/6020>`__: WIP: ENH:
add exact=True factorial for vectors
- - `#6022 <https://github.com/scipy/scipy/pull/6022>`__: Added
'lanczos' to the image interpolation function list.
- - `#6024 <https://github.com/scipy/scipy/pull/6024>`__: BUG:
optimize: do not use dummy constraints in SLSQP when no...
- - `#6025 <https://github.com/scipy/scipy/pull/6025>`__: ENH:
Boundary value problem solver for ODE systems
- - `#6029 <https://github.com/scipy/scipy/pull/6029>`__: MAINT:
Future imports for optimize._lsq
- - `#6030 <https://github.com/scipy/scipy/pull/6030>`__: ENH:
stats.trap - adding trapezoidal distribution closes #6028
- - `#6031 <https://github.com/scipy/scipy/pull/6031>`__: MAINT: Some
improvements to optimize._numdiff
- - `#6032 <https://github.com/scipy/scipy/pull/6032>`__: MAINT: Add
special/_comb.c to .gitignore
- - `#6033 <https://github.com/scipy/scipy/pull/6033>`__: BUG: check
the requested approximation rank in interpolative.svd
- - `#6034 <https://github.com/scipy/scipy/pull/6034>`__: DOC: Doc for
mannwhitneyu in stats.py corrected
- - `#6040 <https://github.com/scipy/scipy/pull/6040>`__: FIX: Edit
the wrong link in f_oneway
- - `#6044 <https://github.com/scipy/scipy/pull/6044>`__: BUG: (ordqz)
always increase parameter lwork by 1.
- - `#6047 <https://github.com/scipy/scipy/pull/6047>`__: ENH: extend
special.spence to complex arguments.
- - `#6049 <https://github.com/scipy/scipy/pull/6049>`__: DOC: Add
documentation of PR #5640 to the 0.18.0 release notes
- - `#6050 <https://github.com/scipy/scipy/pull/6050>`__: MAINT: small
cleanups related to loggamma
- - `#6070 <https://github.com/scipy/scipy/pull/6070>`__: Add asarray
to explicitly cast list to numpy array in wilcoxon...
- - `#6071 <https://github.com/scipy/scipy/pull/6071>`__: DOC:
antialiasing filter and link decimate resample, etc.
- - `#6075 <https://github.com/scipy/scipy/pull/6075>`__: MAINT:
reimplement special.digamma for complex arguments
- - `#6080 <https://github.com/scipy/scipy/pull/6080>`__: avoid
multiple computation in kstest
- - `#6081 <https://github.com/scipy/scipy/pull/6081>`__: Clarified
pearson correlation return value
- - `#6085 <https://github.com/scipy/scipy/pull/6085>`__: ENH: allow
long indices of sparse matrix with umfpack in spsolve()
- - `#6086 <https://github.com/scipy/scipy/pull/6086>`__: fix
description for associated Laguerre polynomials
- - `#6087 <https://github.com/scipy/scipy/pull/6087>`__: Corrected
docstring of splrep.
- - `#6094 <https://github.com/scipy/scipy/pull/6094>`__: ENH:
special: change zeta signature to zeta(x, q=1)
- - `#6095 <https://github.com/scipy/scipy/pull/6095>`__: BUG: fix
integer overflow in special.spence
- - `#6106 <https://github.com/scipy/scipy/pull/6106>`__: Fixed Issue #6105
- - `#6116 <https://github.com/scipy/scipy/pull/6116>`__: BUG: matrix
logarithm edge case
- - `#6119 <https://github.com/scipy/scipy/pull/6119>`__: TST:
DeprecationWarnings in stats on python 3.5 closes #5885
- - `#6120 <https://github.com/scipy/scipy/pull/6120>`__: MAINT:
sparse: clean up sputils.isintlike
- - `#6122 <https://github.com/scipy/scipy/pull/6122>`__: DOC:
optimize: linprog docs should say minimize instead of maximize
- - `#6123 <https://github.com/scipy/scipy/pull/6123>`__: DOC:
optimize: document the `fun` field in `scipy.optimize.OptimizeResult`
- - `#6124 <https://github.com/scipy/scipy/pull/6124>`__: Move FFT
zero-padding calculation from signaltools to fftpack
- - `#6125 <https://github.com/scipy/scipy/pull/6125>`__: MAINT:
improve special.gammainc in the ``a ~ x`` regime.
- - `#6130 <https://github.com/scipy/scipy/pull/6130>`__: BUG: sparse:
Fix COO dot with zero columns
- - `#6138 <https://github.com/scipy/scipy/pull/6138>`__: ENH: stats:
Improve behavior of genextreme.sf and genextreme.isf
- - `#6146 <https://github.com/scipy/scipy/pull/6146>`__: MAINT:
simplify the expit implementation
- - `#6151 <https://github.com/scipy/scipy/pull/6151>`__: MAINT:
special: make generate_ufuncs.py output deterministic
- - `#6152 <https://github.com/scipy/scipy/pull/6152>`__: TST:
special: better test for gammainc at large arguments
- - `#6153 <https://github.com/scipy/scipy/pull/6153>`__: ENH: Make
next_fast_len public and faster
- - `#6154 <https://github.com/scipy/scipy/pull/6154>`__: fix typo
"mush"-->"must"
- - `#6155 <https://github.com/scipy/scipy/pull/6155>`__: DOC: Fix
some incorrect RST definition lists
- - `#6160 <https://github.com/scipy/scipy/pull/6160>`__: make
logsumexp error out on a masked array
- - `#6161 <https://github.com/scipy/scipy/pull/6161>`__: added
missing bracket to rosen documentation
- - `#6163 <https://github.com/scipy/scipy/pull/6163>`__: ENH: Added
"kappa4" and "kappa3" distributions.
- - `#6164 <https://github.com/scipy/scipy/pull/6164>`__: DOC: Minor
clean-up in integrate._bvp
- - `#6169 <https://github.com/scipy/scipy/pull/6169>`__: Fix
mpf_assert_allclose to handle iterable results, such as maps
- - `#6170 <https://github.com/scipy/scipy/pull/6170>`__: Fix
pchip_interpolate convenience function
- - `#6172 <https://github.com/scipy/scipy/pull/6172>`__: Corrected
misplaced bracket in doc string
- - `#6175 <https://github.com/scipy/scipy/pull/6175>`__: ENH:
sparse.csgraph: Pass indices to shortest_path
- - `#6178 <https://github.com/scipy/scipy/pull/6178>`__: TST:
increase test coverage of sf and isf of a generalized extreme...
- - `#6179 <https://github.com/scipy/scipy/pull/6179>`__: TST: avoid a
deprecation warning from numpy
- - `#6181 <https://github.com/scipy/scipy/pull/6181>`__: ENH:
Boundary conditions for CubicSpline
- - `#6182 <https://github.com/scipy/scipy/pull/6182>`__: DOC: Add
examples/graphs to max_len_seq
- - `#6183 <https://github.com/scipy/scipy/pull/6183>`__: BLD: update
Bento build config files for recent changes.
- - `#6184 <https://github.com/scipy/scipy/pull/6184>`__: BUG: fix
issue in io/wavfile for float96 input.
- - `#6186 <https://github.com/scipy/scipy/pull/6186>`__: ENH:
Periodic extrapolation for PPoly and BPoly
- - `#6192 <https://github.com/scipy/scipy/pull/6192>`__: MRG: Add circle-CI
- - `#6193 <https://github.com/scipy/scipy/pull/6193>`__: ENH: sparse:
avoid setitem densification
- - `#6196 <https://github.com/scipy/scipy/pull/6196>`__: Fixed
missing sqrt in docstring of Mahalanobis distance in cdist,...
- - `#6206 <https://github.com/scipy/scipy/pull/6206>`__: MAINT: Minor
changes in solve_bvp
- - `#6207 <https://github.com/scipy/scipy/pull/6207>`__: BUG: linalg:
for BLAS, downcast complex256 to complex128, not...
- - `#6209 <https://github.com/scipy/scipy/pull/6209>`__: BUG:
io.matlab: avoid buffer overflows in read_element_into
- - `#6210 <https://github.com/scipy/scipy/pull/6210>`__: BLD: use
setuptools when building.
- - `#6214 <https://github.com/scipy/scipy/pull/6214>`__: BUG:
sparse.linalg: fix bug in LGMRES breakdown handling
- - `#6215 <https://github.com/scipy/scipy/pull/6215>`__: MAINT:
special: make loggamma use zdiv
- - `#6220 <https://github.com/scipy/scipy/pull/6220>`__: DOC: Add parameter
- - `#6221 <https://github.com/scipy/scipy/pull/6221>`__: ENH: Improve
Newton solver for solve_bvp
- - `#6223 <https://github.com/scipy/scipy/pull/6223>`__: pchip should
work for length-2 arrays
- - `#6224 <https://github.com/scipy/scipy/pull/6224>`__: signal.lti:
deprecate cross-class properties/setters
- - `#6229 <https://github.com/scipy/scipy/pull/6229>`__: BUG:
optimize: avoid an infinite loop in Newton-CG
- - `#6230 <https://github.com/scipy/scipy/pull/6230>`__: Add example
for application of gaussian filter
- - `#6236 <https://github.com/scipy/scipy/pull/6236>`__: MAINT:
gumbel_l accuracy
- - `#6237 <https://github.com/scipy/scipy/pull/6237>`__: MAINT:
rayleigh accuracy
- - `#6238 <https://github.com/scipy/scipy/pull/6238>`__: MAINT:
logistic accuracy
- - `#6239 <https://github.com/scipy/scipy/pull/6239>`__: MAINT:
bradford distribution accuracy
- - `#6240 <https://github.com/scipy/scipy/pull/6240>`__: MAINT: avoid
bad fmin in l-bfgs-b due to maxfun interruption
- - `#6241 <https://github.com/scipy/scipy/pull/6241>`__: MAINT:
weibull_min accuracy
- - `#6246 <https://github.com/scipy/scipy/pull/6246>`__: ENH: Add
_support_mask to distributions
- - `#6247 <https://github.com/scipy/scipy/pull/6247>`__: fixed a
print error for an example of ode
- - `#6249 <https://github.com/scipy/scipy/pull/6249>`__: MAINT:
change x-axis label for stats.probplot to "theoretical...
- - `#6250 <https://github.com/scipy/scipy/pull/6250>`__: DOC: fix typos
- - `#6251 <https://github.com/scipy/scipy/pull/6251>`__: MAINT:
constants: filter out test noise from deprecated conversions
- - `#6252 <https://github.com/scipy/scipy/pull/6252>`__: MAINT:
io/arff: remove unused variable
- - `#6253 <https://github.com/scipy/scipy/pull/6253>`__: Add examples
to scipy.ndimage.filters
- - `#6254 <https://github.com/scipy/scipy/pull/6254>`__: MAINT:
special: fix some build warnings
- - `#6258 <https://github.com/scipy/scipy/pull/6258>`__: MAINT:
inverse gamma distribution accuracy
- - `#6260 <https://github.com/scipy/scipy/pull/6260>`__: MAINT:
signal.decimate - Use discrete-time objects
- - `#6262 <https://github.com/scipy/scipy/pull/6262>`__: BUG: odr:
fix string formatting
- - `#6267 <https://github.com/scipy/scipy/pull/6267>`__: TST: fix
some test issues in interpolate and stats.
- - `#6269 <https://github.com/scipy/scipy/pull/6269>`__: TST: fix
some warnings in the test suite
- - `#6274 <https://github.com/scipy/scipy/pull/6274>`__: ENH: Add sosfiltfilt
- - `#6276 <https://github.com/scipy/scipy/pull/6276>`__: DOC: update
release notes for 0.18.0
- - `#6277 <https://github.com/scipy/scipy/pull/6277>`__: MAINT:
update the author name mapping
- - `#6282 <https://github.com/scipy/scipy/pull/6282>`__: DOC:
Correcting references for scipy.stats.normaltest
- - `#6283 <https://github.com/scipy/scipy/pull/6283>`__: DOC: some
more additions to 0.18.0 release notes.
- - `#6284 <https://github.com/scipy/scipy/pull/6284>`__: Add `..
versionadded::` directive to `loggamma`.
- - `#6285 <https://github.com/scipy/scipy/pull/6285>`__: BUG: stats:
Inconsistency in the multivariate_normal docstring...
- - `#6290 <https://github.com/scipy/scipy/pull/6290>`__: Add author
list, gh-lists to 0.18.0 release notes
- - `#6293 <https://github.com/scipy/scipy/pull/6293>`__: TST:
special: relax a test's precision
- - `#6295 <https://github.com/scipy/scipy/pull/6295>`__: BUG: sparse:
stop comparing None and int in bsr_matrix constructor
- - `#6313 <https://github.com/scipy/scipy/pull/6313>`__: MAINT: Fix
for python 3.5 travis-ci build problem.
- - `#6327 <https://github.com/scipy/scipy/pull/6327>`__: TST: signal:
use assert_allclose for testing near-equality in...
- - `#6330 <https://github.com/scipy/scipy/pull/6330>`__: BUG:
spatial/qhull: allocate qhT via malloc to ensure CRT likes...
- - `#6332 <https://github.com/scipy/scipy/pull/6332>`__: TST: fix
stats.iqr test to not emit warnings, and fix line lengths.
- - `#6334 <https://github.com/scipy/scipy/pull/6334>`__: MAINT:
special: fix a test for hyp0f1
- - `#6347 <https://github.com/scipy/scipy/pull/6347>`__: TST:
spatial.qhull: skip a test on 32-bit platforms
- - `#6350 <https://github.com/scipy/scipy/pull/6350>`__: BUG:
optimize/slsqp: don't overwrite an array out of bounds
- - `#6351 <https://github.com/scipy/scipy/pull/6351>`__: BUG: #6318
Interp1d 'nearest' integer x-axis overflow issue fixed
- - `#6355 <https://github.com/scipy/scipy/pull/6355>`__: Backports for 0.18.0
Checksums
=========
MD5
~~~
e9ddb97336421e110a3f20e1b1f6c057
scipy-0.18.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f203cdea575c4e5d9c11f88480e609c4 scipy-0.18.0-cp27-cp27m-manylinux1_i686.whl
ccca6aeb87717ca383a15e1d3cd3b3e9 scipy-0.18.0-cp27-cp27m-manylinux1_x86_64.whl
3426dd5731fcdb9f56ee30623def9ac0 scipy-0.18.0-cp27-cp27mu-manylinux1_i686.whl
96f1e6ac2ed3a845802050840929681a scipy-0.18.0-cp27-cp27mu-manylinux1_x86_64.whl
aec151bd64fee0651dc804f8b57a1948
scipy-0.18.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
6e7bcd119bfcd3504f5d432424779fd2 scipy-0.18.0-cp34-cp34m-manylinux1_i686.whl
d8b88298b048884225708494bc51f249 scipy-0.18.0-cp34-cp34m-manylinux1_x86_64.whl
3886c82aa705b44662964d5d1de179b8
scipy-0.18.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
1bdc3664de8456bbc45620afbfc3d2cf scipy-0.18.0-cp35-cp35m-manylinux1_i686.whl
8f28a30aba8dd7fa4c1704088347684e scipy-0.18.0-cp35-cp35m-manylinux1_x86_64.whl
d70e7f533622ab705bc016dac328d93e scipy-0.18.0.tar.gz
59bceff108f58b0e72dfac6fb719476e scipy-0.18.0.tar.xz
9ec1363dde2f2c16e833d3cd09f0dd13 scipy-0.18.0.zip
SHA256
~~~~~~
c1357a8d7da900f3eb72c817a554fa82f71a123d232c1d28c4ef5624694ec937
scipy-0.18.0-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
f1ce34715420670253aef746ca9ac0de6af0db975bc2f7145697b227ed43a411
scipy-0.18.0-cp27-cp27m-manylinux1_i686.whl
b10ccbb451d781f5a31bce940150c626260369c31dc7c6cc609c012aae5b8b77
scipy-0.18.0-cp27-cp27m-manylinux1_x86_64.whl
919c035bfd63a8ecd9076e46488108db0847a13ff7bb3e2eb52561af68ffb798
scipy-0.18.0-cp27-cp27mu-manylinux1_i686.whl
7b77d7721a2017fe6fe2369edf6631c1cb4d2665f7a0e0562ed3796e8d8007d4
scipy-0.18.0-cp27-cp27mu-manylinux1_x86_64.whl
61441deb6c9ff093c60b48362a2104fa22212bb8baa09b62643f71df3f1fd361
scipy-0.18.0-cp34-cp34m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
41252b1083e657be1beb391c8508fc70298cc3c47214d7b874e5b50e2676229e
scipy-0.18.0-cp34-cp34m-manylinux1_i686.whl
1709f0696508047742a80c5f3c7699c7bd28f006cbbe4d2b001ed6ee9fc862a8
scipy-0.18.0-cp34-cp34m-manylinux1_x86_64.whl
5ed943f23f7553c34aec6444a3f929b9eccb0f330b7b4416a3132dd0c4c1068f
scipy-0.18.0-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
d71c4ac8019b5820acd881d1178461e4d900e8dcfe920f3b63faf9381db24a1c
scipy-0.18.0-cp35-cp35m-manylinux1_i686.whl
ab9db1de7140eaf602d4ba190bbbe07ca608d5d298203afbfeceb170a3f03ef4
scipy-0.18.0-cp35-cp35m-manylinux1_x86_64.whl
f01784fb1c2bc246d4211f2482ecf4369db5abaecb9d5afb9d94f6c59663286a
scipy-0.18.0.tar.gz
fc2d01887276839b1c709e661ba318d8db69a5c398217c79b97d6460a93c2d41
scipy-0.18.0.tar.xz
a4f9fb8cddbe681e2d5465a8dcf715ef454b16fe8c9eddf92bffb10bb50ac75e
scipy-0.18.0.zip
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.11 (GNU/Linux)
iQEcBAEBAgAGBQJXljjOAAoJEIp0pQ0zQcu+748IAL8pSPGDmi0PQOASCM00DUgK
2tq/3gnI5RIqpMDshQmcuI0/+6iqn0dGYVMJVIWYYBCVSm5D13xtz/3jTC9XGB6E
hsnVdSBI/RiZHoEpB7VguzyvOjZIFngkFk5XUpGbr8uaqYcfdQhzKfLnzq7ZHcuB
hUoYcku7gdQY5LZDlFTKZYjEBJM9odHa4uYIwezic09Rvr5X1PVjwIhahSXZekpo
zH37Zwi/bMNJxjUWtLonIdOB1xFi3rSFgEkycGNYWaiwtxy8dJGrkstiLf9T6HCC
ZV0lIVJcgUDG8VuRg8D7dQAoNSpDkYuR3HA17OvPfaKXETb6BDPcFFtqSxwvOF8=
=GM4X
-----END PGP SIGNATURE-----
1
0
Re: [Numpy-discussion] Performance issue in covariance function in Numpy 1.9 and later
by Ecem sogancıoglu July 22, 2016
by Ecem sogancıoglu July 22, 2016
July 22, 2016
Hi Ralf,
Thank you so much for your answer.
I finally figured out that the problem was because Numpy 1.9 was not linked
to BLAS. I do not know why because I simply installed numpy 1.9 via the
commands:
apt-get install python3-numpy
If anybody has the same problem, you may want to take a look into this:
http://osdf.github.io/blog/numpyscipy-with-openblas-for-ubuntu-1204-second-…
Best Regards,
Ecem
On Fri, Jul 22, 2016 at 5:19 PM Ecem sogancıoglu <ecemsogancioglu(a)gmail.com>
wrote:
> Dear Ralf,
>
> Thank you so much for your answer.
>
> I finally figured out that the problem was because Numpy 1.9 was not
> linked to BLAS. I do not know why because I simply installed numpy 1.9 via
> the commands:
>
> apt-get install python3-numpy
>
> If anybody has the same problem, you may want to take a look into this:
> http://osdf.github.io/blog/numpyscipy-with-openblas-for-ubuntu-1204-second-…
>
> Best Regards,
> Ecem
>
>
>
>
> On Tue, Jul 19, 2016 at 9:44 PM Ralf Gommers <ralf.gommers(a)gmail.com>
> wrote:
>
>> On Tue, Jul 19, 2016 at 3:53 PM, Ecem sogancıoglu <
>> ecemsogancioglu(a)gmail.com> wrote:
>>
>>> Hello All,
>>>
>>> there seems to be a performance issue with the covariance function in
>>> numpy 1.9 and later.
>>>
>>> Code example:
>>> *np.cov(np.random.randn(700,37000))*
>>>
>>> In numpy 1.8, this line of code requires 4.5755 seconds.
>>> In numpy 1.9 and later, the same line of code requires more than 30.3709
>>> s execution time.
>>>
>>
>> Hi Ecem, can you make sure to use the exact same random array as input to
>> np.cov when testing this? Also timing just the function call you're
>> interested in would be good; the creating of your 2-D array takes longer
>> than the np.cov call:
>>
>> In [5]: np.random.seed(1234)
>>
>> In [6]: x = np.random.randn(700,37000)
>>
>> In [7]: %timeit np.cov(x)
>> 1 loops, best of 3: 572 ms per loop
>>
>> In [8]: %timeit np.random.randn(700, 37000)
>> 1 loops, best of 3: 1.26 s per loop
>>
>>
>> Cheers,
>> Ralf
>>
>>
>>
>>> Has anyone else observed this problem and is there a known bugfix?
>>>
>>>
>>> _______________________________________________
>>> NumPy-Discussion mailing list
>>> NumPy-Discussion(a)scipy.org
>>> https://mail.scipy.org/mailman/listinfo/numpy-discussion
>>>
>>>
>> _______________________________________________
>> NumPy-Discussion mailing list
>> NumPy-Discussion(a)scipy.org
>> https://mail.scipy.org/mailman/listinfo/numpy-discussion
>>
>
1
0